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Histogram Monte Carlo renormalization-group method for percolation problems
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We present a histogram Monte Carlo method to calculate the existence probability E„, the perco-
lation probability P, and the mean-cluster size S for percolation problems as continuous functions
of the bond or site probability p. We then use Ez and P in a percolation renormalization-group
method to calculate the critical point and exponents. Our method gives quite accurate results for
percolation problems.

In recent decades, much effort has been devoted
to the study of percolation, including random
percolation, and correlated percolation. The
simplest example of percolation is the bond random
or site random percolation models on lattices. s Al-
though such models are very simple, there are only
a few exact results for their critical behavior and no
exact results for their global behavior on nontrivial
lattices. In order to study the global and critical
properties of the random percolation problem, various
numerical methods have been used, including Monte
Carlo simulation method, s transfer matrix method, 7

large-cell renormalization-group transformation, coher-
ent anomaly method, generation of large clusters near
critical point, finite-size scaling, etc. In this paper
we propose a method to study percolation problems. In-
stead of calculating the percolation probability P, the
mean-cluster size S, etc. , at various discrete bond or site
occupation probabilities p, we use the Monte Carlo simu-
lation method to calculate the hist, ograms of various im-

portant quantities from which the percolation probality
P, the mean clusters S, and the existence probability Ez
(to be defined below) for finite systems at any bond or
site occupation probability p may be calculated. We then
use Ez and I' for diR'erent system sizes to formulate a per-
colation renormalization-group transformation equation
to obtain critical point p„ the thermal scaling power y&,

and the field-scaling power yb from which various critical
exponents of the percolation problems may be obtained.
Our method may be applied to both bond and site per-
colation problems. However, for the sake of simplicity we

will present the method in terms of bond random perco-
lation model. The extension to site random percolation
model is straightforward. At the end of the paper we will

discuss the extension of the method to correlated percola-
tion models corresponding to spin models 5 and hard-
core particle models. " We will also compare our method
with other methods for studying phase transitions.

In the bond random percolation model (BRPM) on
a lattice G of N sites and E nearest-neighbor bonds,
each bond of G is occupied with a probability p, where

0 & p & 1. The probability weight for the appearance of
a subgraph G' of b(G') occupied bonds is given by

~(Gl p) pb(G')(I p)E b(G')-

GI„CG

GI„CG

S(G, P) = ) n(G', p)) n, /N,
G'CG

(4)

where n(G„', p) and 7r(G', p) are defined by Eq. (I). The
sums in Eqs. (2) and (3) are over all G„' of G; ¹(G')is
the total number of lattice sites in the percolating clusters
of G. The first sum in Eq. (4) is over all G' of G; the
second sum in Eq. (4) is over all nonpercolating clusters
of G' and n, is the total number of lattice sites in the
cluster c of G'. The result of the second sum in Eq. (4)
will be denoted by C, (G'). Ez(G, p) will be useful in
the percolation renormalization-group calculation of p,
and y&. Now we proceed to use a histogram Monte Carlo
simulation method to calculate E&, P, and S.

The E nearest-neighbor bonds of G will be labeled by
i = 1, 2, 3, . . . , E in the following. To save computer
time of generating random numbers, we generate G' in
the following way. To each nearest-neighbor bond of G,
say the ith bond, we assign a random number r, . Such
random numbers constitute a random vector of length
E: V = (ri, r2, rs, . . . , rs) We then con. sider a se-

The lattice sites connected by occupied bonds are said to
be in the same cluster. The cluster which extends from
one side of G to the opposite side of G is called a perco-
lating cluster. The subgraph which contains at least one
percolating cluster is called a percolating subgraph and
will be denoted by Gp. The subgraph which does not
contain any percolating cluster is called a nonpercolat-
ing subgraph and will be denoted by G&. The existence
probability E&(G, p), the percolation probability P(G, p),
and the mean-cluster size S(G, p) of the BRPM on G are
given by
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quence of bond probabilities of increasing magnitudes:
Q&pq(p2(p3 (p &1. Forgiven@&, 1&y &m,
if r; & p~, then the corresponding ith bond of G is oc-
cupied. In this way we generate a bond subgraph G'
for each p&. The total number of occupied bonds in G',
b(G'), may be calculated easily. The multiple labeling
technique of Hoshen and Kopelman is applied to t '

to calculate the cluster-size distribution of nonpercolat-
ing clusters and the total number of sites in percolating
clusters, i.e. ,

N" (G'). Of course, for nonpercolating sub-

graphs, N" (G') is 0.
We generate NR random vectors. For each random

vector, we generate m G' corresponding to iv difFerent

values of p. The data obtained from toN~ G' are then
used to construct four arrays of length E with elements

Np(b), Ng(b), Npp(b), and N, (b), 0 & b & E, which are,
respectively, the total numbers of generated percolating
subgraphs with b occupied bond, the total number of gen-
erated nonpercolating subgraphs with b occupied bonds,
the sum of ¹(G')over subgraphs with b occupied bonds,
and the sum of C, (G') over subgraphs with b occupied
bonds. In the large number of simulations, we expect
that the total number of percolating subgraphs with b

occupied bonds, Nip(b), and the total number of non-
percolating subgraphs with b occupied bonds should be
proportional to Np(b) and Ny(b) with the same propor-
tional constant C(b), which may be determined from the
following equation:

C(b)lN (b)+ Nf(b)j = N (b)+ N I(b) = Cb (5)

The existence probability Ep, the percolation proba-
bility P, and the mean-cluster size S at any value of the
bond occupation probability p may be calculated from
the following equations:

E
E„(G,p) = ) p (1 —p) N,„(b)

b=0
E

z-b z Np (b)—) p(1 &) Cb N(b) N(b) (6)

N„„(b)
P(G, p)=) p(1 —p) Cb N (b) N (b),

E
b z-b z N&(b)

N (b) + Ng (b)

Please note that Ep, P, and S of Eqs. (6)—(8) are con-
tinuous functions of p. This is quite different from the
results obtained by traditional Monte Carlo simulation
methods. We have calculated Ep, P, and S for lattices
of different linear dimensions L. Typical calculated re-
sults are shown in Fig. 1.

Suppose we already carry out histogram Monte Carlo
simulations on lattices Gi and Gz of linear dimensions
L~ and L~, respectively, where L~ & Lq. The percolation
renormalization-group transformation from lattice G~ to

Ep(G» p.) = Ep(Gi p )

The thermal scaling power yi may be obtained from the
equation

gt
V

(ln sP„)
J c

ln ~~

Lg

Based on the method of Tsallis, Coniglio, and
Schwachheim, Eq. (9) may be iterated to obtain the
percolation probability for the thermodynamic system.

It has been shown by Stanleys that the field-scaling
power yh for the random percolation is equal to the frac-
tal dimensions D of the percolating cluster at p, . There-
fore yg and D are given by

I (G'„~.)I, ',

P(G~,p, )L~~

ln ~~

Lg

(12)

Typical calculated values of p„yi, and yb are shown in
Table I, where the exact values for the square latticezs 2s

are also shown for comparison. It obvious from Table
I that our method gives quite accurate results. In all
calculations we use the periodic boundary condition.

It has been shown that the q-state Potts model (@PM)
(Ref. 25) is equivalent to a q-state bond-correlated perco-
lation model (QBCPM) (Ref. 14) in which the probabil-
ity weight for the appearance of a subgraph G' of b(G')
bonds and n(G') clusters is given by

where p = 1 —exp( —I&) with K being the normalized
nearest-neighbor ferromagnetic coupling constant. The
spontaneous magnetization and the magnetic suscepti-
bility of the /PM are related to the percolation prob-
ability and the mean-cluster size of the QBCPM, re-
spectively. The histogram Monte Carlo renormalization-
group method presented above may be extended to the
QBCPM. Instead of calculating four one-dimensional ar-
rays of length E with elements Np(b), N~(b), Npp(b),
and N, (b), 0 & b & E, we may calculate four two-
dimensional arrays with elements Mp(b, n), Mg(b, n),
Mpp(b, n), M, (b, n), 0 & b & E, 0 & n & N, which
are, respectively, the total numbers of generated per-
colating subgraphs with 6 occupied bond and n clus-
ters, the total number of generated nonpercolating sub-
graphs with b occupied bonds and n clusters, the sum
of N" (G') over subgraphs with b occupied bonds and n
clusters, and the sum of C, (G') over subgraphs with b

occupied bonds and n clusters. Please note that the sum
of Mp(b, n) over all n and the sum of My(b, n) over all n
give Np(b) and Ng(b), respectively. In the large number

lattice Gz is given by the equation

Ep(G» p') = Ep(Gi p)

which gives the renormalized bond probability p' as a
function of p. The fixed point of Eq. (9) gives the critical
point p„ i.e. , p, may be obtained by solving the equation
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and the field-scaling
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of simulations, we expect that the total number of perco-
lating subgraphs with b occupied bonds and n clusters,
Mqz(b, n), and the total number of nonpercolating sub-
graphs with b occupied bonds and n clusters should be
proportional to Mz(b, n) and MI(b, b) with the same pro-
portional constant C(b), which may also be determined
from Eq. (5). With such normalizations contant, we may
easily calculate E(G, p), P(G, p), and S(G, p) and con-
truct percolation renormalization-group equations to cal-
culate p„y&, yp, and the thermodynamic free energy
for the QPM. ~ Instead of using bond random percola-
tion process to generate subgraphs, one may also use the
Swendsen-Wang algorithm ~ to simulate subgraphs for
the QPM and QBCPM. With proper normalization of
the number of counts by the factor of q to the power
of cluster numbers, one may also construct various his-
tograms with the number of occupied bonds b and the
number of clusters n as variables and use Eq. (5) to de-
termine absolute magnitudes for various quantities of the
QPM and QBCPM. Qur preliminary research in this gen-
eral direction is very encouraging.

It has been shown~ that phase transitions of lattice
hard-core particles are percolation transitions. For such
systems one may erst consider the site random perco-

lation problem on one sublattice, and then consider the
occupation of lattice sites of another sublattice. In this
way, it is also possible to contruct a histogram Monte
Carlo renormalization-group method for hard-core parti-
cles on lattices.

Recently Ferrenberg and Swendsen2z proposed a his-
togram Monte Carlo simulation method to calculate the
free energy and physical quantities for the QPM. In order
to obtain such quantities over a wide range of parameter
values, they need to solve a set of coupled nonlinear equa-
tions. In our method, we use Eq. (5) to determine the
absolute magnitudes and therefore need not solve coupled
nonlinear equations.

In summary, we have a histogram Monte Carlo
renormalization-group method that may be realized eas-

ily, and may give pretty accurate results.
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