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Knerg3t of an electrorheological solid calculated with inclusion of higher multipoles
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We have investigated the contributions of higher multipoles to the energy of an electrorheological
solid. We find that, with the dipole and octupole moments taken into account, the fcc structure becomes
almost degenerate in energy with the bct: Favoring of the latter is only by —,

' to —' of its dipole value.

The thirty-two-pole effect is opposite to that of the octupole so that, when it is also added, the energy by
which the bct structure is favored is restored to about

~
to —, of its dipole value.

INTRODUCTION

An electrorheological (ER) fiuid consists of a suspen-
sion of dielectric particles in a liquid of low dielectric
constant. ' Its viscosity increases dramatically in the
presence of an applied electric field. When the applied
field exceeds some critical value, the ER Quid turns into a
solid, whose shear modulus increases as the field is fur-
ther strengthened. In a recent paper, Tao and Sun
showed that, in the dipole approximation, the body-
centered tetragonal (bct) structure (see Fig. 1) has the
lowest energy among the fcc, sc, and bct structures, and
separated chains. They concluded that the bct structure
is the ground-state structure of an ER solid.

Because the separations between dielectric spheres are
small, the higher multipoles are important. We therefore
consider the electrostatic interaction between dielectric
spheres up to the thirty-two-pole contribution, to see
whether it affects the energy comparison among different
structures.

sphere, we can expand the potential with use of spherical
harmonics:

V(r)= g Vt Yt (0,$)
I, m

I—P E,„,d x=
' 1/2

2 ~1oE t
= p'E

where p is the net dipole moment of a sphere, and

f d x= gliVi
I, m

To find the p E„&fterm, we write E„&f=—V V„if,where

where a is the radius of the sphere. Since V is real and
Yig'=( —1) Yt™,we have Vt =( —1) Vt* . Because
P= —gVV, we obtain

GENERAL FORMULATION

We proceed by expressing the energy as a quadratic
function of all multipole moments of a single sphere, as-

suming all spheres to be equivalently placed in the lattice.
Apart from that, the present section applies to any lat-
tice.

The energy per sphere is

P2—P [E,„,+ —,'E„„„+—,'E„it]+
2X

where E,„,represents the applied field, E„h„represents
the field produced by the induced charge of other
spheres, E„&frepresent the field produced by the surface
charge of said sphere, and the P /2y term is the restoring
force term.

Let V(r) be the total potential at r. Inside a sphere, we
have V.D=O, where D= —(1+4try)VV, and therefore
V V=O. Hence, taking the origin at the center of the

2b

FKJ. 1. Lattice structure for the generic tetragonal lattice

considered in this paper. The bct structure corresponds to

a =b=1/&6c; fcc, to 2a =c =&2b.
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—0.599 300
—0.994 563
—1.260 621
—1.445 130
—1.635 675
—1.753 023
—2.105 485

0.015 427
0.041 779
0.066 376
0.086 560
0.110023
0.125 769
0.178 847

r.VV'"« —r VV;,",f =4m.cr =4nP r= —4m'. VV'";

TABLE I. Total energies in the bct and fcc structures in the
dipole approximation (only I = 1 considered) for various suscep-
tibilities y. The energies are given in units of (E,„,) a .

FIG. 2. Energy per sphere as a function of g, for y=1.5.
The solid line corresponds to dipole approximation; the dashed
line corresponds to dipole+octupole approximation; the dotted
line corresponds to dipole+ octupole+ thirty-two-pole approxi-
mation. The end-point minimum near (=0.41 is for the bct
structure; the one near /=0. 71 is for the fcc structure.

~hence

2l+1 I I

and therefore

l4 I

I, m

self X s™elf i (~ 4')fi«} (4)
l, m

where fI(r)=(r la)' for r (a or (air)'+' for r & a. Since
V V=O inside the sphere, the source of V„&fis entirely at
r =a, where

Note that we do not need to know the value of V(r} out-
side the sphere.

We now turn to the term P E„h„in Eq. (1). Define

u =x+iy and U =x —iy. It is easy to derive the following
formula:

1/2
gm gl —m

gUm g&I
—m1 )E

—m2m

( 1)i2Im! 2l + 1 1

4m (l —m}!(l +m)!

2l+1 1

4~ (l —m)'(l +m)!

gi —Iml

gu Iml g&l
—Iml

1 m&0,
r

m &0.1

r

Thus, for r & a, Eq. (4) becomes

gm pm pl
—m

V (r)= g A +( —1)Im ~&m ~&E
—m r

(0 m &I)

where

-a '+' -2 l
1

2l+1 (l —m)! (l+m)!

Now

' 1/2

—
—,
' fP E„„„dr=—,

' fp(r)V„h,„(r)dr=g' —,
' fp(r)V„ir(r—Rh)dr,

h

where the g'» means sum over a11 the 1attice points except the origin. For each sphere Q, 1et U„=x„+jy„,
Vh =Xq =i 1'h ', then we have from Eq. (9)

gm
—,
' fp(r) V„„„(r)dr=—,

' g' f
Im BU

(0&m &I)

( —1)'~,
h I, m

(0&m &I)

gm gl —m

+( —1) p(r)dr
Bu ()z™[r—R„)

Qm gm gl —m

+(—1) p(r)dr
a V- aU- aZ™

= —lX'
h I, m

(0&m &I)

( —1)'Ai
gm gm gl —m

+( —1) V ir(Rs ),
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TABLE II. Same as in Table I, but with octupole moments included (all I & 3). The V3Q/V&Q ratios
are also given.

0.4
0.9
1.5
2.2
3.5
5.0

Ub. t

—0.599 318
—0.994 635
—1.260 758
—1.445 326
—1.635 947
—1.753 350
—2.106008

fcc Ubct

0.004 969
0.008 851
0.010 179
0.012 268
0.013 973
0.014 721
0.016 599

V3Q / V1Q (bct)

0.002 833
0.004 182
0.004 934
0.005 396
0.005 832
0.006 081
0.006 754

V3Q / V, Q (fcc)

—0.462 218
—0.053 790
—0.056 766
—0.058 305
—0.059 592
—0.060 267
—0.061 903

and therefore

—
—,
' JP E„„„dr=—,

'

where

I, m I', m'

(0 m I) (0 m' I')

(
—1)'a, A, F. .

Ft
h

gm gm gl —m gm' gm' gl' —m'

+( —1) , +( —1)
gym aU„- ez™ av' a U„' az'--'

INote that (
—1)'FI I. +( —1)'Ft I =0 if 1 —1' is odd. This decoupling between moments of opposite parity is a

consequence of assuming all spheres to have identical charge distributions. ]
Finally from (1), the energy per sphere is now

U=Sio V&o+—

where

I, m I', m'

(0 m ~l) (0~m'~1')

Glm, l'm'~1m ~1'm' & (12)

4'
3

1/2
2ya E,„,,

4~~1 (1—1/25 o)(1 —1/25, o)4~11'F(~ (.~
G& I, , =5&1,5,gal 1+ + ( —1) a '+' +

( —2)21+1 &(21 +1)(21'+1)(1 —m)! (1+m)!(1'+m')! (1' —m')!

TABLE III. Same as in Table II, with all I = 5 moments also included. Additional ratios are given in
lower rows.

0.4
0.9
1.5
2.2
3.5
5.0

Ubct

—0.636 016
—1.129 040
—1.507 692
—1.797 211
—2.123 158
—2.339 264
—3.071 912

Ufcc Ubct

0.007 977
0.022 274
0.038 412
0.053 882
0.074 577
0.090 216
0.154 538

3Q / V1Q (bct)

0.003 701
0.003 422
0.002 465
0.001 571
0.000 505

—0.000 206
—0.002 526

V3Q / V&Q (fcc)

—0.053 224
—0.064 585
—0.069 425
—0.072 024
—0.074 251
—0.075 440
—0.078 383

0.4
0.9
1.5
2.2
3.5
5.0

V5Q/V, Q (bct)

0.053 495
0.064 151
0.068 370
0.070 519
0.072 277
0.073 178
0.075 272

V5Q/VlQ (fcc)

—0.040 110
—0.051 021
—0.055 828
—0.058 444
—0.060 701
—0.061 913
—0.064 931

V,4/V, Q (bct)

—0.037 293
—0.048 641
—0.054030
—0.057 105
—0.059 862
—0.061 388
—0.065 361

V54 / V1Q (fcc)

—0.038 926
—0.046 311
—0.049 291
—0.050 849
—0.052 160
—0.052 850
—0.054 532
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After minimizing with respect to all the VI we get

Gl, l' ' Vl' ' ~l051, 10 '
I', m'

{0+m' + I')

Defining the matrix G whose element at the (I, m)th row
and (I', m ')th column is GI I,we get

VI ~10(G )lm, 10

10 10

APPLICATION AND RESULTS

Following Ref. 2 we consider the family of lattices
shown in Fig. 1 and define the lattice spacing on the xy
plane to be c, along the z direction to be 2b. Define the
parameters g=b/c and a=—a/b. Because of the fourfold
rotational symmetry in the xy plane, m in YI can be a
multiple of four only. Because the applied field is along
the z direction, the potential is odd in z, so that I —m can
only be odd. We have therefore V10, V30, V50, V54,
V5 4y ~ ~ ~ ~

A special problem arises in calculating F10 10, i.e., the

QI, (B/BZ&) (1/R&) term in Eq. (11), because the sum-

mand P2( cose)/Rz does not give uniform convergence.
The correct way of doing this summation is first to sum
all lattice points within a region of some geometrical
shape which encloses the origin, then to replace the
points outside that region by a continuum and to in-
tegrate instead of summing. The integral reduces to a
surface term so that

F,o &0= lim g +f surface
inside

For fast convergence we use Madelung's method with
modern improvements. We first rewrite F,0 10 as

(14)

by Euler's theorem on homogeneous functions, and treat
three terms separately: for the first term (XI,B/BXI, term),
we sum over Y&,Z& for a given XI, and then sum over
nonzero Xz, etc. ' The sum within each plane is made

1 1 10(a~ min 1, , —1+
2 2

=amax '

The three constraints pertain, respectively, to the nearest
neighbors (0,0,2b), (c,0,0), and (c/2, c/2, b} The . bct
and fcc structures are defined by 1=—,'+1+1/2$ and by
1/2(= —,'+1+1/2g, respectively. We have minimized

this energy, using only V,o (dipole approximation}, using

V&0 and V3O (dipole-octupole approximation), and using
all I ~ 5 multipoles (dipole —octupole —thirty-two-pole ap-
proximation). In all three cases the system is as dense as
possible, i.e., a=a,„.We find the bct and fcc structures
both give end-point minima (see Fig. 2). In every case
U„,&U„,. Detailed numerical results are given in

Tables I-III.
It may be noted that in the bct structure the octupole

moment is anomalously small (compare column 3 and 4
of Table II). The reason is a fortuitous near-cancellation
among the nearest neighbors, 2+8P4( —,

'
) = —

—,', . This ac-

counts for the near agreement in column 1 between
Tables I and II. From the results up to thirty-two-poles,
we expect the effect of higher multipole moments will be
oscillatorily convergent. The higher multipole contribu-
tions are evidently not negligible, but it seems likely that
the bct structure is the true ground state of an ER solid
for all y.
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rapidly convergent by Fourier decomposition. The inside
region is then an infinite slab of large finite thickness.
The resulting surface contribution is zero for the first two
terms, and (4n /3)np for the third, where n =a g /a is
the density of spheres and p=&(4m/3)ya V&o is the di-

pole moment per sphere. For all other FI I ~ we sum

directly over successive spherical shells, as the series is
uniformly convergent. The shape of the lattice is deter-
mined by g. After computing the fI &, ~ for a given g,
we scale each by the appropriate power of a and deter-
mine the energy by Eq. (13). Requiring no overlap be-
tween neighboring spheres (hard sphere) puts a constraint
on a:

' 1/2
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