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We describe mean-field calculations of the properties of the dilute t -J model for high-T, superconduc-
tors. We first discuss a physical motivation for the model in terms of the effects of oxygen vacancies and

the appropriate parametrization for a qualitative description of high-T, superconductors. We briefly re-

view our mean-field numerical methods. We present results on the density of states, local carrier density,
the transition temperature as a function of carrier concentration, oxygen-vacancy concentration, and

elastic-scattering impurity concentration, as well as the dc conductivity. These are compared with ex-

periment on high-T, materials. We conclude that the model is a promising framework for understand-

ing high-T, materials microscopically.

INTRODUCTION

A conspicuous feature of the copper oxide supercon-
ductors, ' which is often assumed to be an inessential
complication by theorists, is that virtually all of the
high-temperature superconducting materials have a very
high degress of spatial disorder, leading to mean free
paths which are at best a few times the superconducting
coherence length. This means at least that one should be
developing theoretical methods and models that take ac-
count of the microscopic disorder. There is also a possi-
bility ' that some kinds of point defects or twin boun-
daries might act like "pairing centers" and enhance the
pairing interactions, leading to the superconductivity it-
self. In this paper we will present a qualitative rationale
for a dilute t-J model as a description of the possible
effects of oxygen vacancies in the copper oxygen planes of
high-T, materials and give mean-Geld numerical results
for the density of states, transition temperature, local
charge density, and conductivity arising in the model.
Finally, we will compare the calculations with experi-
ment.
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the copper ions on each side of the vacancy, thus render-
ing the valency of those copper ions approximately 1+.
A free hole propagating through the lattice on the oxygen
ions can approach this charge-neutral vacancy without
Coulomb penalty and mix with a hole on one of the two
Cu'+ ions next to it without expending energy U (because

MICROSCOPIC MOTIVATION
FOR THE DILUTE t-J MODEL

To motivate the model studied here (see also Refs. 8

and 9), we note that experiments show' that the carriers
in hole-type high-T, superconductors are primarily
(roughly 80%) oxygen like. Simplifying [Figs. 1(a) and
1(b)] to a model in which the holes are entirely oxygenlike
in copper oxygen planes without defects, we next note
that the exchange interaction between oxygen holes mov-

ing on the (square) lattice of oxygen sites in the copper
oxygen planes in the absence of vacancies is expected to
be small and we neglect it. Now consider the possible
effects of oxygen vacancies in the plane. (We make a dis-
tinction, as a few authors do not, between holes and va-
cancies here. A vacancy is a missing oxygen atom. A
hole is an oxygen atom with charge 1 —instead of 2 —.)

As discussed by many authors, "an oxygen vacancy is ex-

pected to bind two screening electrons, residing mainly at

(c)
FIG 1. Sketch of the Cu02 plane: (a) Model, including de-

tailed geometrical structure of the plane and both oxygen and

copper ions. Open circles are copper ions with valency 2+.
Solid circles are copper ions with valency 1+. Crosses are oxy-

gen ions. Square is an oxygen vacancy. (b) First stage of
simplification of the model. All copper ions except those with

valency 1+ next to oxygen vacancies are neglected. (c) Second
stage of simplification. The local geometry around a vacancy is
altered so that the copper ions with valency 1+ lie on the same

square lattice as the oxygen ions. The oxygen vacancy is re-

placed by a special bond, at which the exchange interaction is

finite. The value of the on-site energy of the two site neighbors
of these special bonds is different from zero, corresponding to
their chemical origin in the original model as copper sites.
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the copper is cuprous). Thus holes will attain a larger d-

orbital character as a consequence of the presence of oxy-

gen vacancies. If one imagines that a second hole mi-

grates to the second copper adjoining the vacancy (over-
coming the Coulomb barrier due to the first hole), then
the two copper holes will interact with an exchange in-
teraction across the space between them (which is empty
of atoms because the oxygen is missing). The resulting
exchange interaction J is obviously not the same as the
exchange interaction between copper sites in the usual t-J
model, and its magnitude is not known. We assume here
that this exchange J coupling copper spins on copper
sites adjacent to oxygen vacancies is large. With these as-
sumptions we obtain a dilute t-J model as sketched in
Fig. 1(b). Carriers attain a copper character only at
copper sites adjacent to oxygen vacancies and are cou-
pled only there. Without losing any essential qualitative
features, we simplify to the following slightly simpler
model [Fig. 1(c)]: Carriers move with nearest-neighbor
hopping on a square lattice with exchange interaction J
between a randomly selected fraction p of the bonds. The
on-site energy, called c. at these special bonds, is allowed
to be different from that at the other sites. We also
neglect the single-occupancy constraint in the model
studied here. This is not strictly consistent, but we have
shown elsewhere by use of variational Monte Carlo calcu-
lations ' that it does not affect our qualitative con-
clusions concerning the nature of the ground state in the
model.

These considerations lead to the Hamiltonian

H pN= g(E—; p)d, t d; +—g (b; d;t d +H..c. )
i, cr l )J,0'

—g (J; /2)(d;ttd t
—d;idtt )

In this paper we treat this model in BCS mean-field

theory. The resulting superconducting state is one in
which the pairing correlations induced by the sites with
finite J extend across the sample at low enough tempera-
tures or high enough concentration of sites with finite J
in a manner reminiscent of percolation. The effects of the
copper spins not near oxygen vacancies, including the
possibility of antiferromagnetic order, are ignored.

MEAN-FIELD METHODS

+ & (J;+s„/2)~,sF +s, (2a)

dF;.
iA — E;F~ —g—b;+s;F;+sj.

+ g (J;+s;/2)b;sG;+s (2b)

with the initial conditions G;.(0)= i 25; —and Fi(0)=0.
The gap equation is

F; (co+is) F; (co is—)—
dc'

e~ +1

The mean-field methods used here take full numerical
account of the disorder introduced by the point defects in
the model. We define the retarded functions

G"(t)=i+(t)([d; (t),d, (0)J),
F"(t ) = i8—(t )( t d; (t ), d, (0) ) )

We obtain equations of motion for the functions
G; =G'(+G'( and F;J(t)=F'( F'):—

dG;J
iA =2tri5(t)5, , +E,G,, + gb, +s, G, +s,dt 5

X(died, .t
—dj. td;~)+triplet terms . (1)

where

We suppose that J, . is zero except at a randomly selected
fraction p of bonds where its value J;.=J is a parameter
of the model. b; is made the same at all nearest-neighbor
pairs and set equal to b, a second parameter of the model.
(b is more commonly called t in such models, but the
latter symbol is reserved for the time here. ) E(i ) is zero at
sites away from special bonds, but finite and positive on
sites next to special bonds. The value of c. at sites next to
special bonds is a third parameter of the mode. Finally,
the model must be studied as a function of the chemical
potential p. The qualitative considerations outlined here
suggest that, since the band described by the model is as-
sociated with electrons on the oxygen sites, p should lie
near the top of the band. We do not have microscopic
calculations of the magnitude of the J expected from
these qualitative arguments and only note here that it will
be affected by the fact that the copper ions relax toward
each other and that the exchange is direct. The model
described here is the same as that studied in Ref. 6, but
the physical motivation is different, and partly for this
reason the chosen parametrization discussed below is also
different. In particular, we will choose the Fermi energy
near the top of the band in order to describe a small num-
ber of holes as the carriers in the model.

FJ(co+is)=
e) F (t )ei(cD+ic)tdt

277

In order to reduce the number of equations, we define the
sums F; =g~c F; and G;=g c G, Then F;(0".)=0 and
6;(0)= i 2c; To ca—lculat. e the average b at the vacan-
cy sites, we choose the c; as follows. All c; associated
with sites not next to a vacancy are zero. Associate a
random number P; evenly distributed between 0 and 2m.

with each site next to a vacancy. Now consider a pair of
"copper" sites next to a vacancy. Label the sites 1 and 2.
Set c&=e and c2=e . The phase factors e ' are a= '2 1 i/, .

calculational device only and are not to be confused with
the phase factors associated with the gap function itself.
Choosing c; equal to zero away from vacancies is done
only because we are choosing to evaluate 6 self-
consistently at those sites and does not mean that the gap
is zero or neglected elsewhere on the lattice in our calcu-
lation.

With choices of the coefticients c; described above, can-
cellation of random phases gives the gap equation: We

1

define F„(t)=++,. +e 'F, , where the plus sign is used
if i is adjacent to an x bond and the minus sign is used if i
is adjacent to a y bond. Then gap equation takes the
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form

F„(t)
dt,

2N, PR o sinh( to./PA')

where X, is the number of oxygen vacancies. By use of
the preceding expressions, we obtain the equations of
motion for I'; and 6;, which are essentially identical to
the equation of motion written above.

%e solve these equations by simple numerical integra-
tion in the time domain. In most of the calculations re-
ported in this paper, we have used a realization of the
model on a 100X 100 square lattice. To zeroth order (but
not to first order), we will assume in the equations of
motion that the magnitude of the gap is a fixed constant
on the vacancy sites and zero otherwise. This zeroth-
order assumption does not mean that the order parame-
ter is zero away from the vacancies in our calculations,
because the equations of motion above which we solve
imply that the function I' becomes nonzero away from
vacancies if b, is finite at vacancies. This is a manifesta-
tion of the effect of propagation of the pairing order from
one vacancy to the next which was discussed physically
above. Numerical studies of the model when only two
vacancy sites are present reveals that the model favors
equal phases of the gap for vacancies on parallel bonds,
but phases of the gap differing by m for vacancies on per-
pendicular bonds. These studies suggested that, in zeroth
order, we choose the gap to be real and of one sign on the
vacancies which are on bonds in the x direction and real
and of the opposite sign on vacancies which are on bonds
in the y direction. Calculations confirmed that this
choice gives a more stable superconducting state than
other choices of the phases 6 in zeroth order. %e could
lift the assumption of a constant input magnitude of 6 in

more detailed calculations in this model without too
much difhculty. In fact, the gap equation in our model is
an integral equation, conveniently formulated in real

space, and 6 is a strong function of position in the lattice.
After a self-consistent solution for the average gap b,

has been found using the methods outlined above, then
the density of states can be found by essentially the same
techniques: Define an amplitude

G, (t)= g(2, G,,(t) .
J

The amplitudes a can be chosen in various ways depend-
ing on what quantity is of particular interest. The equa-
tion of motion is the same as that for 6; with initial con-
dition

6;(0)=—ia, .

For example, we get the total density of states N(tv} by
setting

i/, .

a, =e

where P,. is a number chosen at random from the interval

0&/; &2nfor each site i T.he total d. ensity of states
N(to) is then

N(tv)= ——Im f pe '"G, (t)e' 'dt
7T

we set

(10)

where i is the site of interest. In these equations the ket
~(i ) is the tight-binding state localized at site i and the
states ~n ) are the eigenstates of the tight-binding prob-
lem in the (disordered) lattice. The local density of states
is —(I/m) Imf" G;(t)e' 'dt Lo. cal charge densities

are obtained by integrating the local density of states up
to the Fermi level q, =e f" N, (to)dto

%e discuss the numerical implementation of this
method for calculating tight-binding densities of states in
Ref. 11, where we also discuss the relationship of the
method to other sparse-matrix methods. ' '

Finally, we can use the same methods to calculate the
dc conductivity. Details are given elsewhere. ' The con-
ductivity of the normal state when the Fermi energy is E
is given by

o(E)=(ne A/L ) g )&a~v"~P&('5(E E)5(E E—tt), —
a, P

where v" is the current operator v"=(I/ih)[x, H] and
L" is the volume of the sample. %e define

G, (t)=&p~e ' '~q),
~

p& k)

F„'"'(t)=g G„(t)e™,
(12)

(13)

p(k)
Z(k) ~ x '

p
n ~ p, n

p

(14)

where (})~(") is random from 0&/'"'&2n. and k=1,2.
Then we introduce the two quantities

g() )(E ) y Z(2) fF())(t )
+iEt

2' (15)

g(2)(E ) = y Z(1) fF(2 ( ))t(eEt+~ dt
n n

Then the dc conductivity (at T=0 K) is

(r (E ) ~(e 2))1/L d
) & g 1 )

(E )g ( 2 )
(E ) ) (17}

where &
. ) denotes the average over random phases.

Many sets of random phases are needed for the calcula-
tion of the conductivity because the fluctuations in this
calculation are only controlled by the number of sets of
phases.

In principle, Eq. (8) is only true if one averages the right-
hand side over phases, meaning that it is only exact if we
calculate the right-hand side many times, choosing
different sets of random numbers to associate with each
site and orbital each time, and then average the result.
On the other hand, experience has shown that for large
samples just one set of randomly chosen phases gives a
very accurate result. To get the local density of states
defined as

N;(co)= g (&i ~n ) ( 5(to —s„),
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GJ(E)=f e' 'GJ(t )

F,~ (E)=. f e' 'F,, (t)
(19)

L is the system size. To calculate o (E) numerically, we
introduce two more quantities:

g (l)(E) y Z(2) f y F (t )e m e+iEt dt
n nm 2'

n m

(20)

g (2)(E) y Z(1) f y F (r )e m e+iEt dt
n 2'n m

Then o c(E ) is obtained from

osc(E)=(ire irigL )(g"'(E)g' '(E)

+g "(E)g (E)) .

(21)

(22)

SELECTION OF PARAMETERS FOR MODELING
OF HIGH- T, SUPERCONDUCTORS

We set the parameter b (more commonly called t ) = 1

throughout, thus measuring energies in units of b. Thus
the energy unit is of the order of 1 eV. The parameter s
is chosen so that the one-electron states on the sites next
to the special bonds associated with finite J (and with ox-
ygen vacancies in the physical interpretation) have diago-
nal energies near the top of the band. In our interpreta-
tion the band is predominantly oxygenlike, but the sites
next to the special bonds are copperlike. Thus we may
compare c. with c. d, recalling that we are working in an
electron representation, but must bear in mind that, be-
cause the copper sites in question are next to oxygen va-
cancies, the value of c would be expected to be lower than
the value of c~d. The physical picture requires that c &p,'
otherwise, the oxygen vacancies would not be screened,
as discussed in the Introduction. These arguments by no
means fix the parameter c uniquely. In most of the re-
sults presented in the next section, we take 8 Ib =3.5 and
p/b =3.8. The value of c used is not very different from
reported estimates of c d, though these estimates vary
over a wide range.

The value of the concentration p of oxygen vacancies
in the plane is not known with accuracy better than +1%
for any high-temperature superconductor. Experimental
reports on samples claiming p is zero are not uncommon,
but this limitation on the experimental resolution must be
borne in mind. If it is definitively shown that high-T, su-
perconductors exist with p=0+10, then this model

In the superconducting state, one has to include contri-
butions' to the conductivity from the anomalous Green's
functions FJ.(t ) which characterize the Cooper pairs.
Taking that into account, we find that the dc conductivi-
ty in the superconducting state is given as

osc(E)=(me filL )[ Tr[v"G(E)u"G(E)]

+ Tr[v "F(E)u"F (E)]], (18)

where

RESULTS

We first present some results on the nature of the den-
sity of states in the normal state in the parameter ranges
discussed in the last section. (The relevant parameters in
the mean-field normal state are p and c. J and JM only
affect the density of states at this mean-field level below
T, . ) The total density of states is shown in Fig. 2 for

0.3

C

0.2
L
O

0.0
—15.0 —%0.0 —5.0

(E-p. )/b
p. /b = 5.8

0.0 5.0

FIG. 2. Total normal-state density of states.

will have been shown to be irrelevant to the basic physics
of the superconductivity. This does not appear to have
occurred at present. In the calculations reported below,
we mainly report results for the value p =0.04, which is
less than the value of 5%, which is the highest reported
value' of which we are aware. We have made explorato-
ry calculations on a range of p values up to 5%. The
qualitative results are similar to those reported below as
long as p is of the order of a few percent.

The value of J is completely unknown. We find that
the mean-field model produces unphysical results when J
is greater than about 2.0 (the exact upper limit depends
on the other parameters), and we usually choose J=1.5
so that it is as large as possible while remaining in the
physical region. This choice is made for computational
convenience, because calculations with small J require
very-long-time integrations, which are numerically very
expensive. On the other hand, a J of order unity is not
completely inconceivable physically: The J for the ordi-
nary copper sites is known to be an extraordinarily large
number of the order of 0.5 eV. Though the physics of the
J in this model is quite different, this renders a value of
order unity somewhat plausible. In fact, J could be sub-
stantially smaller and still yield a satisfactory T, from an
experimental point of view. The transition temperatures,
however, cannot be taken seriously in comparison with
experiments at this stage of model building in any case.

Finally, the physical picture in the Introduction re-
quires that the Fermi level p, be near the top of the (oxy-
genlike) band, so that the number of holes should be in
the range of the characteristically small carrier hole den-
sities observed in high-T, materials. We have studied the
model for values of p in a range satisfying this criterion
(usually @lb =3.8).
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Loca j. DOS (orb. units}

O. 75
Local OQS on NN Sites

O 0.50

0.00—10.0 —5.0 0.0 5.0
Eb

10.0

O. 25

0.00—10.0
I ~~ I

—5.0 0.0
Eb

I

5.0 %0. 0

'acent to bonds with J; WO and (b) at the next neighbors to these special sitesFIG. 3. Local density of states (a) at "special" sites adjacent to bonds wit;, an a
as shown in the inset.

@=3.5 and p=0.04. One sees that the presence of the
cialspecial sites (interpreted as copper} next to the specia

bonds (oxygen vacancies) results in an extra peak at t e

top of the band. Looking at the local densities of states
reveals the structure underlying this total state density.
In Fig. 3 we show the average local density of states at
the special (copper) sites and also at rings of sites equidis-
tant from the special bonds, as indicated in the inset.
One sees that there are two kinds of state at the special
("copper st es:") 't: The peak near the top of the total densi-

ty of states is associated with a localized state, while there
is a second peak in the local density of states for the spe-
cial i copper s

'
1 (" ") sites which is associated with a resonance

0.3

lying ansi e e oxyg'd th gen band and which is not localize .
The qualitative picture of the anticipated nature o t e
paired superconducting state sketched in the Introduc-
tion would suggest that the kind of superconductivity we
wish to study should occur when the Fermi level ies
near but slightly above the lower peak in the local densi-

ty of states of the special sites.
We next repor et the density of states for self-consistent

=3.5 =0.04,i ed states shown in Fig. 4 for c/ =3.5, p=
J/b =1.5, and @lb =3.8. In Fig. 5 we compare the re-
gion near the Fermi level with the corresponding result in
the normal state. One sees some evidence o gap i e

O. 15

Cf) 0. 2
O. 10

K
O
Q 0. 1

N0 0.05

0. 0
—15.0 —10.0 —5.0

( E -p. ) /b
p. /b = 5.8

0.0 5.0

0.00
—1.0 —0.5 0.0

( E-~) /b
p. /b = 5.8

I

0.5 1.0

FIG. 4. Total density of states in superconducting state.
FIG. 5. Total density of states near the Fermi lemi level in the su-

perconducting (solid line) and normal states (dotted line).
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0.26
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0.01 0.02
1

0.03
I

0.04 0.05
0.250.07

I 1

O. OB 0.09
Char ge carr f, er

0. 10

FIG. 6. T, (p) in the model. FIG. 8. T, as a function of carrier density.

0.50
Loca 1 DOS vs . p

structure, particularly if one looks at the local density of
states at the special sites (discussed below: see Fig. 15).
The gap is clearly not sharply defined, and there contin-
ues to be finite density of states at the Fermi level; that is,
we have a "gapless" form of superconductivity.

We next report the systematics of T, in the self-
consistent solutions. In Fig. 6 we show T, (p ). A striking
feature is that we have a plateau in which T, (p) is slowly
varying (though decreasing) as p increases. The non-
monotonicity of T, as a function of p was at first quite
surprising, since the physics clearly shows that T, must
be 0 when p ~0. The local density of states at the Fermi
level at the "copper sites" as a function of p is falling for
increasing p (see Fig. 7). It appears that this effect is
dominating the p dependence of T, (p ) in the region in
which T, (p) is dropping with increasing p. In Fig. 8 we
show T, as a function of hole concentration for the same
set of parameters: If the Fermi level is in the band as dis-
cussed in the previous section, then T, increases with car-
rier concentration.

The local charge density at the special sites is of in-
terest, because it is believed to be related to the positron-

annihilation rate for positrons trapped at vacancy
sites. ' We show this quantity as a function of tern-
perature in Fig. 9.

A model for the effects of additional, nonmagnetic im-
purities on the superconductivity in this model has been
described earlier. Qualitatively, the expectation is that
such nonmagnetic impurities should be more effective in
destroying superconductivity than they would be in a
model with a spatially uniform pairing force, because the
nonmagnetic impurities can effectively act at the "weak
links" between the regions of large pair correlations. To
explore this effect with the present parametrization, we
have found self-consistent solutions to the same BCS-like
equations described in the previous section, in the case
that the model is modified so that c.; takes three values: 0
at ("oxygen" sites, with probability 1 —2p —x), E (at
"copper" sites next to oxygen vacancies; as in the preced-
ing section, these occur at the neighbors of "oxygen va-
cancies" occurring on the bonds of the lattice with proba-
bility p) and E' (at "zinc" sites, distributed at random
with site probability x ). The model thus differs from the
one described in the preceding section only in the addi-
tion of randomly positioned sites with a value c' different
from 0 or the value c assigned to "copper" sites next to

1 . OO

0.96
N
0
0 0.25

O. OO0.000
I

O. 025
P

0.050

~O

S
L
0
L

U
S

8

O. 92

O. BB

O. B4
O. O O. 1 0.2

T/b
O. B p 4 0.5

FIG. 7. Local density of states at the Fermi level as a func-
tion ofp.

FIG. 9. Charge density at defects as a function of tempera-
ture.
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gen off the superconducting copper oxygen sheets, pro-
ducing the in-plane oxygen vacancies required in the
model. Such a hypothesis could be tested by Madelung
energy calculations, which we have not undertaken.
Point-defect energy calculations have been undertaken by
Baetzold. In YBa2Cu307, he reports vacancy-formation
energies for oxygen sites 1 (chain plane), 4 (apical), 2, and
3 (sheets} of 17.23, 17.34, 21.90, and 21.76 eV, respective-
ly. More importantly, however, he reports the consider-
ably lower energy of 1.19 eV for formation of a Frenkel
defect in which the oxygen at site 1 in the chain plane is
moved to the oxygen at site 5, also in the chain plane.
The hypothesis discussed in this paragraph postulates the
(probably nonequilibrium) formation of Frenkel defects in
which an oxygen at site 2 or 3 is moved to site 5. No cal-
culation of the energy cost of such a Frenkel defect is re-
ported in Ref. 27.

There is one set of experiments which bear rather
directly on the question of the existence and supercon-
ductive relevance of oxygen vacancies of the postulated
sort: These are measurements of positron-annihilation
rates which exhibit a positron-decay rate associated with
positrons trapped at oxygen vacancies. For some time
experiments have existed' which showed that a kink
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FIG. 12. Comparison of (a) the local electron density de-
duced from positron-annihilation-rate measurements (Ref. 23)
in YBCO with (b) mean-field calculation in the dilute t-J model.

exists at T, in the temperature dependence of this annihi-
lation rate. The annihilation rate is in turn proportional
to the electron density at the trapping site. In one pa-
per the measured rates were converted to a local elec-
tron density at the vacancy, as shown in Fig. 12(a}. In
Fig. 12(b) we show a calculation of the temperature
dependence of the local charge density as calculated in
the model with the same parameters used for most of the
other calculations reported here (p/b=3. 8, p=0.04,
s/b=3. 5, J/b=1. 5). A kink occurs at T„as qualita-
tively expected in this model, in which the phase transi-
tion produces increased phase coherence of the order pa-
rameter at the special "oxygen-vacancy" sites. The scale
of T, is unrealistic, but one sees that in other respects the
temperature dependence of the calculated local charge
density is in semiquantitative agreement with this experi-
mental data on YBa2Cu307, (YBCO). Other investiga-
tors see similar effects in positron annihilation in YBCO,
but in La2 Sr„Cu04 and the thallium compounds, the
reported effect of superconductivity on the positron life-
time has the opposite sign. These variations in the sign of
the positron-annihilation lifetime effect in various high-
T, materials may be associated with differences in the
trapping behavior of the positrons in these materials.

The postulated existence in this model of a spatially
heterogeneous pairing force provides a possible qualita-
tive explanation of the otherwise mysterious fact that T,
is anomalously sensitive to nonmagnetic impurities. Else-
where we pointed out that our model would lead to a
strong sensitivity of the superconductivity to nonmagnet-
ic substitutional point defects, as observed experimental-
ly, because the point defects will have a large effect on the
coupling between regions of strong superconducting
correlations near the "pairing centers" associated with
oxygen vacancies. In Fig. 13(a) we show experimental
data on T, as a function of substitutional concentration
for a number of cationic substituents for copper in
YBCO, and in Fig. 13(b) we show the corresponding cal-
culation in the model as discussed in the preceding sec-
tion. The trends are quite strikingly similar, and (Fig. 10)
T, is much more sensitive to spin-independent elastic
scatterers than it is in a model with uniform pairing
forces. [Because we have used an artificially large value
of J for numerical reasons, the magnitudes of T, in Fig.
13(b) are unrealistically large. ) No fine tuning of the pa-
rametrization of the model was made to produce the re-
sult in Fig. 13(b).

We note that the model qualitatively predicts that, at
fixed p ("oxygen-vacancy" concentration), varying the
carrier concentration (controlled by p in this model) can
be expected to lead, as p increases, to a rise in T, as IM

comes into resonance with the available level on the
"Cu'+" sites next to the special bonds ("oxygen vacan-
cies") as controlled by s in the model and then to a fall as
p moves far above this level. Such a rise and fall of T,
with carrier concentration does occur, of course, in all
high-T, materials, though it could have several origins,
and it is by no means clear that the oxygen vacancy con-
centration in the plane remains fixed as the carrier con-
centration is varied. Nevertheless, we made such a cal-
culation within the model, varying p around the value
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3.8b used elsewhere in these calculations and fixing the
other parameters (p =0.04, J /b = 1.5, e /b =3.5 ), with
results shown in Fig. 14(b), for comparison with experi-
ments on T, as a function of carrier concentration [as
determined from Hall-effect measurements on thin films
of DyBa2Cu~07 s (DBCO)] as shown in Fig. 14(a). Here,
again, the results are qualitatively quite similar to the ex-
perimental ones, and we stress that no special adjust-
ments were made to fit the data.

In principle, the model could also be tested by compar-
ison with the vast array of spectroscopic experimental re-
sults that exist. Since the model can only be expected at
best to describe the low-energy physics, we cannot antici-
pate any of the relatively high-energy photoemission re-
sults to be relevant. It would be of interest to compare
calculated optical conductivity in the infrared region
with experiments, and we have begun such calculations
using the methods of the previous section, but they are
very expensive, since the results are strongly affected by
localization effects and require very long computational
times to average over large fluctuations. At present, we

only report a comparison with tunneling data, which, in
principle, measures the more easily calculable density of
states on the appropriate energy scale. Unfortunately, it
is well known that tunneling experiments present special
difficulties in the high-T, materials. ' ' As a result, these
experiments show tremendous variation from one experi-
ment to another. In the type of model considered here,
this variation itself might find partial explanation in the
spatial heterogeneity, which leads to wide variations in
the local density of states [compare Figs. 3 and 2]. Fur-
ther, we note that this model does give a rising density of
states away from the Fermi energy (Fig. 5), reminiscent
of the V-shaped density observed in many experiments
and the subject of many theoretical speculations. In this
model this feature arises because the Fermi surface was
assumed to lie near the top of the conduction band, with
a localized state associated with the copper sites near ox-
ygen vacancies lying above it. With regard to "gaplike"
structure, we see evidence in the density of states of a
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superficially gaplike structure in the normal-state density
of states, though this is not connected with the correla-
tions in the electron system in any direct way. In the
mean-Seld BCS state (Fig. 5), this gaplike structure is ac-
tually less in evidence than it is in the normal state.
There are very few measurements of the temperature
dependence of the tunneling conductance. In Ref. 32 the
peaks which the authors associated with the gap did not
change position with temperature, in qualitative agree-
ment with our result. To give a more definite idea of how
the calculated densities of states compare with those mea-
sured in tunneling experiments, we show some experi-
mental data on YBCO from Ref. 30 in Fig. 15(a) and
compare it with a calculation of the local density of states
(DOS) at the special ("oxygen-vacancy") sites on a very
roughly similar energy scale in Fig. 15(b). These results
look somewhat similar, but the comparison must be treat-
ed quite cautiously. In particular, the calculated total
density of states has much less structure than the local
one, and calculations at higher-energy resolution show
even more structure at finer energy scales, which we do
not fully understand.

Among several other properties of the superconducting
state which it would be interesting to calculate in this
model are the nuclear relaxation rate T& and the acoustic
attenuation, which behave differently as a function of
temperature than they do in ordinary BCS superconduc-
tors. There seems to be a possibility that the strong dis-
order in this model would significantly alter the delicate
interference effects which lead to the BCS predictions in
the more familiar case.

We believe that there is a possibility that a model along
the present lines might account for the unusual normal-
state properties of high-temperature superconductors.
The physical argument is that, above T„pairing correla-
tions are expected to remain locally very strong around
the pairing centers, but these correlations will be phase
incoherent with similar correlations around other point-
defect pairing centers. If the temporal spectrum of the
corresponding phase fluctuations is essentially flat over
thermal energies, then it appears that these fluctuations
would have many of the properties required by the
marginal-Fermi-liquid theory for explaining the normal-
state properties.
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