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Structural-transformation kinetics in YBa,Cu;0¢. 5 caused by oxygen ordering is considered. The
effect of long-range interaction between oxygen atoms, Coulomb repulsion, and strain-induced interac-
tion on oxygen ordering is investigated in terms of crystal-lattice-site diffusion theory. Computer simula-
tions of the diffusion of interacting O atoms give a complicated sequence of atomic-scale and mesoscale
structural transformations. It is shown that the transformation path strongly influences the crystallo-
graphic structure of the ordered phases. An interrelation between the mesoscale and the atomic struc-
tures, which proves to be coupled by the long-range interaction, is found. The following structures are
obtained: the primary tweed which transforms into a (110) polytwin structure, the secondary tweed, and
the “glassy” state, as well as 2a,X2a, and 2V 2a, X2V 2a, superstructures. Two structural states, the
secondary tweed and the “glassy” state, are shown to be mesoscopic phases—metastable (or stable)
phases whose phase identity is mostly determined by their mesoscale rather than atomic-scale structure.
The structures and morphologies generated in this computer simulation were reported in many experi-

mental studies.

I. INTRODUCTION

As is known, the high-temperature superconducting
YBa,Cu;04, 5 can be regarded as an interstitial solid
solution of oxygen based on the tetragonal insulating
YBa,Cu;0¢ phase. A unit cell of YBa,Cu;0q¢ is formed
by three piled-up perovskite unit cells ayXayX3a
(where a is the perovskite lattice parameter). The inter-
stitial sites form two interpenetrating, crystallographical-
ly equivalent sublattices with the same crystal-lattice pa-
rameters [Fig. 1(a)]. A random distribution of O atoms
over these two sublattices gives the disordered tetragonal
YBa,Cu;Oq . 5 phase (T phase). The ordering resulting in
a preferential oxygen occupation of one of the sublattices
(for example, the second sublattice) produces the ortho-
rhombic polymorph O-I [Fig. 1(b)]. In the completely or-
dered state, its stoichiometric formula is YBa,Cu;0,.
This compound is the high-temperature superconductor.
The T — O-1 ordering is not the only one observed in this
system. Another observed stable phase having the
stoichiometry YBa,Cu;Oq s is O-IL!"® It is a double-
period 2a, X a, X 3a, phase, which will also be designated
the 2a, X a, phase. Its structure is illustrated in Fig. 1(c).

It is interesting that in the nonstoichiometric oxides
YBa,Cu;04 5, besides the O-I and O-II phases, a variety
of other ordered states have been found: 2a,X2a,,’
small “patches” with 3a,Xa,, 4a,Xa,, and 5a,Xa, or-
dered structures® (diffraction maxima corresponding to
these structures have also been reported"*®), and the
2V'2a,X2V2a, ordered structure.””7° It is believed
that all observed ordered structures differ only in the dis-
tribution of oxygen atoms over the interstitial sites.
There are indications that at room temperature non-
stoichiometric YBa,Cu;Oy¢ 5 usually exists in a form of a
stable or metastable coherent mixture of microdomains of
the O-II phase. This state has been interpreted as the
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short-range-order (SRO) state.’~®1° Sometimes, depend-
ing on the stoichiometry, diffuse maxima from these
states vary from the ({00) point corresponding to the
O-II phase to ~(400) point in the reciprocal space.>¢
Although a decomposition into a mixture of ordered
phases or a mixture of ordered and disordered phases is
usually expected in systems with several stable ordered
intermediate phases, it should be emphasized, however,
that to date there is no convincing experimental data
which would confirm such a decomposition in the
YBa,Cu;0q , 5 system.

To understand the origin of the variety of ordered
states in the YBa,Cu;0¢_ 5 system and its unusual behav-
ior, different from that in systems with ordered interme-
tallics, we have to formulate a model that would reflect
the basic specific features of YBa,Cu;0q 5, distinguish-
ing it from the metal systems.

The main difference is that YBa,Cu;0q. 5 is a ceramic
compound with a long-range repulsive Coulombic in-
teraction between ions of the same kind. The theoretical
calculations of ceramic oxides structure!! and,
specifically, the calculations of atomic structure and ionic
and electronic defects in YBa,Cu;0,,'2"!® have proved
this convincingly. For example, it has been shown that
the Coulombic interaction accounts for approximately
90% of the total crystal lattice energy.'*

The introduction of an oxygen atom into the crystal
lattice of the tetragonal YBa,Cu;Oq structure results in a
crystal-lattice distortion. Overlapping strain fields gen-
erated by different O atoms yield the strain-induced O-O
interaction. To describe the structural transformations in
the YBa,Cu;0g¢, 5 system, the strain-induced interaction
between O atoms should also be included in the model.
In the harmonic approximation, the O-O strain-induced
interaction is reduced to the pairwise interaction energies
between the interstitial atoms.!”'® An important factor
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FIG. 1. The (001) Cu-O basal plane in YBa,Cu;0;,5. (a) The
basal plane of the tetragonal YBa,Cu;Oq host lattice, (b) the
YBa,Cu;0; orthorhombic phase, and (c) the YBa,Cu;Oq s
double-period orthorhombic O-II phase are presented. Cu
atoms are shown by solid circles. Interstitial sites belonging to
two sublattices (p =1,2) are indicated in (a) by squares; vectors
h; and h, show the position of the interstitial sublattice, p =1
and 2; vector r labels the Cu atom (in the host sublattice).

predetermining the special role played by the strain-
induced interaction is an infinite interaction radius of the
strain-induced pairwise potentials, which are highly
directionally anisotropic; specifically, they have a dipole-
dipolelike asymptotic behavior with the 1/ r® dependence
on a separation distance r. This circumstance results in a
useful analogy between this (and similar) systems and fer-
romagnetic and ferroelectrics whose magnetostatic and
electrostatic energies are also determined by the infinite-
radius dipole-dipole interaction. The dipole-dipole in-
teraction, even being very small, results in an instability
of a homogeneous single-domain state of a product phase
with respect to a formation of domain patterns accommo-
dating the magnetostatic and electrostatic energies. A
situation with the strain-induced interaction is similar.
An accommodation of the strain energy results in an in-
stability of a homogeneous product phase with respect to
a formation of domain patterns (polytwin patterns) con-
sisting of orientation variants of the product phase.!’- 10
The strain-induced interaction, as any dipole-dipolelike
interaction, modifies the classical Gibbs thermodynamics
since the total volume-dependent energy becomes a func-
tion of microstructure, shape, orientation, and spatial dis-
tribution of orientation variants of the product phase.
The twin and tweed self-organized patterns observed in
YBa,Cu;04. 5,'%%°-?7 as in numerous other systems, are

a direct consequence of this effect. Therefore, this is the
long-range repulsion between the ordering oxygen atoms
as well as their long-range strain-induced interaction
that, actually, predetermines the peculiarities of structur-
al transformations during the oxygen ordering in this ma-
terial.

The existing short-range-interaction (SRI) model of ox-
ygen ordering in YBa,Cu;04., 5 (Refs. 28-36) cannot de-
scribe ordered states (other than O-I and O-II) observed
in this system,">°% and, obviously, cannot describe the
tweed and polytwin patterns whose appearance is related
to the long-range (strain-induced) interaction. However,
the SRI model is a reasonable first (and the simplest pos-
sible) approximation that is able to describe the T, O-I,
and O-II phases. Its main advantage is that the short in-
teraction radius enables one to employ the CVM and
Monte Carlo methods for the thermodynamic characteri-
zation of these phases.”®~343¢ For the longer-range in-
teraction these methods face insurmountable difficulties.
[It is sometimes claimed that the first-principles calcula-
tion by Sterne and Wille’” proves the validity of the
three-neighbor SRI model. However, to prove this claim
one has to do two things: (i) fit the interaction potentials
so that the total configurational energies of several or-
dered phases calculated within the SRI model would be
equal to the energies of the same phases obtained by the
first-principles calculations, and (ii) find that the interac-
tion potentials beyond a three-neighbor distance are zero
or negligible. Item (ii) has not been done.]

A less obvious but very interesting fact is that any SRI
model is “unstable” with respect to even a weak Coulom-
bic addition to the O-O interaction potentials. Such an
addition, which is expected for ceramic oxides, would
radically change the phase diagram following from the
SRI model. It would completely eliminate the two-phase
fields among the 7, O-1, and O-II phases since any spatial
separation of oxygen ions required by the formation of a
two-phase mixture violates local charge neutrality and,
thus, increases the electrostatic energy. The larger the
regions occupied by the oxygen-rich phase, the greater
the increase. Instead of a two-phase mixture, the ordered
states accommodating each current stoichiometry should
be formed. A detailed investigation of this effect in two
dimensions has been carried out by Aligia et al.'>'® for
YBa,Cu;04 5.

A purpose of the present study is an investigation of
the effect of the long-range interactions, typical for
ceramic oxides, on structural transformations in
YBa,Cu;04, 5. This compound, besides its importance as
a high-temperature superconductor, is an excellent par-
ticular case illustrating the generic properties of oxide or-
dering systems with predominantly repulsive interatomic
interaction and with the phase transformations reducing
the crystal-lattice point symmetry. We suggest a model
which includes both the long-range Coulomb-like repul-
sive interaction and the strain-induced interaction be-
tween ordering oxygen atoms. This model will be em-
ployed to investigate the kinetics of structural transfor-
mations in YBa,Cu;0¢, s using a computer-simulation
technique based on the crystal-lattice-site diffusion
theory.® The kinetic approach proposed in this study,
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actually, does not use any a priori assumptions concern-
ing possible atomic and mesoscale structures that may
appear along the transformation path. No structural in-
formation other than the host-lattice geometry and the
interatomic potentials has been introduced. The obtained
structures automatically appear in the course of the com-
puter simulation of the crystal-lattice-site diffusion.

The authors have used this method recently to study
ordering in YBa,Cu;0,.%° It has been shown that the or-
dering in YBa,Cu;0, is accompanied by the tweed pat-
tern formation that later transforms into a polytwin
structure in the course of the strain-energy accommoda-
tion. Below, we extend this method to study the ordering
transformations in nonstoichiometric YBa,Cu;Og 5 over
a wide range of stoichiometries and temperatures. Re-
cently, a similar technique has been employed to study
the structural-transformation kinetics during the precipi-
tation of an ordered intermetallic phase from a disor-
dered matrix.*%4?

II. COMPUTER-SIMULATION MODEL

A. Thermodynamic model

To describe the oxygen ordering in YBa,Cu;O¢. 5, the
Ising model is used. All structural states in this system
can be obtained by considering the oxygen-atom redistri-
bution over two sublattices of interstitial sites located in
basal Cu-O (001) planes of the ay,Xa,X3a, structure of
the YBa,Cu;0¢ phase separated by three perovskite unit
cells. These sublattices are displaced by the distances
h,=a,(4,0,0) and h,=a(0,4,0) from the Cu-atom sub-
lattlce generated by Cu atoms occupying the apexes of
agXagX3a, unit cells [Fig. 1(a)]. Therefore, each inter-
stitial position may be denoted (p,r), where r is the
translation vector labeling the Cu atom nearest the
relevant interstitial site, and the index p labels the sublat-
tice (p =1,2) of the interstitial site. The vector indicating
the interstitial position is h, +r. The positions of inter-
stitial sites in (001) basal Cu-O planes are shown in Fig.
1(a). The distribution of O atoms over interstitial sites is
characterized by the function n(p,r), the occupation
probability of finding an O atom in the interstitial site
(p,r). In the disordered tetragonal T phase, oxygen
atoms are randomly distributed over interstitial sites of
both interstitial sublattices. Therefore, in the disordered
T phase, n(p,r)=c =const, where c is the fraction of in-
terstitial sites of both sublattices occupied by O atoms.
The concentration of O atoms, c, is directly related to the
stoichiometry parameter § by the equation

6=2c .

Ordering leads to a particular dependence of n(p,r) on
the coordinates. In the completely ordered state, the
function n(p,r) assumes only two values, 1 and 0. If, for
example, n(p,r) depends only on p but does not depend
on r, ie., if n(p,r)=np, then this function describes an
ordering resulting in the preferential occupation of one of
the sublattices caused by the transfer of O atoms from
another. In the completely ordered state, in which one of
the sublattices is fully occupied while the other is fully
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vacant, the ordering shown in Fig. 1(b) generates the or-
thorhombic high-temperature superconducting com-
pound YBa,Cu,0,.

1. Free energy

As has been mentioned above, the O-O interaction in
YBa,Cu;O¢.5, as in most ceramic oxides, is long
ranged.!!"!® In this case the mean-field approximation
for the free energy is reasonably good, especially in the
presence of the strain-induced interaction.** It becomes
especially accurate, irrespective of the interaction radius,
at comparatively low temperatures, where the long-
range-order (LRO) parameter is large.** Using the
mean-field approximation, we can present the free-energy
functional in the following form:*

F=}3 3

p.rg,r’

tkpT 3 {n

pr

W (t=1")n(p,r)n(g,r’)
n(p,r)nn(p,r)

+[1=n(p,0)]In[1=n(p,0)]}, (1)

where W, (r—r’) is the interaction energy of an O-atom
pair with the O atoms located at the sites (p,r) and
(g,r’), kg is the Boltzmann constant, and T is the abso-
lute temperature. The concentration-wave method
developed in Ref. 45 allows one to deduce the ordering
temperature T'; and the superlattice vector from the pair-
wise interaction potentials W, (r—r’).

2. Ordering temperatures

At high temperature this free energy (1) is minimized
at the probabilities n(p,r)=c that describe the disordered
state. At low temperatures the disordered state loses its
stability with respect to the concentration wave generat-
ing the ordered structure. The order-disorder tempera-
ture corresponding to this instability is determined by the
bifurcation point of the equilibrium equation following
from minimizing (1). It is equal to

c(l—c)

Tl(c)z— k
B

min[A (k)] , (2)
where min[A (k)] means the absolute minimum of the
function A, (k); k is the wave vector defined in the first
Brillouin zone of the parent tetragonal phase.** The
function A (k) is the eigenvalue of the Fourier transform
of the interaction potential matrix,

Vog(k)= 3 W, (r)exp(—ikr) , (3)

i.e., A, (k) meets the secular equation

2 Vog(Kv, (g, k)=A,(k)v,(p,k), (4a)

where the index o0 =1,2 (or +) enumerates two branches
of spectrum of the matrix qu(r—r’); v,(p,k) is the
eigenvector. This equation has a nontrivial solution if the
determinant of the system (4a) vanishes:
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Viik)—A  Vyy(k)
det =0. (4b)
V?Z(k) sz(k)—}\.
The solution of the quadratic equation (4b) with respect
to A determines two branches of A (k):

Ao(k)=1(V (k) +V,,(k)
[V (k)= V(K PP+4| V(K212 . (5)

By definition (5), the minimum of A (k) is described by
the minimum of the function A_(k) with respect to k,
i.e.,

min[A (k)]=min[A_(k)]=A_(k,) , (6)

where k, minimizes the A_(k). The vector k, found this
way is the superlattice vector of the ordered phase.
Therefore, Egs. (2), (5), and (6) determine the structure of
the ordered phase and the ordering temperature T (c)
through the matrix ¥V, (k).

If the minimum of A_(k) falls at k=k,=0, which is
the case for the observed T — O-I transition, then the or-
dering results in the transition of O atoms from one sub-
lattice to another sublattice and it is described by the oc-
cupation probability function n(p,r)=n,, which depends
solely on the sublattice number p, but does not depend on
the crystal-lattice-site coordinate r. This probability dis-
tribution describes the orthorhombic phase O-1, which is
the stoichiometric YBa,Cu;0; phase at ¢ =1 [Fig. 1(b)].

If the composition deviates from the stoichiometry
c¢=1 (i.e.,, §=2c <1) and if the decomposition into a mix-
ture of T and O-I stoichiometric phases is hindered, then
the secondary ordering occurs. The disordered phase for
the secondary ordering is the orthorhombic O-I phase de-
scribed by n(p,r)=n,. According to Ref. 46, the secon-
dary ordering temperature T,(c) can be found from equa-
tion

Tz(c)=—w ) (7a)
kp
where A (k) is the eigenvalue spectrum of the 2 X2 Her-
mitian matrix:

7, (K)=1'n,(1=n,)V,,(k)V'n,(1—n,) . (7b)

The fact that the stable secondary ordered phase O-1I in
this system [Fig. 1(c)] is characterized by the (,0,0) su-
perlattice vector, actually, means that the interaction po-
tential is such that the minimum of the eigenvalue A (k)
fa]ls at kl :(277'/00)(%,0,0)

B. Interaction model

The YBa,Cu;0q, 5 are, actually, interstitial solid solu-
tions of oxygen atoms based on the tetragonal
YBa,Cu;0,4 phase. As is known, the oxygen ordering in
YBa,Cu;04, 5 occurs in the basal (001) planes separated
by three layers of the perovskite lattice. The interaction
between the oxygen atoms located in different basal
planes in this system is much weaker than that within the
plane. The diffusion of O atoms is almost planar since
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the oxygen diffusion within the basal plane occurs sub-
stantially faster than the diffusional exchange between the
different basal planes.*” For such a system it is reason-
able to start from the two-dimensional (2D) model, which
would be the first approximation of the structural trans-
formation kinetics problem. An extension to the 3D
model is straightforward and does not pose any serious
additional problems since the thermodynamic equations
formulated above and the kinetic equations considered
below are valid in the 3D case as well. The only problem
is that the 3D model requires more information on O-O
interaction potentials and would take a longer time to
compute. We consider below the 2D square crystal lat-
tice composed of Cu atoms shown in Fig. 1(a). It is the
basal (001) plane of YBa,Cu;Oq. Interstices of this lattice
are located between the nearest Cu atoms. They are par-
tially occupied by the interacting O atoms which can mi-
grate.

The Fourier transform of the O-O interaction poten-
tial, ¥,,(k), has its singularity at k=0. The singularity is
introduced by the strain-induced interaction. The point
k=0 is a bifurcation point. Its origin is associated with a
degeneracy of the acoustic-phonon spectrum at k=0,
which is related to an invariance of the energy with
respect to the rigid-body translations. It is this singulari-
ty that results in an infinite range radius of the pairwise
interaction. Its long-range asymptote has a dipole-
dipolelike behavior. If we single out the singular part,
B, (k), from V,, (k) so that

Pq
V,,(kK)=B,, (k) + V] (k) , (8)

then the remaining part, V‘{;(k), is analytical at all real
values of k. Because of that, its back-Fourier-transform,
Wpfq(r), asymptotically decreases with the separation dis-
tance r as exp( —r /r,), where r, is the interaction radius.
Therefore, the interaction energies Wpfq(r) describe the
finite-radius interaction. We assume that the Wlf;(r) are
reasonably well approximated by the anisotropic
screer}gd-Coulomb repulsive potential proposed by Aligia
et al.

1. Strain-induced interaction potentials

Since B, (k) has the singularity at k=0, its long-
distance asymptote is described by the continuum elasti-
city. The continuum elasticity theory gives the following
approximation for B, (k) near k=0:*>"®

B, (k)= —vm;0,(p)Q;(m)o,(q)mexplik-(h,—h,)],
9)

where o;(p )=c,~jk,s?d(p), €%,(p) is the tensor of the con-
centrational crystal-lattice expansion coefficients associat-
ed with O atoms in the pth interstitial sublattice, c;j; is
the elastic strain modulus tensor, v is the unit-cell
volume, Q jk(m) is the Green tensor reciprocal to the ten-
sor Qﬁ(l(m)=cﬁ,km,-m1, and m=k/k. To calculate
B,,(k), we have to specify the parameters entering (9).
The 2D components of the concentration expansion ten-
sor £%,(p) along the x and y ([100] and [010]) axes are
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€y O
0 ey

€11 0
, (10

e (1)= , Ey(2)=

0 ey
where €2,(I) and €%(2) characterize the distortions
caused by introducing the oxygen atoms into the first
(p=1) and the second (p =2) sublattices, respectively; €,,
and €,; are the corresponding elongation and contraction

deformations. Assuming that e,,=—¢g;;=¢;, we may
rewrite Eq. (10) in the form
1 0 0 1 0
en(D=¢g|o _1 | e2=—¢g |, 1 (11)

With the definition of nonzero components of the elastic
moduli tensor ¢, for the tetragonal host lattice,
Cxxxx = Cypyy =C115 Cxxyy —C12> @NA €y, =Cg6, WE Can ex-
press the nonvanishing components of the Green tensor
Qj;(m) in the x-y plane as

Qxx(m)=[c“+(c“ _-c66 )m}]/D(m) )

Q, (m)=[ce+(c;, —cg)m2]/D(m) , (12a)

Q,,(m)=—[(cy,+ce)m,m,]/D(m) ,
where D(m)=cg[c;, +lcy+cp)mim}],

d=(cyy—Ci12—2cq6)/Ce5 » (12b)
and m=k/k=(m,,m,). Using the definition
o;p )=c,~jk,t32,(p) and Eqgs. (12a) in (9) gives

€ 1 -1
qu(k)=—v(c11-c12)2c—“—<b(m) [_1 1 }
Xexp[ik-(h,—h,)], (13)

where

®(m)= 066+2(c11+cl2)m,%my2 14)

2 -

011+¢(C11+C12)m3my

Using the lattice parameters for YBa,Cu;0, obtained in
Ref. 48, a=3.822 A, b=3.891 A, c=11.677 A, and
a,~(a+b)/2=3.856 A, we have

£y,=(b—a,)/a,=~g,=0.009 ,
en=(a—a,)/a,=—¢g,=—0.009 , (15)
v=abc=173 A’ .

The elastic constants calculated in Ref. 13 give the esti-

mate |
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¢ ~3.9% 102 dyn/cm? ,

c1,~1.36X10'%, (16)
ces=~0.91X10'2 .

Using the numerical data (15) and (16) in (13) and (14)
yields

(c;1—cp)€d
p——22 2993 X 106 erg=(719 K)kp , 17
Ce66
1+11.558m2m/}
®(m)=0.2333—————~ 18

1+1.066m’m}

The final expression for B, (k) (in K) for any wave vec-
tor (within the first Brillouin zone of the disordered
tetragonal phase) with the above numerical data for
YBa,Cu,0; has the form

B e (168 Kok JT11558mIm) ll ~1
e P 1+1.066m2m} [~ 1

Xexplik:(h,—h,)] . (19)

As has been emphasized above, Eq. (9) gives the long-
wave approximation of the strain-induced O-O potentials
valid at small k, k <<2w/a,. This approximation is, ac-
tually, very good for the T—O-I ordering in
YBa,Cu;04, 5 oxides since the ordering is induced by an
antisymmetric irreducible representation of the space
group related to the vector k=0. Therefore, the ordering
is described by the concentration wave packet whose
wave vectors k are located in a vicinity of k=0 where the
approximation (9) holds.

At k—0, the function qu(k) described by Eq. (19) has
a very strong dependence on the wave-vector direction
m, but does not depend on the absolute value of k. This
is a reason why its back-Fourier-transform, describing
the pairwise strain-induced interactions between O
atoms, has the dipole-dipolelike asymptotic behavior de-
caying with the separation distance as r ~3.

2. Finite-radius potentials W/, (r—r’)

The function Vzﬁl(k) is the Fourier transform of the
finite-radius  interaction between oxygen atoms,
Wl (r—r'). The potential W/ (r—r’') characterizes
repulsive interaction energies of oxygen-ion pairs. We
describe it as a screened-Coulomb potential supplement-
ed by the nearest-neighbor correction and by the next-
nearest-neighbor anisotropic correction [as it follows
from Fig. 1(a), the next-nearest interstitial sites always
belong to the same sublattice]:

(z*)? ay/V2 . -
=exp | ————— |+8W, for the nearest sites at [r+h,—r'—h, |=a,/V2,
ay,/V'2 rp
*)2
Wiir—r")= (lif)iza—)—exp - for the next-nearest sites at [r—r'|=a,, (20)
0 D
(z*)? lr+h, —r'—h,|
- t r+h,—r'—h_[>aq,,
|r+hp—r'—hqlexp rp at |r+h, —r'—h,|>qq
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where z* is the effective oxygen charge, 7/, is the screen-
ing radius, f is the anisotropy constant which has a nega-
tive sign for O-O interaction across a Cu atom and posi-
tive sign otherwise. The anisotropic screened-Coulomb
potential (20) has been used by Aligia et al.'® in a similar
form. These authors, however, did not take into account
the strain-induced interaction and correction § W,.

3. Values of parameters rp, z*, 8W,, and f

The O-O finite-range interaction potentials (20) depend
on the parameters 7y, z*, W, and f. These parameters
can be estimated by fitting the calculated and the ob-
served order-disorder transition temperatures in
YBa,Cu;0q s for the primary T— O-I and the secondary
O-1— O-I1 transitions. The assumption that O-I and O-11
phases are stable should be also used.

The screening radius 7, can be estimated as follows. It
cannot be too large, as the material has a comparatively
high density of free charge carriers (holes). But it cannot
be too small either, since then it cannot provide the sta-
bility of the double-period O-II structure (it should be, at
least, larger than its period, 2a,). We have chosen the
value r, =5a,/V'2. We have also tested other values of
rp, rp=3ay/V'2, rp=8a,/V'2, and rp— o, and have
found that the structural transformation sequence is not
affected by these changes in the screening radius.

The most stable ordered structures are the structures
generated by the concentration waves whose wave vec-
tors correspond to the Lifshitz points in the first Brillouin
zone of the disordered phase (the Lifshitz point is defined
as a point within the first Brillouin zone whose point
group has the symmetry elements intersecting in one
point). At these points the minimum conditions,
0A,(k)/0k=0 and 90A,(k)/dk=0, which according to
(2), (6), and (7a) determine the structure of the most
stable ordered phases, are automatically fulfilled. This
occurs because of the crystal-lattice symmetry rather
than any specific choice of the interaction potential. The
first Brillouin zone of the disordered T phase and the pri-
mary ordered O-1 phase has only three stars of the
Lifshitz points, (000), {100}, and {11 0}. It follows
from the known structure of the O-1 phase that it is relat-
ed to the (000) Lifshitz point. The structure is generated
by the antisymmetric irreducible representation of the
group of the vector k,=0. Since the O-I structure is the
most stable, k=0 provides the absolute minimum of
A_(k) [see Eq. (6)]. According to the observations,'~®
another Lifshitz phase, O-II, related to the {100}
Lifshitz point and generated by the secondary ordering, is
also stable. This means that k,=(27/a,)(4,0,0) pro-
vides the absolute minimum of A, (k). The third Lifshitz
structure, generated by the vector k,=(27/a)(4,+,0),
has been also reported in Ref. 5, but this 2a,X2a, or-
dered structure is, however, a transient and, thus, is less
stable than {100} Lifshitz structure. This means that
A_(k,) is slightly less than A _(k,):

A_(k))<A_(K,) .

It should be remembered that the stability conditions de-

scribed above are applied to the total function V,,(k) in-
cluding the term B, (k) [see Eq. (8)].

The above-described stability conditions and the fitting
to the temperatures T ,(c) and T,(c) [Egs. (2) and (7a);
also see Fig. 2] of the primary T — O-I and the secondary
O-1—O-I1 orderings impose severe limitations on the
permitted values of parameters z*, W, and f, entering
(20) [the strain-induced interaction has been already
determined by (19)]. We have tested different values of
these parameters and have found that their specific values
do not affect the structural transformation sequence as
long as the above-formulated limitations are met. In this
paper we will present the computer-simulation results for
the specific choice of the parameters that gives the right
values of T'(c) and T,(c) for YBa,Cu;O¢s. The experi-
mentally observed temperature T;(c) for the primary or-
dering is T,~970 K.* According to Ref. 22, the iso-
thermal reduction of YBa,Cu;0, inside the microscope
under the constant beam current results in the appear-
ance of O-II phase reflections at 400°C. These
reflections, however, have not been observed at 500°C.
These observations give us the rough estimate for the
maximum value of T,(c) at §=0.5 to be around T, ~720
K.

The specific choice of the parameters meeting the
above conditions are

z*=0.16e, 8W,=(476 K)kg, f=0.5, (21)

where e is the charge of the electron. These parameters

kBT/AT T (K)
0.8
T phase /1200
Tl(C)
0.6 : * 900
:‘79 T2(C)
0.4 4 o %o 600
{ ° O-II
o
0.2 o o oo o 300
A= oy
O-III O-III
0.0
0.0 0.2 0.4 0.6 0.8 1.0
YBa,Cu,0, — ~5(2¢) ¥Ba,Cu,0,

FIG. 2. The T-6 phase diagram of YBa,Cu;0¢ 5 calculated
with interaction parameters (19)-(21). The T,(c) and T,(c)
lines describe the T— O-I and O-1— O-II order «> disorder tem-
peratures. Dashed lines around the stoichiometries = ; and %
give approximate temperatures for the O-II— O-III tertiary or-
dering, where O-III is the 2V2a, X2V 2a, phase. Crosses and
circles designate the stoichiometries and temperatures in the O-
I and O-II fields, respectively, investigated in this computer
simulation. The temperatures are given in the reduced scale,
T*=kzT/ A, and in the absolute scale (K) [4=(z*)*V2/a, is
determined by (21)].
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also provide the relation
A_(k,)=0.7A_(k,)

which demonstrates that 2a,X2a, secondary phase is
less stable than O-II phase since A_(k,)<0 and
A_(k,)<0.

The ordering temperatures have been calculated from
the following equations. The equation for the primary
ordering temperature T,(c) follows from (2) and (5) at
k=0:

c(l1—c¢)

K 1. (22)

Ty(c)=— [V1(0)=1V1,(0)
Equations (7) for T,(c) include values of occupation
probabilities, n, and n,, in the first and second sublat-
tices of the primary ordered O-I phase at T=T,(c). Cal-
culations carried out with the choice of parameters (21)
have demonstrated that, at the secondary ordering tem-
perature T, ~720 K, we have n;=0 and n,~=~2c=95 at
8=0.5. Under these conditions the only nonvanishing

element of the 2 X2 matrix (7b) is ¥,,(k). Therefore,
A_(K)=P(k)=2¢(1—2¢) V5 (k) . (23)

With (23), Eq. (7a) reads
2C( 1 —2C )VZZ(kl)
kB ’

T2(C)=_ (24)

where k, =(27/a)(4,0,0) since the minimum of V,,(k)
falls on this point. The Fourier transforms ¥, (k) in Egs.
(22)-(24) include the strain-induced contribution (19).

C. Microscopic kinetic model

1. Crystal-lattice-site diffusion equation

For the computer simulation of the diffusion kinetics of
ordering, we utilize the microscopic crystal-lattice-site
diffusion equation:*% 1830

dn(p,r;t) _ 932 5F
di §EL e @

where n(p,r;t) is the occupation probability of finding an
oxygen atom at site (p,r) defined on the time-dependent
ensemble, ¢ is the time, F is the free-energy functional of

J
SF
8n(q,r;t)

s (k)7 (s,k;t)+8,kp T {In

g

s

Substituting (8) for (31) and (31) for (27) yields the final form:

L gm2sm2
dn(gd,tk,t)z s EL )

q9

The reciprocal-space formulation (32) of the crystal-
lattice-site diffusion describes a temporal evolution of 2N
amplitudes 7 (p,k;t) of the static concentration waves. It
automatically includes the strain effect characterized by

n(s,r;t)
1—n(s,r;t)

V4(K)+ B, (k)1 (s,k;1)+8,, ks T

6517

the function n(p,r;t), and L,,(r—r’) is the matrix of the
kinetic coefficients (microscopic diffusional mobility) re-
lated to the expectation time of an elementary diffusional
jump from site (g,r’') to site (p,r). The variational
derivative, 8F /8n(q,r;t), is the transformation driving
force. The summation over r’ is carried out over all N
unit cells of the crystal. Equations (25) are actually
Onsager equations with respect to the 2N relaxing param-
eters n(p,r;t). They describe the crystal-lattice-site
diffusion of interacting oxygen atoms. In the limit case of
noninteracting atoms, the solution of Eq. (25) is reduced
to the combinatorial solution of the random-walk prob-
lem. The long-wave limit of Eq. (25) is reduced to a
Ginzburg-Landau equation, providing the microscopic
interpretation of its phenomenological coefficients.

The equation for the thermodynamic driving force fol-
lows from (1):

8F , .
dn(q,r;t) Szr Wes(t—1")n(s,1;1)

+kyTIn _nm_ 06
—n(g,5;t)

It is very convenient to use the k-space (Fourier) repre-
sentation of the real-space kinetic equation (25) for the
computer simulations. Multiplying (25) by exp(—ik-r)
and summing it over all crystal-lattice sites gives

27

Alp,k;t) _ 12 S8F
dt §1L”q(k)[8n(q,r;t) y

where the symbol {( - - - )}, determines the Fourier trans-
form of the relevant function ( - - - ):

=3 (- dexp(—ik-1),

A(p,k;t)={n(p,r;t)},= 3 n(p,r;t)exp(—ik-r) , (28)

L, (K)={L,,(r)}y Zqu(r)exp(—tk ). (29)
The conservation condition for the total number of O
atoms requires that L ,,(0) is reduced to the equation

3 L, (r)=3 L, (0)=0. (30)
p.r 4

The Fourier transform of the driving force (26) is equal to

A

n(s,r;t)
1—n(s,r;t) ”k] ) (32)
|

the term B, (k). Working in reciprocal space has several
advantages Eq. (32) is simpler than the finite-difference
real-space equation (25); it allows one to incorporate an
arbitrary long-range interaction without any computa-

In
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tional complications and any adverse effect on the com-
putation speed [the interaction radius does not affect the
computational time when Eq. (32) is used]; and, finally, it
allows us to use the fast-Fourier-transform algorithm,
which dramatically accelerates all computations and, as a
matter of fact, makes them possible.

2. Coefficients L,, (k)

qu(k) is the Fourier transform of the microscopic mo-
bility coefficients L, (r—r’) related to the elementary
diffusional jump of an O atom site from (q,r’) to site
(p,r). In the relevant case of two interstitial sublattices
(p,g=1,2), L (k) is the 2X2 matrix. Assuming that

J

—1

Ly (k)=4L, cos(k-h;)cos(k-h,)exp[ —ik-(h,

"hz)]

D. Diffuse scattering generated
by oxygen-induced elastic strain

As has been discussed above, introduction of O atoms
into the tetragonal YBa,Cu;04 host lattice results in the
host-lattice displacements and strain-induced O-O in-
teraction associated with interference of displacement
fields. The displacement field caused by such defects
should generate the strong Huang-type diffuse scattering
near the fundamental diffraction spots of the host lat-
tice.’! The diffuse-scattering asymptotic behavior is pro-
portional to ~1/k?, where k is the distance from the
fundamental spot. This scattering is actually associated
with the interstitial-induced long-wave static acoustic dis-
placement modes. Therefore, it can be described in terms
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the elementary diffusional j Jump may occur only between
the nearest interstitial sites (|r+h,—r'—h,|=a,/V2)
[see Fig. 1(a)] that belong to the different sublattices, we
have the only nonvanishing elements of the matrix
L, (r—r")

L, if [r+h,—r'—h,[=a,/V2,

L, (r—r')=1—4L, if |r+hp—r’—hq|=0, (33)
0 otherwise ,

where the condition L(0)=L,,(0)=—4L; follows

from Eq. (30) under the assumption that only nearest-
neighbor diffusion jumps are permitted. The Fourier
transform of the matrix (33) gives the 2 X2 matrix:

cos(k-h;)cos(k-h,)exp[ik-(h;—
-1

h,)]
(34)

[

description of the strain-induced contribution to the in-
teraction energy, qu(k). Then, the Fourier components
of the atomic displacements in an interstitial solid solu-
tion, #(k), can be related to the Fourier transforms of the
occupation probabilities of O atoms by the equation

ﬂj(k)=-—z7(— 2 ou(p)mr(p,k;t) (35)
where () s{k , 0(p), and m; are defined following Eq.
(9).52461 Usmg the components of the Green tensor

Q(m) [Eq. (12)], we can present the displacement field,
u(r)=(ux(r),uy(r)), as the back-Fourier-transform of

of the continuum elasticity in a way similar to the (35). The result reads
J
i ¢ 1 1 CepT(cyyTep)m y2 .
ulr), =—i———¢y = >~ 55 ALk t)—a(2,k;t) m, expl(ik-r),
Ce ON % (kxz-i-kyz)l/z[ ]c“+¢ (cq;tep)m fmyl xCXP 36)
2
cn 2 1 1 o6 T(cyyTeppmy .
u(r), =i go— S —————[a(l,k;t)—7a(2,k;t) m expl(ik-r) ,
g Ce6 °N % (k:?"'kyz)l/:"[ ]011+¢(011+C12)m3m3 v

where |k|=(k}+k})!"; €, and ¢ are determined in (15)
and (12b). The displacement field is determined by Eq.
(36) in terms of the Fourier transforms of the occupation
probabilities #(p,k;?) at each time moment ¢, the tem-
poral dependence of 7(p,k;r) being described by the
solution of the kinetic equation (32).

The diffuse-scattering intensity associated with the dis-
placement field (36) is determined by the equation

IQmHAK, t )4, z lexp[ —i(2rH+k)(r+u(r)]|?,

(37
where H is the fundamental reciprocal-lattice vector and
k /27 is the distance of the measurement point from the
fundamental reciprocal-lattice point H.

E. Computational method

Structural transformations in the system under study
are associated with the O atoms redistribution over inter-
stitial sites of the basal (001) planes. In terms of the 2D
Ising model formulated in the preceding sections, all
structure transformations are described by temporal and
spatial evolution of the occupation probabilities,
n(p,r;t), defined on the square lattice with N =64X64
(or 128X 128) unit cells shown in Fig. 1(a). The function
n(p,r;t) is obtained as a ba *.Fourier-transform of the
solution of the nonlinear equation (32) for 7(p,k;t) at N
points k within the first Brillouin zone. Periodic bound-
ary conditions are used. Since we consider the ordering
of an as-quenched disordered state, the initial state is a



46 STRUCTURAL TRANSFORMATIONS IN NONSTOICHIOMETRIC.. ..

disordered state. The disordered state corresponding to
the tetragonal T phase is characterized by the function
n(p,r;0)=c, where c=Ny/2N=8/2; N is the total
number of O atoms, and 2N is the total number of inter-
stitial sites. We, however, assume that the initial disor-
dered state also includes random “infinitesimal” fluctua-
tions (random noise) and is described by the function
n(p,r;0)=c+6n(p,r), where 8n(p,r) is the “noise”
function obtained by a random-number generator which
varies within the range +0.001.

The coordinate and temporal dependence of n(p,r;t)
describes the atomic and mesoscale structure evolution
occurring along the transformation path. The short-wave
periodic dependence of n(p,r;t) on r with the atomic-
scale period A describes the ordered superstructure
within this period. Its mesoscale dependence on r, im-
posed on the atomic-scale periodic modulation, describes
the domain structure of this ordered phase. If the func-
tion n(p,r;t) does not have a short-wave periodic modu-
lation of atomic scale, but depends on the sublattice num-
ber p, it describes the orthorhombic O-1 ordered phase
and the mesoscale distribution of its domains (orienta-
tional variants). Local values of the LRO parameter of
this phase, 7, can be defined as

n(l,r;t)—n(2,r;t)
2c ’

Equation (32) has been formulated in a dimensionless
form wusing the reduced time, t*=4ALt=t/7
[T=(4 AL,)" ! is the typical diffusion jump time], the re-
duced temperature, T*=kyzT / A, and the reduced ener-
gies expressed in the units of 4, where 4 =(z*)*V/ 2/a
[see Eq. (20)]. It has been solved with respect to the 2N
Fourier amplitudes 7(p,k;?) using a recurrence formula:

o~ . *
A(p,k; 1%+ Ar)=(p ki) +arr LHBELT) )

n(r,t)= (38)

where dfi(p,k;t*)/dt is expressed through 7(p,k;t*) by
the right-hand side of (32), and At* is the reduced-time
increment. Equation (39) actually relates #(p,k;z*) and
fi(p,k; t*+ At*). The temporal dependence of 7 (p,k;t*)
is obtained by applying (39) at consequent moments of
time. The choice of the time increment Az* was different
at high and low temperatures. For example, at T* >0.5
we used At*~1073, but for low temperatures we used
At*~10"% The functions L, (k), B, (k), and V/(k)
entering (32) are defined by Eqs. (34), (19), and (20), the
numerical values (21) and rp, =5a,/V'2 being used. The
functions qu(k), qus(k), and B (k) characterize the ma-
terial properties related to the oxygen diffusion, finite-
range O-O interaction, and strain-induced interaction,
and, thus, they are not dependent on the oxygen order-
ing. Because of this, they were calculated only once for
all points k in the first Brillouin zone of the disordered T
phase and then were used as the input data array in solv-
ing Eq. (32). The latter is the main advantage of the
reciprocal-space formalism. Since all interactions are de-
scribed by the sum of qu;(k) and B, (k), any increase of
interaction radius or any modification of potentials just
changes these functions, but does not impose any addi-
tional computational difficulty.
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The set of 2N occupation probabilities n(p,r;¢*), relat-
ed to the different time moments ¢*, describes the tem-
poral evolution of atomic and mesoscale (domain) struc-
ture of different ordered states. The graphic visualization
of computer-simulation results has been realized by the
following way. If the calculated value n(p,r;t*)<c, the
presence of an oxygen atom at the interstice (p,r) is not
shown. If n(p,r;t*)2c, the position of the O atom is
shown by the circle placed at the interstice (p,r); the
darker the grey level of the circle, the larger the occupa-
tion probability n(p,r;t*). The resultant microstructural
picture obtained in this way imitates the high-resolution
electron-microscopic images.

Diffraction effects caused by the oxygen-induced elastic
displacements at each time moment ¢* have been found
by using the elastic displacements u(r) in Eq. (37). The
displacement field, in turn, is determined by Eq. (36), re-
lating it to the distribution functions n(p,r;t*) of the O
atoms describing the structural transformations. The
diffraction pattern found in this way reflects the evolution
of both the atomic crystal structure and the domain
structure of ordered states. The diffuse intensity visuali-
zation is achieved by the white contrast on the black
background related to the reciprocal-space areas, where
the intensity is negligible.

III. COMPUTER-SIMULATION RESULTS

Our computer simulation has shown that the O-O in-
teraction potential including the long-range repulsive
screened-Coulomb and strain-induced interactions, as ex-
pected, prevents any decomposition process that would
result in the formation of a mixture of completely or-
dered phases at the ground state. Instead, the phase
transformations in this system are congruent ordering re-
actions that produce local structure inhomogeneities, but
maintain a local compositional homogeneity. The con-
centration dependence of the temperature T;=T,(c) of
the primary order-disorder transition T-—O-I resulting
in the O-I orthorhombic phase is described by Eq. (22).
The ordering is the second-order transition. The non-
stoichiometric primary ordered O-I phase undergoes
secondary ordering, which produces the double-period
2a,Xa, phase (or O-II phase). The stoichiometric com-
position for the O-II phase is §=0.5 (§=2c¢ is the
stoichiometry parameter of YBa,Cu;0;,5). The concen-
tration dependence of the temperature T,=T(c), of the
secondary order-disorder transition O-I—O-II resulting
in the O-II orthorhombic phase is described by Eq. (24).
The O-O interaction energies (19)—(21) entering Egs.
(22) and (24) are chosen so that the calculated T,(c) and
T,(c) curves are fitted to the observed temperatures at
8=0.5. Figure 2 shows the 7-§ phase diagram calculated
with these interaction energies.

A. Computer simulation of tweed and twin pattern formation

1. T— O-I ordering

The transformation sequence obtained by the iso-
thermal annealing of a disordered T phase quenched into
the O-I stability field proves to be the same at all
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(a)
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FIG. 3. (a) Simulated temporal isothermal evolution of microstructure in YBa,Cu;0; at the temperature T /7T, =0.79. The trans-
formation reduced time t* is equal to 4, 12, 40, 80, and 120 (from left to right). Two types of orientation domains are characterized
by a value of the LRO parameter, n=[n(1,r)—n(2,r)]/2c [Eq. (38)]. Regions with positive 7 describe orientation domains of the
first type with preferred occupation of sites of the first interstitial sublattice (light-to-white color). Regions with negative 7 character-
ize domains of the second type (black). (b)—(c) are the corresponding strain-induced scattering at t*=2.5, 4, 12, 80, and 120 (from
left to right) around (a) (400) and (b) (440) fundamental diffraction spots. The intensity I, (k) [Eq. (37)] is shown on a logarithmic

scale. The system size is 128X 128 unit cells.

stoichiometries 6. To illustrate the simulation results, we
present in Figs. 3—6 typical results for a particular case
of the ordering in YBa,Cu;0, (6=1) at T/T,=0.79.
Two orientational variants produced by T— O-I ordering
are distinguished by the preferentially occupied intersti-
tial sublattice p. According to the definition (38), the
LRO parameters in different orientational variants have
different signs. The maximum possible value of the LRO
parameters is 7=1; the minimum value is 7= —1. In the
disordered state, n=0.

The visualization of calculated structures by the LRO-
parameter representation [Fig. 3(a)] is provided by the
contrast levels corresponding to the values of 7. Areas
with negative 1 are shown by a black background. Areas
with > 0 are shown by different levels: the lighter these
levels are, the larger the LRO parameter. Figure 3(a)
represents the computer-simulated microstructural evolu-
tion within the reduced time range from t*=4 to

t*=~120 (at T/T,=0.79). The corresponding evolution
of diffuse scattering within the first Brillouin zone around
the (400) and (440) diffraction spots is calculated using
Eq. (37). It is presented in Figs. 3(b) and 3(c). Figure 3(a)
demonstrates that the ordering at t* <12 produces a
nanoscale coherent mixture of microdomains of two
orientational variants of the O-I phase that are strongly
aligned along (110) directions. The diffuse scattering
corresponding to this aligned system of microdomains is
characterized by the diffuse streaks along (110) direc-
tions. Both the obtained microstructure and the diffuse
scattering are typical for the so-called tweed structure ob-
served in many metal and ceramic systems where the
phase transformation develops with point-symmetry
reduction.”* %> For the YBa,Cu;0q, s system, the tweed
structure was observed in Refs. 22-26.

At t* =120, Fig. 3(a) demonstrates the polytwin struc-
ture formed due to tweed pattern coarsening. The corre-



46 STRUCTURAL TRANSFORMATIONS IN NONSTOICHIOMETRIC. .. 6521

(b)

FIG. 4. (a) Atomic representation of the tweed structure in
YBa,Cu;0, shown in Fig. 3(a) for t*=4. The small black cir-
cles are Cu atoms, and the larger dark circles are O atoms,
which are shown if the occupation probability n(p,r)>c
(¢=0.5 for YBa,Cu;0,). (b) The corresponding strain-induced
diffuse scattering in the (001) reciprocal-lattice plane from the
tweed structure (¢*=4). The (000) origin is in the center of the
diffraction pattern. Diffuse maxima are around the Bragg
peaks. The intensity I, (k) [Eq. (37)] is shown on a logarithmic
scale. The diffuse maxima are enlarged by the factor 1.6. The
model crystal consists of 128 X 128 unit cells.

sponding diffuse scattering [Figs. 3(b) and 3(c) at
t*=120] reveals the streaks caused by the twins’ boun-
daries. These streaks are perpendicular to the (110) twin
boundary and parallel to the direction of the diffraction-
spot splitting typical for twins. These streaks [Figs. 3(b)
and 3(c) at t*=120] obscure the twin-relating splitting of
(400) and (440) reflections since the intensity distribution
is presented on a logarithmic scale [the splitting is seen in
Fig. 5(b), where intensity is presented on the usual, not
the logarithmic, scale].

Figure 4(a) shows the ‘“high-resolution” visualization
of the atomic structure of the same tweed pattern, which
is shown in the “normal-resolution” picture in Fig. 3(a)

(b)

FIG. 5. (a) Atomic representation of the twin structure in
YBa,Cu;0, shown in Fig. 3(a) for t*=120. The O atoms are
shown if n(p,r)>c (c=0.5). (b) The corresponding diffraction
pattern described by the intensity I(k)g,, [Eq. (37)] in the (001)
reciprocal-lattice plane. It demonstrates the twin-related split-
ting of the Bragg peaks. The origin (000) is in the center of the
pattern. The diffuse maxima are enlarged by the factor 2.1. In-
tensities less than 5% of I(k=0),, are not shown. The model
crystal consists of 128X 128 unit cells.

(t*=4). The atomic structure of small orientational
domains of the O-I phase aligned along (110) directions
with the preferential boundary orientations along 110)
is clearly seen. Figure 4(b) shows the entire diffraction
pattern with the strain-induced diffuse scattering in the
(001) reciprocal-lattice plane. It is calculated for the
same structure at t*=4. This diffraction pattern, ob-
served in many systems, is a “fingerprint” of the tweed
structure.

The “high-resolution” structure of twins formed as a
result of the tweed-to-twin diffusional rearrangement is
shown in Fig. 5(a) (¢*=120). Figure 5(b) gives the corre-
sponding diffraction pattern in the (001) reciprocal-lattice
plane [calculated by using Eq. (37)]. The twin-related
splitting of diffraction spots, a well-known effect observed
practically in all structural studies of YBa,Cu;O¢. 5, is
clearly seen. Both the splitting and the streaks [Figs. 3(b)
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FIG. 6. Temporal evolution of the strain energy at T— O-I
transformation in YBa,Cu;0; at T/T;=0.79 corresponding to
the tweed-to-twin morphology transformation presented in Fig.
3(a). Calculated values are shown by circles. Approximate time
intervals corresponding to the tweed and twin patterns are indi-
cated. The disordered state is a reference state.

and 3(c) at t*=120], as expected, are perpendicular to
the (110) twin boundary.

At 8=1, besides the temperature T/T;=0.79, the
computer simulation has been made for different temper-
atures within the range 0.54<T /T, <0.96. At higher
temperatures, close to T;, the LRO parameter is very
small. Simulation has shown that at T/T,=0.96 the
tweed structure is not formed and the structure kinetics
directly leads to a polytwin pattern. On the contrary, at
lower temperatures (T /T;=0.54) the tweed pattern ap-
pears almost immediately, at ¢*~1, but it takes longer
time to transform it into twins.

The microstructure evolution, shown in Fig. 3 and re-
sulting in the formation of a polytwin structure through
the transient tweed structure, is driven by the strain re-
laxation. Figure 6 shows the corresponding temporal
dependence of the strain energy along the transformation
path. An initial disordered state is regarded as the refer-
ence state where the strain energy is assumed to be zero.
It is interesting that, as follows from this figure, the
tweed pattern formation accommodates the major part of
the strain energy (about 70% of the reduction of the ini-
tial strain energy). The strain energies in Fig. 6 are nega-
tive since the initial disordered solution—which is, actu-
ally, characterized by the maximum strain energy gen-
erated by oxygen-induced displacements—is assumed to
be the reference state. Therefore, the strain accommoda-
tion caused by the O atoms redistribution reduces the
strain energy to negative values.

The computer-simulation results obtained for the
stoichiometries 0.25 <8 < 1 at the temperatures above the
O-II field of the phase diagram shown in Fig. 2 prove to
be the same as the results obtained at §=1.

2. T — O-II ordering

In this section we present results related to the situa-
tion where the disordered T phase is ‘“‘quenched” into the
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O-II field of the phase diagram, i.e., below the T,(c) line
in the congruent phase diagram shown in Fig. 2. The
stoichiometries 0.25<8<0.85 were considered. The
structure transformations, however, prove to be the same
irrespective of the stoichiometry. A disordered T phase

T T
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FIG. 7. The tweed pattern formation in YBa,Cu;O¢ s pro-
duced by isothermal “annealing” the T phase at T/7T,=0.72.
(a) the primary tweed consisting of O-1 domains (the annealing
time t*=1.2), and (b) the secondary tweed consisting of O-1I
domains formed from the primary tweed domains (the anneal-
ing time ¢*=64). Small black circles are Cu atoms, and larger
dark circles are O atoms that are shown if the occupation prob-
ability n(p,r)>c (¢=0.25 for YBa,Cu;04 s). The model crystal
consists of 64 X 64 unit cells.
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“quenched” into the O-II field first undergoes the T— O-
I ordering producing the tweed pattern similar to that
shown in Fig. 4(a). We will call this pattern the primary
tweed. Microdomains of the O-I phase forming the pri-
mary tweed later transform into the microdomains of O-
IT phase due to the O-I—O-II secondary ordering. The
secondary ordering stabilizes the tweed structure, the fur-
ther evolution of which is halted. This stabilized tweed
comprised of O-I1 domains will be called the secondary
tweed. The transformation sequence described above is
illustrated by Fig. 7, showing two moments of the
structural transformation kinetics in YBa,Cu;O¢ s at
T/T,=0.72, t*=1.2, and t*=64. In the beginning of
the evolution, the T— O-I ordering produces the primary
tweed pattern [Fig. 7(a) for t*=1.2]. It is actually the
same pattern as that in Fig. 4(a) for YBa,Cu;0,. Figure
7(b) (for ¢* =64) shows the secondary tweed produced by
the O-1—O-II ordering within microdomains of the O-1
phase. Figure 8 illustrates the evolution of the diffuse
scattering around (400) and (440) fundamental reflections.
Diffuse scattering is calculated using Eq. (37). The pic-
tures in Fig. 8 include those two generated by the struc-
tures shown in Figs. 7(a) and 7(b).

Comparing Figs. 7(a) and 7(b), we do not see any con-
siderable difference between the mesoscale structures of
the primary and secondary tweed patterns. The
difference can be seen, however, on an atomic scale,
where the O-1—O-II ordering is manifested. The O-
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I—O-II ordering is also revealed by the appearance of
diffuse maxima around {]00} points [compare Fig. 8
with Figs. 3(b) and 3(c)]. We have found that the secon-
dary tweed formation, as well as the primary tweed for-
mation, dramatically reduces the strain energy.

An important result is that after t*~10, when the
secondary tweed is formed, the transformation kinetics is
halted. The observed freezing is a thermodynamic rather
than kinetic effect, since it is caused by eliminating the
driving force (the diffusional slow-down effect is excluded
by measuring the reduced time t* in the units of the
diffusional jump time 7). Therefore, the observed freezing
actually means that the system has reached a free-energy
local minimum and, thus, is in a metastable state. There-
fore, we have arrived at an important conclusion, namely
that the secondary tweed structure is a new kind of the
mesoscale phase. As a metastable phase, the secondary
tweed can transform to a conventional equilibrium O-II
phase only via the nucleation and growth mechanism.

Our computer simulation has shown that the structure
transformations of the T phase at other stoichiometries
(6=0.25, 0.6, 0.75, and 0.85) are the same as the above-
described transformations at §=0.5. This conclusion fol-
lows from the results obtained by annealing a disordered
YBa,Cu;04,5 phase “quenched” into the O-II phase
field. As in the case §=0.5, the transformation leads to
the metastable secondary tweed formed by the O-1— O-11
ordering within domains of the transient primary tweed.

(a)

t* >

(b)

FIG. 8. Evolution of the strain-induced diffuse scattering from YBa,Cu;O04 s at the temperature T/ T,=0.72. The intensity distri-
bution I, (k) (on a logarithmic scale) is shown within the first Brillouin zones with centers in (a) (400) and (b) (440) Bragg maxima.
The diffuse maxima are situated in the center of the Brillouin zones. Different states along the transformation path correspond to the
reduced times t*: 0.8, 1.2, 3, 8, and 64 (from left to right). The primary tweed structure is formed at ¢* <2.5; the secondary tweed
structure appears at * >2.5. O-1-O-II ordering is revealed by appearing the additional {1 00}-type diffuse maxima on the zone
boundaries (for ¢ * =8 and 64). The model crystal consists of 64 X 64 unit cells.
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B. Heterogeneous secondary ordering

As follows from the results described in Sec. IITA 1,
annealing of the T phase within the O-I phase tempera-
ture range between T';(c) and T,(c) lines on the phase di-
agram produces a perfect polytwin structure. It takes
about 100 reduced-time units (z* ~30-300 depending on
the temperature and size of the system). Therefore, the
real-time estimate gives ¢t ~ 100 7. If the primary order-
ing temperature T';(c) is high, which is the case for the
high values of the stoichiometry §, the elementary
diffusion time 7 should be small and, thus, the polytwin
structure consisting of the orientational variants of the
O-I phase may have sufficient time to be formed during
cooling. Therefore, when the decreasing temperature
reaches the secondary ordering temperature T,(c), the
material already has a polytwin structure. Continuing
the cooling below the T,(c) line results in the secondary
O-1— O-I1 ordering within the polytwin structure. This
is probably always the case if no special effort is made to
provide fast cooling (fast quenching produces the secon-
dary tweed structure). To describe the secondary order-
ing within a polytwin structure during the cooling, we
consider a two-step ‘‘heat treatment.” The first step, iso-
thermal “annealing” of the T phase at T,(c)<T < T,(c),
is just intended to obtain a polytwin structure. The
second step, the “quenching” of the obtained polytwin
structure to below the T',(c) line and its isothermal “an-
nealing” at T < T,(c), is intended to study the secondary
ordering within the polytwin structure. As will be shown
below, the atomic structure of the secondary ordered
phases is dramatically affected by the twin morphology.

1. O-I—>2ayX2ay—2a,Xa, (O-1I) secondary ordering

Figure 9 shows the “high-resolution” pictures of the
structures formed in the twinned YBa,Cu;O4 5. An ini-
tial polytwin structure was obtained during the primary
T —O-1 ordering at T/T,;=0.78 (t*=64). The secon-
dary ordering is initiated by ‘“quenching” the polytwin
structure to the temperature 7 /T, =0.63 and isothermal
“annealing” at this temperature. Figures 9(a), 9(b), and
9(c) show three moments of the secondary ordering evo-
lution, t*=32, t*=64, and t*=384. In Fig. 9(a) we
mostly see the metastable 2a, X 2a, phase, which is a pre-
cursor of the O-II phase, and also several domains of the
O-II phase. The volume of the 2a,X2a, phase decreases
as it transforms into the O-1I phase [Figs. 9(b) and 9(c)].

As follows from Fig. 9, the (110) twin boundaries
change the transformation path. Instead of forming the
stable 2a,Xa, (O-II) phase, which could be expected
from the thermodynamics analysis, the secondary order-
ing first produces a metastable 2a, X 2a, phase (it was ob-
served in Ref. 5). This phase generates {1 10} superlat-
tice diffraction maxima. The 2a,Xa, phase appears
later. It consists of antiphase domains that can be clearly
seen in Figs. 9(b) and 9(c). The 2a,Xa, phase “inherits”
the initial (110) twin orientations. It is interesting that
the stable 2a,Xa, phase appears from the 2a,X2a,
phase only if the twin boundaries are not perfect. When
we occasionally obtained absolutely perfect twin boun-

TR AA R,
o e

LS
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FIG. 9. The transformation of the metastable 2a,X2a,
phase into the stable 2a, X a, (O-II) phase within the O-1 twins
during the isothermal ‘“annealing” of the O-I phase in
YBa,Cu;04 5. The initial O-I polytwin structure is formed dur-
ing the prior ‘“annealing” of the T phase in the O-1 field
(T/T,=0.78, t*=64). (a), (b), and (c) represent three moments
of the evolution at the lower temperature, T /T, =0.63, corre-
sponding to the times: ¢t*=32, 64, and 384. The metastable
2a, X2a, phase forms first. Later it gradually transforms to the
O-I1 phase [(b) and (c)]. The O-II phase forms antiphase
domains. If twin boundaries are absolutely perfect, the
2ayX2a9—2ayXa, transformation does not happen. The
model crystal consists of 64 X 64 unit cells.
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daries, the 2a4,X a, phase did not appear at all.

It is important to note that the same transformation se-
quence, O-I twins—2a,X2a,— O-II, was obtained not
only at §=0.5, but also at other stoichiometries, varying
from 6=0.25 to 6=0.85.

2. O-II—O-III (2V'2a,X 2V 2a,) tertiary ordering
in YBa;Cu306. 25 YB02Cu306_ 755 and YBa;Cu,O,;_ 375

When studying the special stoichiometries, =1, 3,
and %, we found that the O-II phase, obtained as de-
scribed above from a twinned O-I phase (i.e., in the se-
quence O-I twins—2ayX2ay— O-I1), undergoes a fur-
ther transformation if it is annealed at the lower tempera-
ture T < T3(c) < T,(c) (see Fig. 2). At T <Tjs(c) the O-11
secondary ordered phase transforms to a tertiary ordered
O-III phase having the 2V/'2a, X2V 2a, unit cell. Figures

{200} type, and streaks along the (110)
directions are generated by twin boundaries.
The model crystal consists of 64 X 64 unit cells.

10—12 demonstrate the formation of the O-III phase at
three different stoichiometries.

Figure 10 presents results for YBa,Cu;O4 5. A po-
lytwinned O-I structure was obtained by “‘annealing” the
T phase at T/T;=0.78 (¢t*=64). The secondary order-
ing, i.e., the O-I—>2ayX2ay,—O-1II transformation se-
quence, is achieved by the “‘annealing” of the polytwin
structure at T/T,=0.61 (¢*=128). The tertiary O-1II
phase has appeared as a result of the O-II - O-III trans-
formation at T/T,=0.50 (¢*=128). The atomic struc-
ture of the O-III phase with a 2V/2a, X2V 2a, unit cell is
more easily seen on Fig. 10(b), showing an enlarged por-
tion of Fig. 10(a). It is orthorhombic and generates the
{4 1 0}-type superlattice maxima [Fig. 10(c)].

Figure 11(a) presents results for YBa,Cu;Og,s. The
O-1 polytwins were formed during the ‘“‘annealing” at
T/T,=0.83 (¢t*=64). The next ‘“annealings” were at
T/T,=0.72 (¢*=128) and T/T,=0.58 (¢t*=128).
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This steplike ‘“‘annealing” imitates a slow-cooling pro-
cedure. The crystallographic structure of the O-III phase
also has the 2V/2a, X2V 2a,, unit cell [a part of Fig. 11(a)
is shown in Fig. 11(b)]. It is actually anti-isomorphic to
the O-III structure in YBa,Cu;Oq 55 [Fig. 10(b)]: each
one can be obtained from the other by the substitution of
O atoms for vacancies and vice versa. The structure is
also orthorhombic and generates the same {4 1 0}-type
superlattice maxima [Fig. 11(c)].

Figure 12 presents results for YBa,Cu;Og 375. This
stoichiometry is chosen since it is close to that (§=0.35)
investigated in the recent neutron-diffraction study.’ The
initial polytwinned O-I structure has been formed at
T/T,=0.84 (t*=64). The next “annealings,” imitating
slow cooling, were as follows: at T/T,=0.75 (¢t*=32),

FIG. 11. Simulated O-III structure in
YBa,Cu;0q 5. Initial O-1 polytwinned struc-
ture is formed during the high-temperature an-
nealing at T/T,=0.83, t*=64. The following
annealings resulting in the secondary and terti-
ary ordering were at the temperatures
T/T,=0.72 (t*=128) and T/T,=0.58
(t*=128). (a) The final tertiary ordered mi-
crostructure of the O-III (2V2a,X2V2a,)
phase. (b) An enlarged fragment of the struc-
ture shown in (a). (c) Intensity distribution
within the first Brillouin zone of the ayXa,
host lattice on a logarithmic scale. Four maxi-
ma nearest the zone origin are of {1 1 0} type,
four maxima on the zone boundaries are of
{300} type, and streaks along the (110)
directions are generated by twin boundaries.
The model crystal consists of 64 X 64 unit cells.

then the “annealing” at T /T, =0.42 (+*=128), and then
the “annealing” at T/T,=0.32 (¢*=128). A portion of
Fig. 12(a) is shown in Fig. 12(b). The O-III phase also
has the 2V/2a, X2V 2a, unit cell, but its atomic arrange-
ment is different than those shown in Figs. 10(b) and 11(b)
and also different than structure proposed in Ref. 9. The
diffraction pattern is presented in Fig. 12(c). It also
displays {4 1 0}-type superlattice maxima.

The superstructure maxima of {4 10} type were ob-
served in Refs. 5 and 7-9; an electron-microscopic image
of the O-III phase is presented in Ref. 5.

The O-III phase unit cells [easily seen in Figs. 11(b),
12(b), and 10(b)] are formed by different numbers of oxy-
gen atoms, namely, two, three, and six (or two oxygen va-
cancies), which is dictated by the stoichiometries =%, 3,
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and §, respectively. Being a tertiary ordered phase based
on the O-II parent structure, the O-III phase also gen-
erates {4 00} superlattice maxima. They are situated on
the Brillouin-zone boundaries [Figs. 10(c), 11(c), and
12(c)].

3. Homogeneous secondary ordering

Computer-simulation results presented earlier have
demonstrated that the (110) accommodation twins affect
the secondary and tertiary ordering. They lead to the
heterogeneous ordering that promotes the concentration
waves whose wave vectors are perpendicular to the twin
plane. Indeed, the computer-simulated structures
(2ayX2agy) and the O-I1I phases shown in Figs. 9-12 are

6527

FIG. 12. Simulated O-III structure in
YBa,Cu;0435s (8=32). Initial O-I po-
lytwinned structure was formed during the
high-temperature annealing at T/7,=0.84,
t*=64. The next annealings resulting in the
secondary and tertiary ordering were at the
temperatures T/T,=0.75 (¢*=32),
T/T,=0.42 (t*=128), and T/T,=0.32
(t*=128). (a) The final tertiary ordered mi-
crostructure of the O-III (2V2a,X2V2a,)
phase. (b) An enlarged fragment of the struc-
ture shown in (a). (c) Intensity distribution
within the first Brillouin zone of the ayXa,
host lattice on a logarithmic scale. Four maxi-
ma nearest the zone origin are of {{ + 0} type,
four maxima on the zone boundaries are of
{£00} type, and streaks along the (110)
» directions are generated by twin boundaries.
» The model crystal consists of 64 X 64 unit cells.

9:0:0: ‘0-9-9: ‘00
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generated by the concentration waves with wave vectors
(2m/a4)(4,%,0) and (27/ay)(L,1,0), which are perpen-
dicular to the (110) twin plane. Therefore, to investigate
the secondary ordering that is not influenced by the twin
boundaries, we either have to consider a very large sys-
tem, which is impractical since it requires overly large
computational times, or to consider the secondary order-
ing in a single orientational domain of the O-I phase.
Computer-simulation results for the latter case are
presented below.

Figure 13 shows typical microstructures obtained dur-
ing the isothermal secondary ordering of the O-I phase at
T <T,(c) at the stoichiometries §=0.25, 0.5, 0.55, 0.6,
and 0.85 (all of the pictures in Fig. 13 display only one-
quarter of the 120X 120 computational cell). A single
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(d)

FIG. 13. Microstructures obtained by isothermal homogeneous secondary ordering of a single orientational variant of the O-I

phase at the room temperature.

(e)

Microstructures (a)-(f) are obtained by the following “heat treatments”:

(f)

(a) 6=0.25,

T="T,oom(t*=160); (b) §=0.5, T=T,.,(t*=80); (c) §=0.5, T/T,=0.95 (+*=80) plus T/T,=0.9 (t*=40) plus T= T\,
(t*=160); (d) 6=0.55, T/T,=0.95 (1*=40) plus T=T,p0n (t*=80); (€) 8=0.6, T=T,0om (t*=80); () 6=0.85, T=T,oom
(t*=80). Microstructure (a) (§=0.25) corresponds to the secondary tweed. Microstructure (c) (§=0.5) obtained by the steplike
cooling shows large domains of the O-II phase. Microstructures (b) and (d)-(f) (§=0.5-0.85, respectively) describe a metastable
“glassy” phase (SRO of O-1I type). At §6=0.85, (f), the O atoms are shown if n(p,r) = 8. The model crystal consists of 120X 120 unit

cells, but only one-quarter of the computational cell is shown.

orientational variant of the O-I phase with infinitesimal
fluctuations of occupation probabilities was considered
an initial state (¢*=0). All microstructures presented in
Fig. 13 are obtained either by quenching or cooling the
initial state to room temperature, T,,,... The cooling,
embodied by the two cases depicted in Figs. 13(c) and
13(d), was imitated by a steplike isothermal annealing at
the higher temperatures T [T, <T < T,(c)] and subse-
quent isothermal annealing at the room temperature
(during the time ¢*=80 or 160). Figures 13(a), 13(b),
13(e), and 13(f) show the structures obtained by the direct
quenching (plus ‘““annealing”) to room temperature.
Figures 13(b) and 13(c) allow us to compare the micro-
structures obtained for the same stoichiometry, §=0.5,
by ‘“quenching” and “slow cooling” to T=T,,.,. The
“quenching” [Fig. 13(b)] produces pieces of parallel -O-
Cu-O- chains with the same orientation as the chains of
the initial O-I domain. A number of oxygen atoms have

moved to “wrong” interstitial sites, which are forbidden
in both the O-I and O-II phases. The “slow cooling” of
the same system, §=0.5 [Fig. 13(c)], was achieved by the
three-step annealing—at T /T,=0.95 during ¢*=80,
then at T/T,=0.9 during t*=40, and then at T=T
during t*=160. As follows from Fig. 13(c), this treat-
ment transforms a single O-I domain into the (110) twins
of the O-II phase, the twin components being filled by the
antiphase domains of the O-II phase. The size of the an-
tiphase domains is of the order of the twin size.

An unexpected result is that at stoichiometries above
8~0.5 the final microstructure is not affected by the
“heat-treatment” regime. Both ‘“slow cooling” and
“quenching” produces the same type of microstructure.
The stoichiometry of the system affects only the
antiphase-domain boundary structure [compare the
structures shown in Fig. 13(d) for §=0.55, Fig. 13(e) for
8=0.6, and Fig. 13(f) for §=0.85].



46 STRUCTURAL TRANSFORMATIONS IN NONSTOICHIOMETRIC. . .

The structures with stoichiometry &>0.5, shown in
Figs. 13(d)-13(f), consist of the antiphase domains of the
O-I1 phase. The antiphase boundaries terminate
-O-Cu-O- chains parallel to the b axis whose length is
determined by the antiphase-domain size. The coherent
mixture of these antiphase domains can be interpreted as
a realization of the (;00) short-range order in the O-I
phase since wide diffuse maxima at the {1 00} points cor-
respond to the O-II short-range order. These structures
are metastable or stable since they stop to evolve at
t* ~40-100 (this ¢t* depends on the temperature). The
structure presented in Figs. 13(d)-13(f) can be interpret-
ed as a “glassy” state since in many respects it is similar
to an amorphous or spin-glass state. The O atoms on
Fig. 13(f) are shown if n(p,r)=8(2¢)=0.85, where
8=0.85 is equal to the occupation probability n(p,r) of
finding an oxygen atom in the occupied sublattice of a
“disordered” O-I phase (the occupation probability in the
other sublattice of the O-I phase is practically zero). The
O-1— O-II ordering just imposes a modulation around
the value 8. In all other figures presented in this work, O
atoms are shown if n(p,r) =c.

At 8 <0.5 the room-temperature “annealing” of a sin-
gle O-1 domain quenched to room temperature produces
structures different from those obtained at §>0.5. The
room-temperature secondary ordering at 8<0.5 pro-
duces a mixture of two orientational variants of the O-1I
phase. This effect is illustrated in Fig. 13(a) (§=0.25).
The structure shown in Fig. 13(a) practically coincides
with the secondary tweed structure obtained by direct
T—O-1I quenching [compare with Fig. 7(b)]. It also
generates strain-related diffuse scattering around the fun-
damental reflections similar to that found for the secon-
dary tweed pattern [Fig. 8, t* >2.5).

Therefore, the exact stoichiometry of the O-1I phase,
8=0.5, separates two structural areas formed by the
homogeneous secondary ordering: the secondary tweed
area and the “glassy” state area. All these structures
shown in Figs. 13(a)-13(f) [as well as that presented in
Fig. 7(b)] are metastable or stable since they halt to
evolve at t* ~ 100.

IV. DISCUSSION

We may expect that the long-range Coulomb or
screened-Coulomb repulsion between oxygen ions
suppresses the decomposition since the segregation of
ions of the same sign, required by any decomposition, is
“penalized” by a dramatic increase in the electrostatic
energy. The larger the segregation size, the greater the
electrostatic energy. This effect should prevent the coar-
sening that produces macroscopic domains of the prod-
uct phases with different compositions and, thus, is an in-
tegral part of any decomposition process. Under these
circumstances, the congruent ordering is the only possi-
ble type of phase transformation. In this case, the atomic
structure of an ordered state has to adjust to the current
composition to make it stoichiometric. It has been
shown above that, depending on the stoichiometry and
the heat treatment, the ordered state may be one of the
conventional single-phase superstructures, O-1, O-II,
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2V2ayX2V2a, (O-IIl), and the 2a,X2a, transient
phase. We have also found that the long-range interac-
tion results in new kinds of metastable (or stable) phases,
namely the secondary tweed and “glassy”’-type phases,
which we call the mesoscopic phases. Although the
mesoscopic phases cannot be distinguished from conven-
tional phases thermodynamically, their crystallographic
structure is substantially different. They are character-
ized by mesoscale rather than by atomic-scale structure.
The local oxygen composition for all these structures is
homogeneous across the sample.

Our computer simulation describes the transformation
kinetics at all temperatures in terms of the dimensionless
time ¢*. Using the reduced time ¢* enables us to exclude
the effect of diffusional “freezing.” Measuring the re-
duced time ¢* in units of 7, the typical time of an elemen-
tary diffusion event, translates the diffusional ““freezing”
into increasing the time unit 7 and, thus, to rescaling a re-
duced time t*. Therefore, the computer-simulation re-
sults reflect the effect of the thermodynamic driving force
on the kinetics. However, the diffusional “freezing”
affects, of course, the real-time evolution. To find the
temperature range of applicability of our computer-
simulation results, we have to estimate the typical
diffusion time 7, which relates the reduced time t* and
the real time ¢ according to the equation
t*=4L, At=t /7. Knowing 7, we would be able to esti-
mate the lowest temperature at which the kinetic process-
es simulated in our study could still be detected during
the realistic interval of the real time. We would be also
able to estimate the highest temperature allowing us to fix
by quenching the high-temperature state.

The diffusional time 7 can be estimated by using the
oxygen diffusion coefficient D,, in the (001) Cu-O plane
containing the a and b axes. A simple estimate gives

T~al /4D, .

Measurements of the tracer diffusion of oxygen in
YBa,Cu;0,_ polycrystals by Rothman et al. gives

_0.97 eV

D, ~(1.4X 10" *)exp T
B

m?s~! .

Since the diffusion coefficient in the ¢ direction is ~ 10°
times lower than that in the a-b plane,*’ the diffusion
along the c axis can be neglected. Then, D, =D, qy-
With a;~3.86X107% cm, we obtain the following esti-
mate for the time-scale unit 7:

0.97 eV

kT (40)

7~(2.7X 10" 2)exp

According to this estimate, the typical diffusion jump
time at the room temperature is equal to 7,,,,,~ 8.9 X 10*
$~24 h. This estimate shows that our computer simula-
tion of the ordering kinetics can be applied, at least,
down to the room temperature, where the diffusion kinet-
ics of ordering is still not frozen. This conclusion coin-
cides with the observation of the diffusion ordering kinet-
ics at the room temperature.57

The computer-simulation results demonstrate that the
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structural kinetics and the structures ultimately obtained
in YBa,Cu;0q, 5 are strongly dependent on the thermal
history of a sample. The main simulation results are as
follows.

A. Stoichiometries below 6 ~0.5

The T — O-II quenching (from the T field into the O-1I
field of the phase diagram) always produces the secon-
dary tweed structure consisting of twin-related micro-
domains of the O-II phase with the (110) alignment
[Fig. 7(b)]. However, the real-time estimate [Eq. (40)] in-
dicates that the quenching of the T phase into the O-II
field is hardly technically possible at §>0.5. The max-
imum achievable quenching rate within this range is not
sufficiently high to prevent the primary T'— O-I ordering
during the quenching, since within this composition
range the temperature T',(c) and, thus, the diffusion rate
is too high. Therefore, the secondary tweed could be ob-
tained by the T — O-II quenching only within the compo-
sition range of the O-II phase below a stoichiometry
8~0.5. At room temperature this range, according to
our phase diagram (Fig. 2),is ~0.17 <6< ~0.5.

The powder-diffraction pattern generated by the secon-
dary tweed cannot be distinguished from that of the
tetragonal phase of the same composition. However, the
secondary tweed can be identified on a single-crystal
diffraction pattern, which is predicted to be characterized
by the strain-related diffuse maxima around the Bragg
peaks. These maxima are streaks or crosses elongated in
the (110) directions (Fig. 8). It is much more difficult to
observe the predicted diffuse maxima around {400}
points caused by the O-II order in the secondary tweed.
There are two reasons for this. The first is that these
maxima are generated by direct scattering by O atoms in
ultrafine domains of the O-II phase forming the tweed.
The second is that the oxygen content is small within the
range ~0.17<8 < ~0.5 where the secondary tweed is
formed.

It should be emphasized that the T— O-II quenching
is not the only predicted mechanism of secondary tweed
formation. Another mechanism is a homogeneous O-I
— O-1I secondary ordering within macroscopically large
domains of the O-I phase. It is shown in this study that
this mechanism is operative within the same composition
range as the T-—O-II quenching mechanism, viz., at
stoichiometries below 8~0.5. The secondary ordering
within this range produces twin-related microdomains of
the O-II phase arranged into the tweed microstructure
aligned along the (110) directions [Fig. 13(a)]. The
secondary tweed structures shown in Figs. 13(a) and 7(b),
as well as their diffraction patterns, are indistinguishable.

Our computer simulation has demonstrated that the
secondary tweed obtained by both mechanisms is a meso-
scopic phase. This phase is metastable because it corre-
sponds to the free-energy local minimum. Unlike con-
ventional phases, it is identified by a mesoscale rather
than an atomic-scale structure and is stabilized by the
strain-induced and Coulombic long-range interactions.
The formation of the secondary tweed below 6 ~0.5 dur-
ing the secondary ordering of the O-1 phase leads to an
interesting prediction. The prediction concerns a behav-
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ior of the secondary tweed, obtained from a macroscopi-
cally coarse O-1 polytwin structure, in a heating-cooling
cycle. Heating the secondary tweed into the O-I field
should result in its disappearance and, thus, in a restora-
tion of the initial polytwin structure consisting of
domains of the O-1 phase. As follows from our computer
simulation results, the cooling of this structure back to
the O-II field should restore the secondary tweed. There-
fore, the appearance of the secondary tweed is a reversi-
ble phenomenon.

The primary tweed has a different nature. It is a tran-
sient mesoscale structure which appears as a precursor to
the stable (110) polytwin structure during the primary
T — O-1 ordering. It is not metastable and, thus, cannot
be regarded as a mesophase. The primary tweed forma-
tion and its arrangement into a polytwin structure are il-
lustrated by Fig. 3. The typical “high-resolution” struc-
ture and diffraction pattern of the primary tweed are
shown in Fig. 4.

The primary and secondary tweed formation are driven
by the strain accommodation. For example, as follows
from Fig. 6, an occurrence of the primary transient tweed
reduces the strain energy by about 70%. The following
strain accommodation, predicted by the computer simu-
lation, yields the O-I phase polytwin structure [Fig. 5(a)].
We have found that the twin boundaries are oxygen-
depleted (the visualization method employed does not al-
ways clearly display this effect). The larger the
stoichiometry deviation from 8=1, the greater the de-
pletion effect.

A simulated diffraction pattern generated by the ob-
tained polytwin structure shows a splitting of Bragg spots
in the (110) directions, normal to the twin boundary
[Fig. 5(b)]. According to the conventional explanation of
this effect in real materials, the splitting is caused by the
mutual rotation of the twin-related variants required to
provide the crystal-lattice continuity across the twin
boundary, the rotation angle, and, thus, the splitting be-
ing expressed in terms of the crystal-lattice parameters.
Our theoretical formulation [Egs. (36) and (37)] actually
suggests a more general approach. It presents both the
twin splitting of the Bragg peaks and the tweed-related
diffuse scattering, as a result of the diffraction effect
caused by a superposition of displacement fields generat-
ed by interstitial oxygen atoms.

The predictions of the theory seem to be in an agree-
ment with electron-microscopic observations. According
to Zhu et al.,”® the tweed structure in pure YBa,Cu;0q , 5
is observed only in strongly nonstoichiometric oxides. It
has been observed, in particular, in YBa,Cu;Og ,;. Since
this tweed pattern does not evolve into a twin pattern, the
structure is probably a secondary tweed, although the
diffuse scattering around {100} points has not been
detected. The latter fact is not, however, surprising un-
der conditions of a small oxygen content and the ultrafine
size of ordered microdomains. Electron-microscopic pic-
tures and microdiffractograms of the tweed structure ob-
tained by Xu and co-workers”® and Zhu and co-
workers?>26 are in very good agreement with the simulat-
ed structures and diffraction patterns shown in Figs. 7
and 8.
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The predicted primary-tweed—to—polytwin rearrange-
ment (Fig. 3) is also supported by experimental studies.
The observations of Amelinckx et al.,?? illustrated by in
situ made video,*® have demonstrated how a tweed pat-
tern appears at high temperatures upon cooling and later
rearranges into a polytwin pattern. This kinetic behavior
and the observed structures are very similar to those pre-
dicted by our computer simulation for the primary-
tweed-to—twin evolution [Figs. 3(a), 4(a), and 5(a)]. The
tweed diffraction pattern and its evolution to a polytwin-
induced pattern observed in Ref. 22 also coincide with
the theoretical predictions [Figs. 3(c), 3(b), 4(b), and 5(b)].
The diffraction patterns of the primary tweed and the
secondary tweed practically coincide [compare Figs. 3(b),
3(c), and 8]. In general, we could say that the observed
tweed patterns and the shape of the diffuse scattering
around the fundamental reflections reported in Refs.
22-26 are in striking agreement with the computer-
simulation results shown in Figs. 3-8. It is noteworthy
that our simulation has revealed the generic properties of
a tweed structure, common for systems of a very different
nature. The structures and diffraction effects, simulated
for a specific case of YBa,Cu;O4 5, are similar to those
observed in other systems.>? 3>

B. Stoichiometries above § ~0.5

On the other side of the composition range—that is,
above stoichiometry §~0.5—the T— O-I ordering tem-
perature T,(c) is comparatively high (see Fig. 2) and
thus, the diffusion rate in this area is very high. The
real-time estimate [Eq. (40)] indicates that even the max-
imum achievable quenching rate within this range is not
sufficiently high to prevent the primary T — O-I ordering
during the quenching. Therefore, any cooling regime is,
actually, slow within this stoichiometry range. It is slow
enough to produce the (110) polytwin structure, consist-
ing of macroscopically large orientational variants of the
O-1 phase, which later undergoes secondary O-1— O-II
ordering during the continuing cooling or isothermal an-
nealing in the O-II field. In this case of macroscopically
large domains of the O-I phase, the effect of the twin
boundaries on secondary O-I— O-II ordering can be ig-
nored and homogeneous ordering can be assumed. This
situation has been modeled by considering the secondary
O-1— O-11 ordering within a single orientational variant
of the O-I phase. Figures 13(b) and 13(d)-13(f) demon-
strate that secondary ordering produces a ‘““glassy” state.
The “glassy” state is either stable or metastable, and,
thus, like the secondary tweed, can be regarded as a
mesophase, the new form of a phase with mesoscale
atomic structure. Also like the secondary tweed, it is sta-
bilized by long-range interaction. The “glassy” state con-
sists of nanoscale antiphase domains of the O-II phase
that provide spatial realization of the (;00) short-range
order. Unlike conventional antiphase domains, the
domains forming the “glassy” state do not coarsen.

At 8>0.5 the deviation from the O-II phase
stoichiometry §=0.5 is accommodated by the condensa-
tion of extra O atoms on antiphase boundaries [see Figs.
13(e) and 13(f)]. Since all antiphase domains of the
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“glassy” state belong to the same orientational variant,
the positions of fundamental diffraction spots correspond
to the orthorhombic O-1 phase. The only difference is the
appearance of wide (3:00) short-range-order diffuse maxi-
ma. According to our results, a “‘glassy” state can be ex-
pected within the O-II field of the phase diagram, but at
stoichiometries 6 > 0.5 (at § <0.5 the secondary tweed is
more stable). According to the phase diagram in Fig. 2,
the upper bound of the O-II field at room temperature is
8=~0.88. Therefore, the “glassy” state is expected within
the range ~0.5 <6 < ~0.88.

However, the slow cooling of a O-1 phase domain with
border stoichiometry 8=0.5 generates a structure
different from those obtained above and below this
stoichiometry. The secondary ordering in this material
produces the (110) twins of the O-II phase [Fig. 13(c)].
These twins of the O-II phase coarsen to sizes commensu-
rate with the size of the computational cell. The anti-
phase domains of the O-II phase then reach sizes compa-
rable with a typical thickness of twins [Fig. 13(c)].

Observation seems to confirm these predictions. The
highest stoichiometry at which {100} diffuse scattering
has still been observed is §~0.87.> This value agrees
with the critical stoichiometry for the O-I«<>O-II transi-
tion at room temperature, § = ~0. 88, which follows from
the phase diagram in Fig. 2.

As follows from our simulation, nanoscale domains of
the O-II phase forming both the “glassy” phase and the
secondary tweed cannot coarsen to macroscopic size.
Coarsening is possible only at the stoichiometry §=0.5
during slow cooling [Fig. 13(c)]. Observations by Reyes-
Gasga et al.’ and by Beyers et al.’ support this con-
clusion. These authors were able to obtain macroscopic
domains of the O-II phase only by means of a very special
technique that allowed them to maintain the strict
stoichiometry §=0.5 during the very slow cooling.

It is interesting that another example of the mesophase
has been found recently by Kartha et al.%° These authors
have considered the 2D model of the martensitic trans-
formation with infinite elastic moduli anisotropy and lo-
cal impurity inhomogeneity. The Monte Carlo simula-
tion based on this model has generated the tweed-type
mesophase, which is a close analog of the spin-glass state.

C. Heterogeneous ordering within the O-II field

If the temperature T(c) is not too high (i.e., if the
stoichiometry is below § ~0.5), the T — O-I ordering may
produce a fine polytwin structure during “cooling”
through the O-I field. Our computer simulation shows
that the fine polytwin structure [Fig. 5(a)] dramatically
affects the secondary-ordering transformation path. It
leads to the heterogeneous secondary ordering that starts
from the (110) twin boundaries (Figs. 9—12). Because of
the strain-induced interaction between the mesoscale
structure formed by the (110) twin boundaries and the
atomic structure of secondary ordered phases, the twin
boundaries promote the formation of metastable super-
structure whose dominant superlattice vector is perpen-
dicular to the twin boundary plane, (110). The 2a,X2a,
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superstructure generated by the (;10) superlattice vector
(Fig. 9) and the 2V'2a,X2V2a, (O-III) superstructures
at 6=0.25, 0.375, and 0.75 generated by the {1 10} su-
perlattice vectors (Figs. 10-12) are examples illustrating
this effect. As follows from Fig. 9 (§=0.5), the 2a,X2a,
phase forms prior to the 2a,Xa, phase, although the
latter is more stable. Islands of the 2a,Xa, (O-1I) phase
appear within the 2a, X 2a, phase on imperfections of the
twin boundary. They finally absorb all of the 2a,X2a,
phase. The antiphase boundaries of the 2a,Xa, phase
limiting the length of -O-Cu-O- chains are readily seen in
Figs. 9(b) and 9(c). If twin boundaries are perfect, the
2ayX2ay—2a,Xa, rearrangement does not occur and
the stable 2a,Xa, phase does not appear (of course, it
may appear due to the fluctuation and nucleation mecha-
nism, which is not described by the kinetic equations of
our model). The observation of the 2a,X2a, phase is
probably difficult since it is a transient phase preceding
the O-II phase formation under the special condition of
the existence of developed (110) twin boundaries at the
moment of secondary ordering [Fig. 9(a)]. Nevertheless,
there are reports of observation of this phase.’

The O-III phase is stable. Indeed, if the stoichiometry
deviates from YBa,Cu;O s, it cannot be accommodated
within the O-II phase unit cell and an alternative trans-
formation route, the decomposition, is suppressed by the
long-range repulsion. Then, the tertiary ordering accom-
modating the current stoichiometry should develop. To
find the ordering temperature and the structure of the
tertiary ordered O-III phase, we have to investigate the
function
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_ Vp(k)+Vy(k—k)
2 ’

V(k)

where k, =(27/a,)(100). The minimum of V(k) deter-
mines the superlattice vector of the tertiary ordered
phase (see, for example, Ref. 18). The function V(k)
evaluated for the interaction potentials chosen in this
study has its minimum at k;=(27/a,){+ 1 0}. The value
of T,(c) can be found from the value of the
min[ ¥(k)]=V(k;) using the equation

4c(1—4c)V(ks)
Tye)=———"F—,
B

which is similar to Eq. (24). The dependence T5(c) is
shown in the phase diagram in Fig. 2 by the dashed line.
The tertiary ordered O-III phase generated by the con-
centration waves (27/ay){+ 10} is characterized by the
{++0] superlattice diffraction spots in addition to
{100} superlattice spots of the secondary ordered O-11
phase. The unit cell corresponding to such a diffraction
pattern is 2V'2a, X2V 2a,,.

Our computer-simulation results for §=, 1, and 3 are
in a complete agreement with the above concentration-
wave thermodynamic analysis. If T > T';(c), the sequence
of the secondary-ordering transformations, O-I
twins—2a, X 2a, phase—2a,Xa, phase, is the same as
in the case of 6=0.5 shown in Fig. 9. But, if T'< T;(c),
the O-I1— O-I1I tertiary ordering takes place. It is real-
ized as the last step of the transformation sequence

O-1 twins—2a, X 2a, phase—2a,Xa, (O-I1) phase—2V2a, X2V 2a, (O-III) phase .

Figures 10-12 show the positions of O atoms in the
2V2a, X2V 2a, unit cell of the tertiary ordered O-III
phase and the {{ 40} and { 00} superlattice maxima on
its diffraction pattern. The deviation from the exact
stoichiometries, §=1 and 8=32, is accommodated by
changing the number of O atoms within the
2V2ay, X2V 24, unit cell (Fig. 12 for §=0.375).

Microstructures presented in Figs. 10-12 clearly indi-
cate that the O-III structure is formed on the basis of the
parent O-II phase. Both phases, O-II and O-III, as ex-
pected, inherit the orientation of -O-Cu-O- chains in
twins of initial O-I polytwin structure. Unit cells of the
O-III phase, however, contain only fragments of these
chains, the lengths of which are dictated by the current
stoichiometry [Figs. 10(b), 11(b), and 12(b)].

Although the 2V2a, X2V 2a, structure simulated at
8=2 is presented in Fig. 10, we do not expect that it
could be formed in reality. Fast cooling and even
quenching are not fast enough to ensure its appearance at
this stoichiometry—this stoichiometry is outside the
relevant range below 6§ ~0.5 at which the heterogeneous
ordering discussed here occurs. The stoichiometry §=23
is within the range where the ““glassy” phase is expected.

Alario-Franco et al.,%’ Reyes-Gasga et al.,’ and

—

Sonntag et al.’ have reported the observation of {10}
extra spots in the diffraction pattern of nonstoichiometric
YBa,Cu;04.5. These spots were interpreted as the su-
perlattice reflections generated by the ordered phase with
the 2V2a,X2V2a, unit cell. The intensity measure-
ments for the 2V'2a, X2V 2a, structure in YBa,Cu;Og 35
were made in the single-crystal neutron-diffraction
stu<_i_y.9 We note that the atomic structure of the
2V2a, X2V 2a, phase predicted in our computer simula-
tion for §=0.375 differs from the structure proposed in
Ref. 9 for the close stoichiometry, §=0.35. But, being
different, both structures are equally well fitted to the ob-
served diffraction pattern. Unfortunately, the intensity
single-phase measurements made in Ref. 9 do not lend us
an argument sufficient to make a choice, since the investi-
gated samples actually have not been in a single-phase
state consisting of a single orientational domain (to get a
single-domain state, the samples should be untwinned).
The presence of two twin-related orientational variants of
the 2V'2a, X2V 2a, phase would result in a superposition
of their Patterson synthesis, which obscures the structure
identification.

It should be mentioned that Krekels ez al.®! and Werd-
er et al.% proposed two different hypotheses based on the
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thin-film electron-microdiffraction pictures, which, unlike
later work by Sonntag et al,” do not relate the
2V2a,X2V2a, phase to oxygen ordering. Krekels
et al®! assumed that the {110} superlattice spots are
caused by the Jahn-Teller effect upon heating (this hy-
pothesis requires additional clarification, since, according
to conventional theory, the Jahn-Teller transition should
occur upon cooling and, being displacive, should develop
instantaneously with the sound velocity speed).

On the other hand, Werder et al.5? assumed that the
2V2ay X2V 2a, phase is caused by ordering of Cu (and,
probably, Ba) vacancies. However, this fact alone is not
sufficient to rule out that oxygen ordering may be also in-
volved and may even drive the entire ordering process.

These two different mechanisms, proposed in Refs. 61
and 62 on the basis of thin-film electron microdiffraction,
are also different from the oxygen-ordering mechanism
proposed by Sonntag et al.’ on the basis of the quantita-
tive interpretation of the neutron-diffraction-intensity
data obtained from the single-crystal bulk sample. Al-
though our computer simulation cannot resolve this con-
tradiction, it nevertheless tips the argument in favor of
the oxygen-ordering mechanism of 2V'2a, X2V 2a, phase
formation.> "%

The O-O interaction potentials used in this computer
simulation are just the first reasonable approximation
that can be improved when more experimental data and
the first-principles calculational results become available.
An example of such a calculation for the configurational
ground-state energy of the ordered structures in
YBa,Cu;0q 5 was made by Stern and Wille.>”>** Howev-
er, the successful simulation of unusual transformations
in YBa,Cu;0¢, 5 seems to show that the assumed poten-
tials embody the main features of the O-O interaction: its
predominantly long-range repulsive character, associated
with the electrostatic interaction, and its long-range
dipole-dipolelike behavior, associated with the strain-
induced interaction.

However, certain limitations of the assumed interac-
tion model should be mentioned. Besides the “glassy” or-
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thorhombic phase, which accommodates the current
stoichiometry, another accommodation mechanism,
the formation of a  Magneli-phase series,
YBa,Cu30,_, /2041 is also possible. A question,
which of these phases, “glassy” phase or Magneli phase,
is more stable at different temperatures, could be resolved
by the comparison of their free energies. We made such a
comparison for the structure shown in Fig. 13(e) and for
the 5ayXa, Magneli phase with the same YBa,Cu,0q
stoichiometry. At room temperature the free energies of
these phases practically coincide, although the free ener-
gy of the ‘“glassy” state proves to be ~0.4% less than
that of the Magneli phase. A relative stability of these
states proves to be very sensitive to the details of the in-
teraction potential. A small “tuning” of the parameters
determining the O-O interaction potentials, Eq. (20), can,
of course, reverse the situation and make the Magneli
phase more stable. This shows that the further progress
would require the refinement of the interaction model.
What is clear, however, is the following. Even if the
5ayXa, Magneli phase is more stable at low tempera-
tures than the ““glassy” phase, the “glassy” phase would,
nevertheless, appear first upon the cooling. Indeed, the
“glassy” state forms immediately below T,(c), where the
temperature is too high for the Magneli phase to be
stable. Therefore, the Magneli phase may be formed only
later, by a comparatively slow nucleation and growth
mechanism.
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FIG. 11. Simulated O-III structure in
YBa,Cu;04 ,5. Initial O-1 polytwinned struc-
ture is formed during the high-temperature an-
nealing at T'/T, =0.83, t*=64. The following
annealings resulting in the secondary and terti-
ary ordering were at the temperatures
T/T,=0.72 (t*=128) and T/T,=0.58
(¢t*=128). (a) The final tertiary ordered mi-
crostructure of the O-III (2V2a,X2V2a,)
phase. (b) An enlarged fragment of the struc-
ture shown in (a). (c) Intensity distribution
within the first Brillouin zone of the a,Xa,
host lattice on a logarithmic scale. Four maxi-
ma nearest the zone origin are of | % %0} type,
four maxima on the zone boundaries are of
{$00} type, and streaks along the (110)
directions are generated by twin boundaries.
The model crystal consists of 64 X 64 unit cells.
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FIG. 12. Simulated O-III structure in
YBa,Cu;0q 375 (8=%). Initial O-1 po-
lytwinned structure was formed during the
high-temperature annealing at T/T,=0.84,
t*=64. The next annealings resulting in the
secondary and tertiary ordering were at the
temperatures T/T,=0.75 (t*=32),
T/T,=0.42 (t*=128), and T/T,=0,32
(t*=128). (a) The final tertiary ordered mi-
crostructure of the O-II1 (2V2a,X2V2a,)
phase. (b) An enlarged fragment of the struc-
ture shown in (a). (c¢) Intensity distribution
within the first Brillouin zone of the ayXa,
host lattice on a logarithmic scale. Four maxi-
ma nearest the zone origin are of {{ + 0} type,
four maxima on the zone boundaries are of
I%OO] type, and streaks along the {110)
directions are generated by twin boundaries.
The model crystal consists of 64 X 64 unit cells.
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FIG. 3. (a) Simulated temporal isothermal evolution of microstructure in YBa,Cu,0; at the temperature T /T, =0.79. The trans-
formation reduced time t* is equal to 4, 12, 40, 80, and 120 (from left to right). Two types of orientation domains are characterized
by a value of the LRO parameter, n=[n(1,r)—n(2,r)]/2c [Eq. (38)]. Regions with positive 1 describe orientation domains of the
first type with preferred occupation of sites of the first interstitial sublattice (light-to-white color). Regions with negative i character-
ize domains of the second type (black). (b)-(c) are the corresponding strain-induced scattering at t*=2.5, 4, 12, 80, and 120 (from
left to right) around (a) (400) and (b) (440) fundamental diffraction spots. The intensity I, (k) [Eq. (37)] is shown on a logarithmic
scale. The system size is 128 X 128 unit cells.



(b)

FIG. 4. (a) Atomic representation of the tweed structure in
YBa,Cu;0, shown in Fig. 3(a) for t*=4. The small black cir-
cles are Cu atoms, and the larger dark circles are O atoms,
which are shown if the occupation probability n(p,r)>c
(¢=0.5 for YBa,Cu;0). (b) The corresponding strain-induced
diffuse scattering in the (001) reciprocal-lattice plane from the
tweed structure (z*=4). The (000) origin is in the center of the
diffraction pattern. Diffuse maxima are around the Bragg
peaks. The intensity I, (k) [Eq. (37)] is shown on a logarithmic
scale. The diffuse maxima are enlarged by the factor 1.6. The
model crystal consists of 128 X 128 unit cells.



(b)

FIG. 5. (a) Atomic representation of the twin structure in
YBa,Cu;0, shown in Fig. 3(a) for t*=120. The O atoms are
shown if n(p,r)>c (¢=0.5). (b) The corresponding diffraction
pattern described by the intensity I(k),,, [Eq. (37)] in the (001)
reciprocal-lattice plane. It demonstrates the twin-related split-
ting of the Bragg peaks. The origin (000) is in the center of the
pattern. The diffuse maxima are enlarged by the factor 2.1. In-
tensities less than 5% of I(k=0),,, are not shown. The model
crystal consists of 128 X 128 unit cells.



ot Rcki o ‘43:3*;”..""4

: {
ﬂisfmfig&iii}':'-i-l*li;':.;;;,fgh;}f-.:-'ﬁstit'*z

it '{li{mw‘;sz}‘;g;*:*MIEﬁm

B R 00 Pt Pt 3 M B
: ?*.',’.:.:.;*.izgz ;.:,‘ﬁ%?m.sfﬁ‘.ti: B
S E beoc oo B Sep i BT ey

eyl frpamesee AHHTeCA L oecee AT R
W‘z*‘im":iﬁiﬁrmﬁtm l

g*“&:@;‘“ﬁémﬂﬁxi =

4 1 3 hocoar S £ A0 00T 5 32 F henenennos '?i« r}
1;;*12“}4‘:;“3’31’:&{"&”3;@}2
= e
= e

RS B B oo oooee

(b)

FIG. 7. The tweed pattern formation in YBa,Cu;04 s pro-
duced by isothermal “annealing” the T phase at T/T,=0.72.
(a) the primary tweed consisting of O-I domains (the annealing
time t*=1.2), and (b) the secondary tweed consisting of O-II
domains formed from the primary tweed domains (the anneal-
ing time t*=64). Small black circles are Cu atoms, and larger
dark circles are O atoms that are shown if the occupation prob-
ability n(p,r) > c (¢ =0.25 for YBa,Cu;0; s). The model crystal
consists of 64 X 64 unit cells.
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(b)

FIG. 8. Evolution of the strain-induced diffuse scattering from YBa,Cu;Oq s at the temperature T /T, =0.72. The intensity distri-
bution I, (k) (on a logarithmic scale) is shown within the first Brillouin zones with centers in (a) (400) and (b) (440) Bragg maxima.
The diffuse maxima are situated in the center of the Brillouin zones. Different states along the transformation path correspond to the
reduced times ¢*: 0.8, 1.2, 3, 8, and 64 (from left to right). The primary tweed structure is formed at 1 * <2.5; the secondary tweed
structure appears at t*>2.5. 0-1— O-II ordering is revealed by appearing the additional {%00]~type diffuse maxima on the zone

boundaries (for  * =8 and 64). The model crystal consists of 64 X 64 unit cells.



