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Trapping of point defects in alloys
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Based on the random walk of point defects in alloys, neglecting the interaction between the com-

ponents and their interaction with the point defects, the kinetics of the annihilation of point defects in

fcc alloys is studied by computer simulations. Particularly, the dependence of the mean trapping time in

random alloys on various parameters, including the structure of traps, the composition of alloy, and the

mobility ratio of the components, is investigated and reported here.

I. INTRODUCTION

The problem of trapping of point defects (PD's) has
been studied mostly by the theory of continuous
diffusion. ' However, the application of the theory of the
random walk (RW) of PD's (Refs. 2-4) yields another ap-
proach to this problem. By using the simple symmetric
RW model, various problems concerning the behavior of
PD s in crystals, such as the number of distinct sites visit-
ed by a PD during an X-step jurnp and the probability of
a PD returning to its origin or the mean time needed by a
PD for reaching a certain lattice site, have been already
treated analytically. However, the analytical treatments
using the RW method contain one of two simplifications.

(I) an idealized random walk is assumed, in which all
neighbor sites of the PD executing a RW possess the
same probability of being occupied by the next migration
step of the PD. This idealization, which implies the in-

distinguishability of all lattice sites, is generally denoted
as symmetric RW. It may be realistic in a lattice com-
posed of a single type of atoms. In alloys the nonsym-
metric RW generally takes place.

(2) An idealized trapping process is assumed in which
the reaction zone of the trap is supposed to consist only
of a single lattice site (reaction radius=O). The PD is
considered to be irreversibly trapped immediately after
having reached the lattice site in the reaction zone of the
trap. This idealization is denoted here as ideal trapping.
In reality, however, the structure of a trap and its in-

teraction with the PD is much more complicated and the
nonideal trapping occurs.

Based on the RW approach, in the present paper Monte-
Carlo simulations (MCS's) will be applied to the trapping
problem in fcc alloys. By maintaining the simplifications
with the irreversibility of the PD-trap reaction and the
lack of long-range interaction the problem of the non-
symmetric RW in alloys will be dealt with. Moreover,
the nonideal trapping is introduced by taking various
trap structures into consideration. In this way the depen-
dence of the trapping time on the different parameters,
such as the composition of alloy and the mobility ratio of
the components, can be studied. Finally the results from

the simulations will be compared with those of the tradi-
tional treatments by using the theory of continuous
diffusion in which problems including nonsymmetric RW
and nonideal trapping have been extensively investigat-
d 1,s, 6

II. THE FUNDAMENTALS UNDERLYING
THE SIMULATIONS

r„=(N„)P,

where

(2. l)

(N„)= QNp
N=1

(2.2)

corresponds to the statistical average of the jump number
before trapping and p is the jump frequency of the PD.
For the escape probability we get

(2.3}

It follows in addition to Eq. (2.2)

&N„)= y Iv, —v„y .
N=1

(2.4}

Two types of the trapping models have been used for the
analytical treatments in case of a symmetric RW and

In this work the trapping of the PD's is considered to
be determined only by diffusion, and the reaction between
traps and PD's is assumed to take place irreversibly and
infinitely rapidly, as in conventional treatment by the
RW approach ' and by diffusion model. ' Based on
these suppositions the trapping kinetics is simplified as
the problem of how an arbitrarily migrating PD meets
with a trap randomly distributed in the lattice. '

In the following mainly two quantities will be of in-
terest: (i) the probability they are not trapped after N
jumps, which is defined as escape probability Vz and (ii)

the average time w„ for trapping of the migrating PD.
Let pN denote the probability of being trapped at the ¹h
step, the trapping time is given by
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&N«&= g Np«(&S &
—&S,&)(1—p«)

For the small concentration of traps (p«(0.05) the
Rosenstock approximation gives further

)i F—
p«(1 F)—

or for p«&&1

1

(1 F)p,„— (2.8)

F is the probability for the PD to return to its origin,
F=0.3405 for the simple cubic (sc) lattice, and
F=0.2563 for the fcc lattice.

(2) The other approach was applied by Montroll by us-

ing the periodic boundary condition. It is assumed that
the infinite lattice can be divided into periodic sublattices
and each of them contains a single trap. The trapping
problem is then to observe how the sublattice will be
traversed by a PD executing a symmetric RW. After this
simplification we have for the trapping time

1—M lnM+0. 195M+o(1) for square lattice
&g„&=

1.52M+o(M'~ ) for sc lattice,

(2.9)

where M is the total number of lattice sites of the period-
ic sublattice. Since here 1/M gives the concentration of
traps p«, one recognizes a good agreement between the
Eq. (2.9) and (2.8) in the case of a sc lattice.

Both Eqs. (2.8} and (2.9) yield a trapping time indepen-
dent of the number of jumps X and prove to be a useful
approximation for small trap density. The trapping of
random walks for higher trap density has been investigat-
ed recently in Refs. 9 and 10. In this paper only the den-
sity range in which Eqs. (2.8) and (2.9) are valid, as
p«& 10,will be considered.

In the MCS's the critical problems are how to produce
an infinite crystal lattice and how to introduce an infinite
walk time. For the investigation of & S& & Heeler" solved
the first problem in his simulations by using the memory

ideal trapping.
(1}The method suggested by Rosenstock considers the

case of an infinite lattice with randomly distributed traps.
The probability for a PD to be trapped at the next step is
proportional to the probability of meeting a lattice site
never visited before. The trapping problem is thus con-
nected with the simple RW. Rosenstock has derived the
following approximate expression (see also Appendix A):

p. =&„(&S.&-&S. , &)(I-p„}""''.
Here & Sz & denotes the number of the distinct sites visit-

ed by a PD during its N jumps and p« the density of the
traps. The trapping time can then be calculated

of 1000 jump histories. It was assumed that after this
large number of jumps the return probability of the PD
to its origin can be neglected. By investigating & Sz & as a
function of the step number X, the limit behavior of
&Sz& for N going to infinite (N~ ) could be deter-
mined. On the other hand, by studying the limit behav-
ior of the dependence of & S~ & on M for M~~, the
second diSculty can also be removed. The results ob-
tained by these treatments were found to be in good
agreement with the analytical solution. ' Because of the
simple algorithm and the relatively high accuracy, the
boundary condition of the periodic sublattice used by
Montro11 for his analytica1 treatment wi11 also be used in
these simulations.

In the case of symmetric RW all lattice sites are indis-
tinguishable, and thus the jump frequencies of PD's to all
neighboring sites are assumed to be equal. But in a real
alloy the jurnp frequency of a PD may strongly depend
on the configuration of the neighboring atoms, particular-
1y on the type of atom sitting on the lattice site to which
the PD is going to jump. In these simulations, however,
it is assumed, for the sake of convenience, that the order-
ing energy in our A-8 computer-generated crystal is
small compared to kT, so that the influence of the
configuration on the jump frequency of each component
can be neglected. Furthermore, the two components A
and 8 can be considered to be distributed randomly. (For
simulation the random alloy simplification is not neces-
sary. It is possible to simulate the interaction between
the constituents, e.g., by introducing the pair potential, as
done for the simulation of tracer diffusion' or for the
simulation of short range order formation. '

) Then the
jump frequency depends only on the type of atom with
which the PD is going to exchange lattice site. Thus for
a binary alloy there are two constant jump frequencies

p g and pg.
Concerning the structure of traps for a PD such as a

vacancy, they can be formed by all kinds of lattice imper-
fections. In this simulation for fcc binary alloys the fol-
lowing four difFerent types of traps will be considered: (a)
zero-dimensional (OD) traps with a reaction range of a
single lattice site [Fig. 1(a)] as they are assumed in the
traditional version of the RW theory of trapping with a
reaction radius equal to 0 (ideal trapping), (b) OD traps
with a reaction range including only the nearest neigh-
bors (NN's) so that for the fcc lattice this range contains
13 lattice sites [Fig. 1(b)], (c) OD traps with a reaction
range including the next-nearest neighbors (NNN's) so
that this range contains 19 lattice sites [Fig. 1(c)],and (d)
one-dimensional (1D) traps, which means that the reac-
tion radius of this kind of trap is infinitely large in one di-
mension and finite in the normal plane. Figure 1(d)
shows such a trap in the & 110& direction for the fcc lat-
tice with a reaction range including the next-nearest
neighbors (NNN's) so that this range contains seven lat-
tice sites per &110& atomic plane. In the simulations
only a trap-PD pair, namely, a single trap of one of these
kinds and a single PD, is introduced into a (periodic) sub-
lattice. Since then only the relative movement between
the arbitrarily distributed trap and the arbitrarily migrat-
ing PD is of significance, exactly the same results are ob-
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III. PROCEDURE AND RESULTS
OF THE SIMULATION

A. Procedure of the simulations

before Jump af ter jump
(a J

be far e jump
(b J

after Jump

be fur e J ump

(c J

a f ter jump be far e jump after Jump

FIG. 1. The structure and the motion of the di6'erent kinds

of traps. Triangles represent the position of traps. (a) OD trap
with reaction radius=O, 1 lattice site in reaction region; (b) OD

trap with reaction radius to NN, 13 lattice sites in reaction re-

gion; (c) OD trap with reaction radius to NNN, 19 lattice sites in

reaction region; (d) 1D trap with reaction radius to NNN, 7 lat-

tice sites per I 110) plane in reaction region.

PN
qx —

& (2.10)

tained by exchanging the role of PD and trap, i.e., by
fixing the PD distributed in the lattice at random and let-

ting the trap make a random walk with the mobility and
the migration character, which the PD would have had.
After this treatment the PD, which arbitrarily situates on
a lattice site, has the same probability as a normal lattice
site of being visited by the "migrating" trap.

The movement of the different kinds of traps is illus-

trated in Fig. 1 with the trap being marked with a trian-

gle. All lattice sites that have already been once or more
in the reaction region of the moving traps are filled in

black.
For a finite crystal of size M in contrast to Eq. (2.5) we

have (Appendix A )

N~ —C~p„t, N~=C~p~t . (3.1)

In the analysis in this paper, the number of jumps per A

atom given by nz =N„/M„will be preferred for the
time scale, instead of the real time t or the total jump
number N. For the transformation to the rea1-time scale
we have

The computer crystal is composed of 45 X45 X45 fcc
elementary cells (M=364500) for the OD traps (types a,
b, and c). For the 1D trap (type d), M =150X150X16
and L =150X150 is used for the nonideal trapping as
well as M=600X600X1 and L =600X600 for the ideal
trapping. L denotes the size of the (110) lattice plane for
the 1D trap lying in the [110]direction. If M„and Ma
denote the number of the lattice sites occupied by
atoms or by B atoms, respectively, Cz =Mz /M
(X= A, B) gives the composition of the computer alloy.
The trap moves into the nearest-neighbor site —exactly
in the opposite way as the considered PD would have
moved —with a frequency px, if this site is occupied by
an X atom. For each attempted jump the jumping direc-
tion and thus also the type of the jumping atom is arbi-
trarily determined among the 12 nearest neighbors. An
attempted jump succeeds if the momentary energy Auc-

tuation is large enough to overcome the energy barrier. '

In this present simulation the jump into the selected X
atom is considered to be successful if the random number
is smaller than the corresponding normalized jump fre-
quency of the PD cox =px/(p, „+pa ).

The main quantity to be calculated by the simulation is
the "escape probability" V, equal to the fraction of lat-
tice sites never visited by a migrating trap x (x =a, b, c,
and d) during the time t in which N jumps succeed.
Among all these N jumps, N~ comes to site exchanges
with 3 atoms and Nz to those with B atoms, respective-
ly. Since for a homogenous random alloy all sites are sta-
tistically indistinguishable, we obtain the relation

Particularly, Eq. (2.3) further yields
Mn z Mn&

(3.2)

qwV~=1— (2.11)

where qz gives the number of the distinct lattice sites
visited by the PD or here the migrating trap during N
steps of its RW. For N~~, M~~, qz is identical
with the well-known quantity (Sz). Thus Eq. (2.11) in-

dicates that the escape probability V~ is equal to the frac-
tion of the lattice sites in the sublattice never visited dur-

ing N steps, namely, the fraction of the rest of the white
lattice sites in Fig. 1. Equation (2.11) is valid even for
traps with very complicated structures. It is thus the aim
of the treatment with the mobile trap and fixed PD to
achieve a definite expression for the escape probability.

In addition to the dependence on trap structures, the
dependence of trapping kinetics on the variables, such as
the composition Cz (C~ =0.25, 0.5, and 0.75 will be

used) and the mobility ratio p =p„ /JLa will be dealt with

by the simulation.
In the present simulation the mean trapping time is not

directly obtained by investigating the probability that a
certain lattice site wi11 be visited after time t but indirect-

ly by studying the behavior of V against n„. In contrast
to the direct method, this indirect method is insensitive

to the starting point of RW in a finite lattice. By testing
runs it was demonstrated that the course of V„(n„) is

hardly inAuenced by any variation of the set of random
numbers. About the same V„(n„) curves have been ob-

tained by making S runs in the sma11 crystal as a single
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run in a crystal S times larger. This means that the Auc-

tuation of V„(n„) curves follows the usual statistic law,

namely, it varies proportionally with 1/&aM if a
denotes the number of the tests. In order to make the re-
sulting curve more smooth, particularly in the long-time
period, various simulation runs have been repeated up to
30—50 times for each given set of parameters C„and P.
The arithmetic average of n„and Vx are calculated as
the functions of the Monte Carlo step and will be used for
the evaluation later.

/=1 the lattice points are indistinguishable and the RW
is symmetric. The curve V, for /=1 is also exponential,
while for $/1 it is the superposition of two exponential
functions

B. Results

Some results of the simulation are plotted in Fig. 2 as
lnV„vs n„. The deviation from the inserted solid lines

are essentially due to insufficient averaging and less of
systematic nature. Corresponding to the different trap
structures, the curves have different characters.

(1) The case of the OD trap with a reaction radius to
NN and NNN (types b and c}appears to be the simplest.
The corresponding escape probability curves V& or V,
obviously obey the simple exponential function

10 20

Jvmp Number nA

V =exp — =exp
X

=exp
X

(x =b, c), (3.3)
d. S 1. 0 1. S 2. P 2. S

Jvmp Numb v r nA

where g„or g„' is the number of jumps per A or 8 atom
during the time r„ in which V reduces to 1/e. g„and
1(„' are functions of C„and p but turn out to be indepen-
dent of the size of the sublattice M. From Eq. (3.2) we
have «10'

f,M Q„'M
X

Pw Pa
(3.4)

0. S

Jump Nv mb v r nA

2. 0

According to Eq. (2.4) the trapping time can be derived
from

„dvr„=—gtb V„=—I t Ct
o dt

(3.5)

with —b, V„=V„(t) V„(t+bt) giving —the probability of
being trapped in the time interval t —t+ ht. By inserting
the simulation results V„=exp( t /r ) into this for—mula
it is recognized that the trapping time r„ is exactly given
by the time constant ~ evaluated from the exponential
function.

(2} The OD trap with reaction radius=O (type a) exe-
cutes a RW in the conventional sense. Particularly, for

10 20

Jump Numb' r nA Pf/'L

30

FIG. 2. The escape probability during "isothermal anneal-
ing" for alloys with C& =C&. (a) ideal trapping; (b) OD trap
with reaction radius to NN; (c) OD trap with reaction radius to
NNN; (d) 1D trap with reaction radius to NNN.
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V, = A1exP
+a 1

+(1—A, )exp
a2

10

nz n„= A
&
exp — +(1—A

&
)exp

n&= A, exp — + (1—A, )exp
al

ng
(3.6)

10 ro' 10

Di tuunu~ un u f (110J Pl unu L

as shown in Fig. 2(a). In the case of C„=0.5 the evalu-

ated g, &
and 1(,2 are listed in Table I. A, turns out to be

equal to C„.
(3) The curves of Vd for the 1D trap (reaction radius to

NNN) also obey the exponential function [Fig. 2(d)], but
here ln Vd is plotted as function of n „M/L rather than of
n

FIG. 3. The dependence of the trapping time on the size of
the computer crystal in case of a 1D trap with the reaction ra-
dius to NNN. The values for k& are obtained by fitting the
simulation results to Eq. (3.7).

1O ',

Vd =exp
n~M

=exp
A, ~L

=exp

(3.7)

- 1O ':

~ 10

Here L is the number of the lattice sites on the plane nor-
mal to the trap, so that M/L is the number of the (110)
lattice planes in the sublattice (for a trap in the t110]
direction) and A, z and A,~ the total number of jumps per
lattice column during the time rd. In contrast to all hatt's,

the parameters A, „and A,s in this expression depend on

the size of the computer crystal used. Figure 3 exhibits
the dependence of A, „vs lnL for /=1, which yields a
straight line

A, „=g„lnqL (3.8)

with a slope gd =0.729 independent of the size L and an
intersect gdlnq, which leads to q=0.059. Furthermore,
the simulations show that, unhke 1( d, the quantity q does
not vary with C„and P but takes a constant value for a

given trap structure and lattice. This allows us to
separate the dependence of k„on the crystal size from its
dependence on the other parameters and thus allows us
to generalize the results from a finite crystal lattice.
and 1(td =A,&in 'qL can then be derived as a function of
both C„and P from A, „,A.~ for fixed L. The trapping
time is obtained

10

10 '.

10

10 ':

10

10 '

10 10 10 10 10 10

Pfubi li iy Rut i u

10 10 10 10 10 10

i' bi I i t y Ru t i u

TABLE I. Parameters for the two superposed exponentials
for the nonsymmetric random walk with ideal trapping in case
of CA =C~.

10

1

2
4

10
40

0.500
0.519
0.486
0.503
0.501

1.314
1.443
1.545
1.733
1.920

Q2

1.314
2.486
4.583

11.019
42.064

10 10 10 10 10 10

Pfubiliiy Reliu

FIG. 4. The dependence of the trapping time on the mobility
ratio and the composition. (a) OD trap with reaction radius to
NN; (b) OD trap with reaction radius to NNN; (c) 1D trap with
reaction radius to NNN.
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TABLE II. Parameters from fitting the curves in Fig. 4 to Eq. (3.11).

0.9241
0.7524
1.5322

0.3554
0.3393
0.3315

0.081 06
0.09047
0.018 63

0.4403
0.4822
0.4748

0.9527
0.9664
0.9249

0.9548
0.9656
1.2644

d

fdL lnqL fdL lnqL
(3.9}

f.«~ Ca 0) =—0f.«a C~ 1/—0) . (3.10)

Here f„(g,rt) is any function of g and rl. For fitting the
resulting curves in Fig. 4, f„has been selected to have
the form

All ebb, p„and fd, denoting the efficiency constants,
have been evaluated by fitting the curves in Fig. 2 to the
exponential function and are plotted for various Cz and

in Fig. 4. If f„ is written in the form
g„=f„(C„—Ca, g), then due to the symmetry with
respect to the two components, we always have f„'
=f„(Ca—Cz, 1/P) and, because of g„/P„' =pd /pz =((),

cates that the recovery of PD's is mainly determined by
the faster component. The most trap-PD reactions take
place within a certain reaction range, and the nonideal
trapping is of general significance so that only this will be
discussed below.

Since the present simulations have been performed
with the technique of migrating traps and "resting" PD's,
the periodic sublattice can contain only a single trap so
that the trap density cannot be varied directly in any
scale for a given lattice. Instead, the trapping time as a
function of the size M (or L for 1D traps) of the sublat-
tice, and thus also of the trap density p„=l/M (or
=1/L), has been studied. For very large sublattice, i.e.,
p„&&1, the results must be of general nature. Under this
consideration Eqs. (3.4} and (3.9) lead to the general ex-
pressions

1+a(P"—1)
fx A B~ 5 fz ~0 1+P(ys

with h =y(C„—Ca) and

(3.11)
X

pxpa

1
for OD pb p~= ~ (4.1}

f„(0,$}= 1 Bexp ——C /+-A 1

1+4

which fulfills Eq. (3.10). The parameters A, B, and C as
well as a, P, and y in Eq. (3.11) are listed in Table II for
different kinds of traps. The solid curves in Fig. 4 are
calculated with these parameters. They show a rather
good agreement with the points from the simulations.

IV. DISCUSSION

1d 1rd= 1n for 1D pd
=—

PdP~ Pd I. (4.2)

According to the first-order reaction for PD trapping
found by the MCS's for the nonideal trapping, the rate
equation for annealing out of the PD's at trap x has the
usual form

A. The annihilation kinetics
~ppD

~ppD
X

(4.3)

While V„(n„) for the nonideal trapping (x=b, c,d)
obeys identically the simple exponential function, V, (n„)
for the ideal trapping has the form of two superposed ex-
ponential functions. In the latter case the reaction be-
tween the PD and a trap, which is also in the form of a
lattice point, takes place if the PD and the trap meet to-
gether. 1 —V, is exactly the fraction of all sites that con-
tribute in the atom motion. The faster exponential corre-
sponds thus to the contribution of the more mobile com-
ponent and the slower expotential to that of the slower
one (Appendix 8). The jump of both components is
necessary for the migrating trap a to traverse the whole
lattice. In contrast to this, the nonideal trapping (with
traps b, c,d) has a certain reaction range and the trapping
can progress only by the subsequent jumps of the more
mobile component without any significant contribution of
the sluggish one. This is always realistic for the composi-
tion of alloy above the percolation threshold (p, =0.198
for fcc alloys' ). The simple exponential function indi-

Here ppo is the density of the PD's per atom, hppD the
deviation from their equilibrium value and r, the trap-
ping time. For one kind of trap and a constant ~„, Eq.
(4.3) describes the first-order annihilation kinetics. If
there are several kinds of traps, their contributions to the
annihilation rate can be superimposed as follows:

1
~PPD ~PPD g

X

(4.4)

For the recovery of surplus vacancies after quenching,
two mechanisms appear to be most important in the tem-
perature range about the recrystallization temperature:
the annihilation by formation of more mobile divacancy
and by absorption at dislocations. If it is assumed that ei-
ther the dislocations or divacancies as a trap have a reac-
tion zone to the next-nearest neighbors (NNN's), the re-
sults from the simulation can then be used directly for
this case
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2Cv+PDl ) g

Vn
(4.5)

21tId Cz &
)& 1 divacancy

« 1 dislocation.ln (4.6)

In case of the dislocation mechanism, the recovery
progresses in the form of a simple exponential function.
For the divacancy mechanism, however, the trap density
and the trapping time varies with the annealing time.
For the quenching from a very high temperature, the
recovery of surplus vacancies obeys the second-order re-
action at the initial periods (CI &)CI" ) and turns to the
first-order reaction at the end period (CI -CI*).

B. The activation energies for the recovery of PD's

The reason to introduce the factor 2 is that each time two
vacancies disappear for the formation of a divacancy. In
the high-temperature range where the concentration of
vacancies is high, the recovery of surplus vacancies by
the formation of divacancies will dominate, while in the
low temperature range the recovery at dislocations may
govern. Formally we have the following criterium:

ous Hpo can be conveniently derived by using our simu-
lation results.

(i) For a constant density of traps as dislocation, from
Eqs. (4.1) (4.2), and (4.7) it follows

d lnIMA d in/„
d(1 lkT) d( 1 lkT)

+

Substituting HA = —d in)LI, A /d(1/kT) and

g„=Olney„I

8 lnII) into the above equation, we have

HPD

HPD HA +g»(CA CB~0)(HB HA ) (4.9)

Here it is obvious that Hz and H& are the migration en-

ergy of the components A or B to the considered PD in
the alloy.

(ii) For the divacancy mechanism, in this case r„varies
with the annealing time because of the progressive
recovery of surplus vacancies. Considering the behavior
at the equilibrium we have

r,'=W. ICvt A . (4. 10)

d lnpA d lnl(»

d(1IkT) d(1/kT)
d lnCV

d(1/kT)
(4.11)

Since H = —dlnCI", Id(1IkT) denotes the formation en-

ergy of vacancy, one obtains in this case

By substituting this into Eq. (4.7) we obtain, instead of
Eq. (4.9),

The activation energy for the recovery of PD's is phe-
nomenologically defined by the Arrhenius-rule

H PD
=H +H A +g„(CA CB, IiI ) (HB HA ) . —(4.12)

d in&

d(1IkT)
(4.7)

If a single annealing mechanism governs, an unambigu-

For a known g„=f„(CA—CB,p) g„can be calculated.
Particularly, for f„ in the suggested form of
f (0,$)f'(CA —CB,P) in Eq. (3.11) we have

BC exp —C[P+1/P] .
1 1

g (CA CB P) 1+ +
'

1 —8 exp —C[I|I+1/P] .

h(a —p)p

1+a(P —1) 1+P(P"—1)
(4.13)

The function g, (C„—CB=0,$) for the trap e is plotted
in Fig. 5. Equation (4.13) yields generally g =0 for
p»1 (pA »pB). This leads further to HPD=HM for
c»e (i) and HPD=H„+H for case (ii). This indicates
clearly that the more mobile component is mainly respon-
sible for the recovery of the PD's in the case of nonideal
trapping.

On the other hand, the last term in Eq. (4.13) describes
the dependence of the activation energy on the composi-
tion of the alloy. Because of a —P&0 (Table II) g„de-
creases with increasing h =y(CA —CB ) for ItI near to 1, so
that Hpo approaches more closely the value of H~ or
Hz+H". This means that, concerning the dependence
on the composition, for the annihilation of PD s the ma-

jority component is more responsible, while in case of the

0 g

II

0. 4

0. 2

10 &0 10 )'0 10 10

Pfobi li iy Ra ii a

FIG. 5. Relation between the activation energy and the mo-

bility ratio for the OD trap with reaction radius to NN and

C4 =Cp.
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chemical diffusion the diffusion of the minority corn-
ponent determines the reaction kinetics.

It must be noticed that these statements as well as Eqs.
(3.10) and (4.13) themselves may fail totally below the
percolation threshold. Effects of the percolation thresh-
old have been discussed in the book of Murch. '

C. Comyarison to the traditional treatments

A number of computer simulations of the diffusion
problem in alloys have been performed by Murch. ' In
his work mainly the tracer diffusion, in particular, the
correlation factor for the diffusion coefficient in case of
p„/@~%1, is of interest. In the present simulation the
effort has been undertaken for another topic, i.e., the
average survival time of the PD in alloys. The relation
between self-diffusion and other diffusion controlled pro-
cesses is discussed in Ref. 14.

Compared to the models using a noncontinuous ap-
proach in this area [the conventional RW considers the
case p, z /}uz =1 (Refs. 3 and 4) and the usual treatments
by the percolation theory deal with the cases p„/p~ = 00

or p„ /p~ =0 (Refs. 15 and 16)], in this paper the general
cases of p„/p~ different from 1 have been discussed.
Furthermore, the various kinds of trap structures have
been taken into account. Concerning the quantitative
agreement, only the symmetric RW with ideal trapping is
analytically solved in the conventional treatments of the
RW theory. This corresponds to the case of the OD trap
with a single-site reaction range and / = 1 simulated here.
The result of Rosenstock based on the RW theory gives
the trapping time r,, '=p„/(N„) =(1 F)p„p„[—Eq.
(2.8)], for a fcc lattice with 1 F=0.744.—The present
simulation yields ~,, ' =p„p „/f„with 1/g„=0.763
(Table I). The agreement is rather good.

Many problems of the PD reaction in solids have been
successfully solved by the theory of continuous diffusion.
The complete description of the recovery of the PD's
comprises the interaction between the lattice imperfec-
tions, the mechanisms of the absorption of the PD's at
traps and the diffusion of the PD's to the traps. Different
models have been developed for all these aspects. ' ' In
contrast, the problems like dynamic behavior of PD can-
not be simulated by the MC method at all. Furthermore,
due to the algorithm of "exchange" of PD and trap, here
the periodic sublattice can contain only a single pair of
PD and trap, so that the interaction between PD's and
the interference between different pairs are fully ignored.
As discussed in Refs. 4, 9, and 10, for high trap density
(e.g. , p„&0.002 discussed in Ref. 4) theV, (/=1) curve
deviates severely from the exponential function. The
present method is thus restricted to moderate trap densi-
ty.

To check the present method the quantitative compar-
ison to the results from the phenomenological theory of
the diffusion model' is exhibited below. This theory,
which yields an analytical expression for reaction con-
stant E contains the following simplifications (general
cases without these simplifications are also discussed in
Ref. 1).

(1}The interaction between PD's and traps is restricted

only to a reaction region with the reaction radius R0.
For a distance larger than R0 there is no interaction.

(2) PD's will be instantaneously trapped as soon as they
reach the reaction region of a trap.

(3) The migration of PD's outside the reaction region is
to be described by the diffusion in an isotropic continuous
medium.

can be derived from the simplifications given above. For
the OD traps we have for the dimensionless trap density'

3

E=KO= DOR„1+4m p„+o(p„)
4m.

0 g 0 tr (4.15)

and for the 1D traps (dislocation)

2mD0, R~ gK =K,=, ln ' with R~~ = . (4.16)O' R„ KPg)

D0 is the diffusion coefficient of the PD and 0 denotes
the volume per atom and Q' the area per atom normal to
the dislocation. R„ is defined as the phenomenological
reaction radius of the trap. For symmetric random walk
R „has been calculated analytically for OD traps we are
considering in this paper. '

Now the quantity E can also be evaluated from the
simulation results by the function f„=f„(C„—C~, P)
[Eq. (3.11)]as

and

&xp~r

Pa
for OD, x =b, c (4.17}

ln ' for 1D
Pa )q

pc
(4.18}

[see Eqs. (4.3) and (4.14)].
The comparison of Eq. (4.18) to (4.16) shows that the

unknown quantity q in Eq. (4.2) or (3.9) must be
equivalent to 0'/(nR„). The su.pposition introduced in
Sec. III B that q is independent of C„and P appears to be
correct.

For a monoatomic fcc lattice we have A=a /4 and
2

0
0'=&2a~/4 with ao being the lattice constant. Insert-
ing these quantities and Do=fa IJ & /6= faop & /12 with
f=0.78 (Ref. 18) into Eqs. (4.15) and (4.16) yields

=3 27 for OD
R R

3 a0 a0
(4.19)

for 1D

The reaction constant E, traditionally used for the
description of the PD recovery and defined by the rate
equation in the form

(4.14)
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TABLE III. Klp„ from simulations [Eq. (4.17) and (4.18)] and diffusion method [Eq. (4.19)] for
mono- atomic lattices.

Type of traps Ideal trapping OD/NN OD/NNN 1D/NNN

Present simulation
Diffusion method (Ref. 1)

0.76
0.62

3.10
2.29

3.71
2.71

1.30 ln '(0.06/pD )

2.31 ln '(0. 16/p )

The values of K /pz calculated both from the present
simulations by using Eqs. (4.17) and (4.18) and from the
treatment with diffusion method [Eq. (19)] are exhibited
in Table III, where for the diffusion method the values of
E.„/ao for the various traps are based on Fig. 6.4 of Ref.
1. In contrast to the good agreement of the result from
the present simulations with the analytical solution of the
RW method in the case of symmetric RW and ideal trap-
ping, Table III shows a rather poor quantitative agree-
ment. The values of lt:/p„ from simulations are about
20% higher than those from the diffusion method. This
difference is due to the essential property of the both ap-
proaches. In the treatment using RW method all lattice
sites are set equivalent, and we always have a homogene-
ous distribution of PD in the whole lattice. In the deriva-
tion of Eqs. (4.15) and (4.16) using the diffusion method,
however, the stationary condition is considered, which
leads to the distribution of PD from 0 around a trap up
to ppD in infinity. In the presence of this gradient the
intensity of the PD-trap reaction reduces considerably
compared to a homogeneous distribution of PD so that a
reduced K is obtained. This indicates that for the prob-
lems near the equilibrium the values from the diffusion
method by adequately selecting the boundary condition
are advisable. For the case far from equilibrium the re-
sults from the RW approach should be of suScient accu-
racy.

V. SUMMARY

A method to study the trapping of PD by Monte Carlo
simulation has been introduced: (1) to simulate the ran-
dom walk in concentrated alloys by using various compo-
sitions of the alloy and various mobility ratios of the
components, (2) to simulate traps with complicated struc-
tures by using the "fixed" PD and "mobile" trap, and (3)
to study the dependence of trapping on the trap density
by alternating the size of the periodic sublattice.

From the results of simulations for fcc "random" al-
loys it has been observed that for the trap with the reac-
tion range of a single lattice the time dependence of the
escape probability can be described by two superposed
exponential functions, while for traps including NN or
more lattice sites it yields the simple exponential func-
tion. A set of empirical functions have been evaluated,
which describe the dependence of the trapping time on all
relevant parameters. Also the activation energy for PD
recovery can be derived by directly using these empirical
functions. It is shown that for compositions above the
percolation threshold the PD annihilation is mainly
determined by the more mobile component or by the ma-
jority component.

The present results agree well with the analytical solu-

tion by RW approach in case of symmetric RW and ideal
trapping. The increased reaction constants compared to
those from diffusion theory for monatomic lattices are
caused by the homogeneous distribution of PD in the
whole lattice.

APPENDIX A: CALCULATION
OF THE PROBABILITY p~

The probability for a PD executing RW to be trapped
in its Nth jump can be expressed by the product of two
quantities,

JN gNFN ~ (A 1)

where F~ is the probability that the PD survives the first
N —1 steps and g& the probability that the PD meets
with a trap at its Nthe jump.

For an infinite crystal lattice with a trap density p„we
have for the probability of the "survival"

F~=(1 p,„)"— (A2)

for qz distinct visited lattice sites during N steps in the
finite sublattice (for a sufficiently large sublattice and
after sufficient steps we have qz~(S&) ). Since the PD
has the probability qz —q~, at its Nth jump to meet
with sites never visited before, one obtains on the other
hand,

qx qx —
&gx=

M —q„
as we11 as

N —1 N —
~ M —

qKF = rI (1—g ) = rI
ac=& M

For this case we obtain Eq. (2.10).

(A4)

(A5)

APPENDIX B: SUPERPOSITION OF TWO
EXPONENTIALS IN THE NONSYMMETRIC RW

WITH IDEAL TRAPPING

A single PD walks arbitrarily in a finite sublattice corn-
posed of M~ sites occupied by A atom and Mz sites by B

(A3)

Inserting of both formulas into Eqs. (Al) leads to Eq.
(2.5).

For a finite crystal with the dimension of M lattice sites
and a single trap site, the probability meeting with an ar-
bitrarily distributed trap by a new lattice site after E —1

steps is equal to 1/(M —qz &) rather than the constant
p„and we get, instead of Eq. (A3),
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atom. It is assumed that during the total N jumps the
PD has traversed the whole crystal M times; this means,
that the PD has left and then reentered the crystal m
times. During its ith stay in the sublattice the PD has
made N; jumps and we have thus

m Z.
l

t M„+Ms

MA
1 —X

' IIM, . 1MA .

qj, A'
M,

N=QN; . (Bl)

1-i"'II'
1M~ .

qjg'
M,

"II 1-'" + 'II 1-"
M,.

1 MA M,.
1 M~

(B3)

We now introduce the symbols q, A and q; &, which will

denote the number of the lattice sites initially occupied
by an A or 8 atom and visited by the PD during its ith
stay. q;z/Mx corresponds thus to the probability for a
lattice site occupied by an X atom to be visited by the PD
during its ith stay. One obtains the number of the dis-
tinct visited lattice sites during the ith stay with respect
to the total history

For a sufficient large sublattice q; „/M„(& 1 we have

=exp (B4)

Since for this case each stay of the PD in the sublattice is
relatively long and also q; A, q, ~ )&1 is valid, we obtain

q; A =r,N;, q, ,~ =r~N;, (B5)

i —1

z, =
j=1 M„ +q;s II 1—

—1 q. ~

j=1 8
(B2)

I[1—(q z/Mx)] describes the probability that a

lattice site occupied by an X atom has not been visited by
the PD till its ith stays. The survival probability after the
total N jumps or the total m stays follows:

rAN
Vz =CA exp — +C&exp

A

r~N

M~
(B6)

where r„and rtt means the probability that the PD by
the next successful jump meets with a lattice site never
visited before. rA as well as rz must be thus constant for
an infinite large sublattice after suScient steps. They de-
pend not only on the composition of the sublattice, but
also on the mobility ratio of both components. Inserting
Eqs. (B4) and (BS) into (B3) yields
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