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The strong-correlation limit of the extended Hubbard model of plane cuprate perovskites is con-
sidered for two ratios of material parameters allowed by the uncertainty of their known values: the
Cu-0 electron promotion energy is of the order of the Cu-0 hybridization at a negligibly small
Hubbard repulsion on oxygen sites and the hybridization is much smaller than other energy param-
eters. By taking into account the antiferromagnetic ordering of lightly doped samples and using the
spin-wave approximation, for these two cases effective Hamiltonians are obtained, in which charge
and spin degrees of freedom are described by practically independent operators. On the basis of
these Hamiltonians it is shown that the low-energy hole dynamics is essentially di6'erent in the two

cases. In the latter case it can approximately be mapped on the one-band t-J model describing the
movement of the Zhang-Rice singlet. However, essential deviations might arise if the oxygen and

copper on-site repulsions were comparable. The Hamiltonian in the former case is intrinsically a
two-band one which differs from the one-band Hamiltonian in shapes and widths of energy bands
and in conditions of the formation of a ferromagnetically ordered region around a hole in the limit

of large repulsions.

I. INTRODUCTION

It is generally accepted that the CuOz layers play a
major role in determining the normal and superconduct-
ing properties of the perovskite high-T, superconductors.
It is also widely accepted that these layers can be de-
scribed by some version of the Hubbard model. How-

ever, it is still unclear how much of the detailed electronic
structure should be included in the Hamiltonian to rep-
resent adequately low-energy properties of these planes.
After Anderson's supposition that these properties can
be described by the one-band Hubbard model, ~ an at-
tempt was undertaken by Zhang and Rice~ to confirm
this statement using the extended Hubbard model con-
taining 3d~2 y2 Cu and 2p~, 2py 0 states as the starting
point. The conclusion of this paper was criticized from
difFerent points of view, s 4 and among the raised objec-
tions the neglect of the ordering of Cu spina and a vague
range of applicability of the one-band mapping should
be singled out. In connection with these objections it
should be noted that the proof of the similarity of the
low-energy dynamics of the two models is not only re-
duced to the demonstration of the fact that the extended
Hubbard model possesses a singled-out band of low-lying
excitations as it was done in Ref. 2. If the dispersion of
the excitations is mainly determined by the interaction
with magnons —the case we are concerned with in antifer-
rornagnetically ordered lightly doped samples —it should
be shown that this interaction is the same as in the one-
band model. One of the aims of the present paper is the
determination of some limitations of such mapping.

The second aim of this paper is to find a form of the
extended Hubbard Hamiltonian in the case of the strong
coupling, which is convenient for calculations. The main
problem in the consideration of the Hubbard Hamiltonian

and the related t —J Hamiltonian is in a complex form of
the lowest eigenstates. It is the same problem one meets
in dealing with the Heisenberg Hamiltonian for which
the approximate method of overcoming it is known in
two- and three-dimensional cases. It is the spin-wave ap-
proximation. With reference to the one-band t-J model
this approximation has already been introduced in Ref.
5 and 6 and a satisfactory agreement of the results ob-
tained in its frameworks ~ with the exact-diagonalization
results for small lattices gives grounds to consider this
approximation to be appropriate for the problem. In the
Hamiltonians of the spin-wave approximation, obtained
below, spin and charge degrees of freedom are described
by operators which with a good accuracy can be consid-
ered as independent, which makes calculations particu-
larly simple. On the other hand, these Hamiltonians can
straightforwardly be compared with the one-band spin-
wave Hamiltonian that allows one to prove the possibili-
ties of the one-band mapping.

As it will be shown below the uncertainties in the
known values of material parameters allow three possi-
bilities of the parameter ratios. Considering the strong-
correlation limit when the repulsion on Cu sites is much
larger than other energy parameters (excluding possibly
the repulsion on 0 sites), the extended Hubbard Hamil-

tonian can be reduced to some generalization of the tJ-
Hamiltonian. A regular way of performing such a trans-
formation, based on the operator perturbation theory
and appropriate for all three cases mentioned above, is

discussed in Sec. II. Two of these cases, the case when
the Cu-0 electron promotion energy is of the order of the
Cu-0 hybridization at a negligibly small Hubbard repul-
sion on the oxygen sites and the case when the hybridiza-
tion is much smaller than other energy parameters, are
considered in Secs. III and IV. In these sections the cor-
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sponding generalized t J-Hamiltonians are obtained and
transformed in accord with the spin-wave approximation;
the possibilities of the one-band mapping are elucidated
and characteristic shapes of the lowest-energy bands are
calculated for reasonable sets of parameters.

II. EFFECTIVE HAMILTONIAN

The object of the subsequent consideration is the
Hamiltonian

&m, +1&m,-1 + &m+6, +1&m+6,—1
m mb

+—) n +s+t ) (di p ~s, +H.c.),
m8 m80

where d~ and pt +s are the creation operators of elec-
trons in the 3d~~ „~ orbitals of copper and the 2p~ or-
bitals of oxygen, respectively, with spin o = +1; b, &
0 is the Cu-0 promotion energy; U and U& are the
Hubbard repulsions on copper and oxygen sites, la-
beled by the indices m and m+ 6, respectively; 6 =
(ka/2, 0), (0, ka/2); a is the lattice spacing; t is the Cu-
0 hybridization; n = d~ d, n = P n The.

H = Hp+eHi, (2)

where e « 1 and the Hamiltonian Hp possesses the de-
generate ground state with an energy Ep separated by a
finite gap AE from excited states. Let us designate the
ground-state eigenvectors of Hp as ~q), their subspace as
l'. , and a projection of an eigenvector C of H onto this
subspace as Cp = 'PC. 'P = P ~q)(q~. Then, with the
accuracy up to the terms of the order of e4 the eigen-
value E of H, corresponding to C, can be found from the
following eigenvalue problem:

extended Hubbard Hamiltonian (1) has been introduced
and considered in a number of papers.

It is known from the band calculations for a typical
representative of cuprate perovskites LazCu04 that U =
7 —10 eV » ~t~

= 1 —1.5 eV. The values of 6, and
U„, usually cited in literature for this crystal, are still
controversial, ranging from 6 —

~t~ and U„= 0 to b. =
Uz = 5 eV (see, e.g. , Refs. 13 and 14). In this set of
parameters there is at least one small parameter t that
allows one to simplify essentially the Hamiltonian. The
operator perturbation theorys is the most convenient way
to do this. For the sake of completeness let us briefly
recollect its main results.

Let a Hamiltonian be represented in the form

H,gCp = (E —Ep)Cp,

H~ii' = p [sHi —s Hi(Hp —Ep) (1 —'P)Hi + e Hi(Hp —Ep) (1 —'P)(Hi —E )(Hp —Ep) (1 —p)Hi
Hi (Hp —Ep) (1 —P) (Hi —E )(Hp —Ep) (1 —'P) (Hi —E ) (Hp —Ep) (1 —P)Hi

—e Hi(Hp —Ep) 'E (Hp —Ep) '(1 —P)Hi]'P, (4)

where eE&i& and ezE~2l are the first- and second-order corrections in the eigenenergy.
Note that due to the projection operators (1 —'P) and the supposition about a finite value of hE the denominators

in (4) are nonzero. The efFective Hamiltonian H,g acts in the subspace l'. and gives approximate eigenvalues of H
for the states C satisfying the condition PC g 0 at e -+ 0. These states form a low-energy part of the spectrum.
Equations (3) and (4) are equivalent to the usual degenerate perturbation theory (see, e.g. , Ref. 15).

For further calculations it is convenient to use the definitions of E~ l and E~ l and rewrite H, ff with the same
accuracy in the form

H, ff = P [eHi —e Hi(Hp —Ep) (1 —'P)Hi + e Hi(Hp —Ep) (1 —P)Hi(Hp —Ep) (1 —P)Hi
s Hi(Hp Ep) (1 p)HlpH1 & Hi(Hp Ep) (1 p)HlpHipH1

+e Hi(Hp —Ep) (1 —P)Hi(Hp —Ep) (1 —'P)Hi'PHi

+e Hi(Hp —Ep) (1 —'P)Hi (Hp —Ep) (1 —P)HiPHi
—e Hi (Hp —Ep) (1 —P)Hi (Hp —Ep) (1 —P)Hi (Hp —Ep) (1 —'P) Hi
+t Hi (Hp —Ep) (1 —P)HiPHi(Hp —Ep) (1 —'P) Hi]P. (5)

The terms of the third and the fourth order in (5) contain
non-Hermitian addends. However, this non-Hermiticity
influences only the fifth-order corrections. As will be seen
later, in application to the considered problem Eq. (5)
reduces to some generalization of the t-J Hamiltonian.

From the ranges of parameters cited above it is clear

that the transfer term in (1) should be included in Hi
If for a moment the remaining part of the Hamiltonian
will be considered as Ko, one can determine the possi-
ble values of the gap AE separating the states of the
subspace l: (one d ~ z~ electron per Cu atom and one
or two p electrons per 0 atom) from excited states:
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U„+6 = U —Ag, U U—„6—= Ah and U —6 = U~+Ah, .
Here b,~ is the Cu-0 promotion energy in the hole rep-
resentation. These expressions give estimations of the
possible values of denominators in (4) and (5). If any
of these values is comparable with ~t~, the correspond-
ing terms should be attributed to Hi to make the per-
turbation theory applicable. The values of parameters
reported in Refs. 13 and 14 allow three possibilities: (i)
U„+ b, —

~t~, (ii) all denominators are much larger than
~t~, and (iii) U —U„—6 ]t~. The third case allows
an essential decrease of the Cu momentum, in compari-
son with its zero-point fiuctuation value, in an undoped
crystal due to a strong Cu-0 hybridization. The uncer-
tainty of the known value of the momentum s does not
permit to exclude this possibility. Nevertheless, the fur-
ther consideration is limited by the first two cases. Some
peculiarities of the third case have qualitatively been dis-
cussed in Ref. 11.

where the operators mm =
z P& p +q are introduced

by analogy with, ~

N =x vr, N =g N

and the operators s and s~ are analogously determined
through d, a = (ka, 0), (0, +a).

The operators arm~ are not or-

thogonal ((barmn~ &m~~~) = 4&+a' Q$p &m+$, m~+p) and,
as in Ref. 2, it is convenient to introduce new operators
satisfying the usual commutation relations,

III. THE CASE A ]t]

Considering case (i), let us suppose additionally that
U„= O. is It is clear that in this case the first term in (1)
should be chosen as Ho, e is t or b, , and Hi is the sum of
the third and fourth terms divided by e (here and below
U is taken as a unit of energy). At a number of electrons
less than or equal to 5N, where N is the number of Cu
sites, the subspace 8 consists of states without doubly
occupied Cu sites.

In spite of the complex form of Eq. (5) the correspond-
ing calculations are comparatively simple. Neglecting
unessential terms of the third order and keeping from
the terms of the fourth order only the term describing
the Cu-Cu superexchange, one finds

H.& = 2tP ) (d' i + H.c.)P

(8)

where Pk = (1 + 2[cos(kx) + cos(ky)]) ~, pf,
N Q exp( —ikm)p, ~q, x = (a, 0), y = (O, a).
It follows from (8) that

7rmn —AOAmo + Al ) 4'm+acr + ' ' ' (9)

where A = N Q&exp(ikin)P&, Ao = 0.96, Ai

A~ —0.14. Due to the fast decrease of A with the
growth of ~m] only two terms written out in (9) will be
considered below. Since the operators P do not form
the complete set of oxygen operators for a lattice with
two oxygen atoms per unit cell, they should be supple-
mented by the following set of operators:i~

+—) n +p+8t ) (S s —4N n )
m6 XIl

+4& ) (smsm+a + 4nmnm+a) &

ma
(6)

= ~A[pf, (1+e '
) —pi*, (1+e '"")]. (10)

In the new notations the effective Hamiltonian acquires
the following form:

H,p = 2tApP) (d~ P + H.c.)P+ 6) (Q~ Q + Q pm~)
mar mo

+2tAip ) (dt &pm+ + H.c.)p+8t ) (Smsm —4Nmnm) +4t ) (smsm~~+ 4n~n + ).

The operators Sm and Nm are expressed through P
with the help of (9). As can be seen from Eq. (11), the
operators Qm describe a conservative subsystem and will
not be considered below since the corresponding levels are
positioned far above the states of interest. A Hamiltonian
analogous to (11) has earlier been obtained in Ref. 12
with the help of unitary transformations.

The further transformation of (11) is based on the anti-
ferromagnetic ordering of spins on Cu sites, described by
the Heisenberg term HH in (11)and observed experimen-
tally in lightly doped samples. In this case a convenient

way for the consideration of spin-spin and spin-hole in-

teractions is the spin-wave approximation. As was told
above, it allows one to obtain a form of the Hamiltonian
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in which spin and charge degrees of freedom are with a
good accuracy independent, which essentially simplifies
calculations. On the other hand, this form of the Hamil-
tonian can straightforwardly be compared with the one-
band spin-wave Hamiltonian, which allows one to verify
the possibility of the one-band mapping.

In the presence of holes the spin-wave approxima-
tion can be introduced with the help of the following
formulas:6

C'm= & —m m

where II = (n/a, z/a), P~ = z[l + o exp(iIIm)]. It
is easy to check that on the considered basis of states
without doubly occupied Cu sites the operators s and
s in (12) satisfy the usual commutation relations of spin
operators on the condition that the operators b satisfy
the following commutation relations:

[b), bt ] =6) n, [b), b ] =0.
The spin-wave approximation reduces to the neglect of
the terms of the third and higher orders in b~, arising
from the substitution of (12) into H~. s This is justified
for the states with a small number of spin flips. There are
two sources of the spin Hips —zero-point spin Huctuations
and holes. A comparison of their effect shows that the
applicability conditions of the spin-wave approximation
in lightly doped samples is the same as in an undoped
case.

The quadratic form obtained from HH can be diago-
nalized by the unitary transformation

ht =) P d (15)

Supposing in the spirit of the spin-wave approximation
4 = 1 (and, consequently, b~ is simply the spin-flip
operator), from (12) and (15) one finds

(16)

which takes into account that in accord with (13) the op-
erators bk = N ~ P&b~ exp(ikl) satisfy the boson com-
mutation relations with the accuracy up to the terms of
the order of n/N, n is the number of holes. Transforma-
tion (14) is equivalent to the Bogolyubov transformations
but more convenient because the transformed Hamilto-
nian Tt HHT has a simpler ground state. For example, in
the absence of holes this state is ~JV), one of two classical
Neel states of Gu spins. Thus, transformation (14) al-
lows one to take comparatively simply into consideration
transversal spin Huctuations, which is the main merit of
the spin-wave approximation.

The state ]JV) is determined by the conditions
b [JV) = 0 and contains occupied oxygen orbitals cor-
responding to the operators P~t . For this state the cre-
ation operator of the hole on the Cu site can be deter-
mined by the following formula:

T=exp ) n~(b~b ~ —b„'b'„),
k

(14)
By making use of (16) it is easy to verify that the action
of the three first terms on the right-hand side (rhs) of (11)
on the states bt, bt P~~~JV), bt, bt d~~~JV),
and their many-hole generalizations is equivalent to the
action of the following operator:

) [2tAp(h~hrn, +y + h~hm, —1bm + H c ) + 6) h~~h~0 + 2tAy ) (h~+~h~ y + h + h~ +&b~+~ + H.c.)],

(17)

where h +z and h ~ are the oxygen hole creation op-
erators P~~ with the spins directed, respectively, parallel
and antiparallel to the electron spin on the Cu site m in
the state [lV). A constant term is omitted in (17).

After introducing operators (15) and representing the
first-order terms in the form (17), unitary transformation
(14) applied to these terms can easily be carried out. The

difference TthmtT —h~ gives small corrections to the
processes of the magnon creation and destruction, which
are already present in (17) and, therefore, the difference
can be neglected. Thus, the unitary transformation is
reduced to the substitution of bk by

bg = Tt bkT = bk cosh(2nk) —b k sinh(2nk)
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in Eq. (17). The A: representation of the operators h~

is analogous to the operators introduced in Ref. 5 and

their combination h~ + h in the t-J model, to the hole
translation operator in Ref. 6.

One-site terms in (17), which do not contain magnon
operators, can be diagonalized and Hamiltonian (ll), af-

ter the unitary transformation, can be represented in the
form

3

H = TiH, gT =) ) c,c,c~, —
2tAp ) [(c &

sin8+ c s cos8)c~zbm+ H. c.]
m i=& XIl

—2tAq ) ((c + ~ sin8+c + scos8)[c 2+ (c q cos8 —c ssin8)b + ]+Hc.)+4t ) ukbkbg,

(19)

where

hm = Cmi

2
1 — 1+~

sin 8+ cms cos 8& hm, yy = cm& cos 8 —cms sin 8i hm, —] = c~z,

&4tAp l '
1+ 1+

I

2
(20)

4tAp
8 =

&
arctan, ~k =4 1 —pk.

The second-order terms, which introduce small corrections in the definition of operators c,, are omitted in (19).
When 2Ap[t~ 6, sz —sq and terms in (19), which mix the states of bands 1 and 2 with the states of band 3, are

much less than e3 —eq. This allows one to neglect a contribution of the latter band to the lowest hole-magnon states
and to rewrite the corresponding part of the Hamiltonian in the form

2

H =) ) sc,c;—2tApsin8) (c &c zb +H.c.) —tAq sin(28) ) (c + &c qb + + H.c.)
m i=1 m ma

—2tAy sin8) (c + &c z+ H.c.) +4t ) (ugbI, bk.
ma

(21)

From Eq. (20) it follows that [cmz, b~ ] = [c~z, b, )
= 0.

Analogous commutators with c q can also be accepted to
be equal to zero, since the Cu component in this operator
is small at 2Ap~t[ A. Besides, as it can be verified in

the course of calculations, the noncornrnutativity of this
component with magnon operators reveals itself only in
high-order processes for the states forming the low-energy
part of the spectrum at reasonable values of parameters.
The neglect of this noncommutativity does not essen-
tially change the results for this part of the spectrum.
Thus, the operators c, and b connected with charge
and spin degrees of freedom can with a good accuracy be
considered here as independent.

The third and the last terms on the rhs of Eq. (21)
form the Hamiltonian of the t-J model in the spin-
wave approximation. 5 6 Other terms lead to the magnon-
assisted and zero-magnon mixing of the states of bands 1
and 2. This mixing is not small, since the energy distance
between the bands rz —eq —4(tAp) /6 is of the order
of mixing terms. Figure 1 demonstrates the efI'ect of the
mixing on the energy band spectrum. The band of states
with the z projection of the total spin S, equal to 1/2,
which is the lowest one for the used sets of parameters in

both models, is chosen for demonstration. Calculations
were carried out with the help of the recursion method
described in Ref. 6. Thanks to the antiferromagnetic or-
dering of spins the wave vectors of states considered can
be limited by the magnetic Brillouin zone the zone of
the doubled direct lattice. The bands in parts (a)—(c) of
the figure correspond to the full Hamiltonian (21), while

part (d) corresponds, to the t-J Hamiltonian constructed
from the terms of Eq. (21) pointed out above and the
part of the first term with i = 1. For the sets of param-
eters of parts (b) and (c) the shape of the energy band
of the t-J model is similar to the one shown in the part
(d) (with corresponding shifts and scale changes of the
energy axis). This shape has little in common with the
shapes of the bands in the parts (a)—(c) and it is irnpos-
sible to choose the sets of parameters for which the band
of the t-J model has such shapes. 7 Besides, for the sets of
parameters (a) and (b) the bandwidths of the extended
Hubbard model are by an order of magnitude smaller
than those of the t-J model and are substantially shifted
to lower energies. The second term on the rhs of Eq. (21)
plays the main role in the creation of these difFerences.

The second difference between the two models lies in
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cupied 0 sites (this subspace differs from the subspace
in the preceding section —the states with unoccupied Cu
sites are excluded).

The first-order term in (5) vanishes: by acting on the
states belonging to the subspace 8 Hi yields the states
with an unoccupied or doubly occupied Cu site. The
action of the left projection operator P on these states
gives zero. Again, neglecting the unessential terms of the
third order and keeping from the fourth-order terms only
the one describing the Cu-Cu superexchange, one finds

where 8~ is the spin operator built from fermionic oper-
ators Pm [see (7)].

To obtain a form of Hamiltonian (24) more convenient
for calculations and comparison with the Hamiltonian of
the t J-model let us again introduce the spin-wave ap-
proximation with the help of Eqs. (12) and (13). Neglect-
ing the possibility of occupying one site by two oxygen
holes in the states described by P operators, it is also
convenient to introduce the following hole-creation oper-
ators:

Hp=v) N +2) s S

—2 ) Smsm+b + —) Smam+~,
m6 ma

(22)

a~ i= ) P (P —b~ P )(1 —b~b ),

= 2t2
1 1

U„+6 U —U„—&)
m2 f11 ) Ill ~m& &

(25)

(23)
ass=) P P (1 —bt b ).

qU —U„—6 U —6) '

(1 2
i

—+
(U —Un —6)' EU 2U —U„—2d) '

X and S are determined by Eq. (7), sm and s +s are
analogously determined through the operators dm and

pm+ad, respectively. Analogous Hamiltonians have been
obtained earlier by other methods in a number of papers
(see, e.g. , Refs. 11, 18, and 19).

At the beginning let us assume Uz ——0, the case con-
sidered in Refs. 2 and 19. In this case the third term on
the rhs of Eq. (22) vanishes. Again it is convenient to
introduce operators (8) and Eq. (22) can be rewritten in

the form

H,g = TAO) s 8 +2v.A0Ai )

The states, created by these operators under the ac-
tion upon the Neel state ]JV), contain a spin singlet and
triplets with spin projections 0 and +1, formed by two
electrons remained in d and P states on the site m (as can
be seen from (24), at U„= 0 Q states form a conserva-
tive subsystem and are not considered here). The choice
of signs in the two first formulas of (25) is dictated by
the supposition that the state ]A) is built from the site
states of the form P P dt Pt Pt ~v), where ]u) is

the site vacuum state. Singlet and zero-projection triplet
states differ from those considered in Ref. 2 by their con-
nection with the definite magnetic ordering. The states

a, ~JV) and their generalizations containing spin Hips on
the sites m' P m diagonalize the first term on the rhs of
(24). Since As )) Ai, this term is much larger than the
second and third terms, which gives grounds to expect
this representation to be convenient.

From (25) it can be shown that on the basis of the
states mentioned

+22'AcAi ) (s' crest

(am'i~, ami) = bmm'bii' (26)

+s P~ P + +H.c.)

J
+— SmSm+~ )

2
(24)

From Eqs. (14), (18), and (25) it can also be shown that
the differences T~a~,T —a~,. give small corrections to
the terms already presented in the Hamiltonian, which
allows one to neglect them. By taking this into account
and using (26), it can be verified that Hamiltonian (24)
after transformation (14) can be represented in the form
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3

H = TtH, ffT = Z'Ap)
~

—4at pa p+ 4) at,.a

~p~g ).[(4Z + r)am~apamp&m+a (4Z + 7 )am+ayamp&m+a3 1

ma

+(q'Z+v)bt at +,a p+~2(q'Z+~)bt at + 3a pb

+v 2(4Z+ r)am+a3amp + (4Z &)a m+ agamlbm+a,/

—2(4Z —~)b a + sa q+ H.c.]+—) ~i,bkbk.
k

(27)

Hamiltonian (27) contains as a part the t J-
Hamiltonian —the first term in the square brackets, its
Hermitian conjugate, and the last term. Thanks to the
inequality Ap )) Ar, the distance between the lowest,
singlet band and triplet bands is much larger than the
mixing terms in (27). Thus, after Ref. 2, one can con-
clude that the one-band t-J model describes satisfactorily
low-lying states of the extended Hubbard model in the
considered case. To demonstrate this the lowest-energy
bands of the states with S, = 1/2 were calculated for
these two models with the help of the recursion method.
Results are shown in Fig. 2. The shapes of the bands are
similar and their positions and bandwidths are close. The
same results were also obtained for other parameter sets
corresponding to the case. In the course of calculations it
can be checked that noncommutativity of the operators
am; and bm plays a minor role in determining eigenener-

gies and eigenvectors of (27) and can be neglected. Again
charge and spin degrees of freedom can be considered as
independent.

Let us return to Hamiltonian (22) in the case U„P 0

when Z' g 0. One can be convinced that the term with
this coefficient reduces the energy distance between the
singlet and triplet states and introduces new processes
of their mixing. Thereby, the conditions for the one-
band mapping get worse, especially in the case U„~ U
when Z'/Z tends to its maximal value which is approxi-
mately equal to 1/4. The estimations show that in this
case great differences between the results of the extended
and one-band models are possible. This conclusion is in
agreement with the results of Ref. 3 where a particular
situation of the case U„-+ U was considered when U„and
U tend to infinity and b, p, remains finite. It was shown
that on a small lattice the extended Hubbard model and
the corresponding J/t -+ 0 extrapolation of the t-J model
have different ground states. In the infinite correlation
limit the one-hole ground state of the latter model is the
ferromagnetically ordered Nagaoka state2p with a max-
imal possible value of the total spin for a given lattice,
while for the former model the spin was much smaller.
For the values of the parameters of papers the ratio
Z'/Z = 0.1 and an estimation shows that this value is

FIG. 2. Energy bands of the states with S, = 1/2 obtained in the particular case of the extended Hubbard model described
by Hsmiltonian (27) [the case ~t~ && b, , U —4 (a)j and in the t Jmodel (b). t = 0.1-, b = 0.5. The units of energy and
wave-vector length are the same as in Fig. 1.
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too small to change the conclusion about the possibil-
ity of the one-band mapping. However, the presence of
the third term on the rhs of Eq. (22) has also another
consequence which looks essential even at such small val-
ues of 2'/2'. This term contains addends describing the
mixing of P and Q states, which may make its contri-
bution to a non-negligible occupation of the 3d3, 2 2 CU
orbitals by the holes, observed in recent x-ray-absorption
experiments.

Now we can compare the elementary excitations cor-
responding to different ratios of the parameters, consid-
ered in Secs. III and IV. In the latter case the pertur-
bation series for the effective Hamiltonian starts from
the second-order terms. For reasonable sets of param-
eters the leading role in the formation of elementary
excitations is played by one of these terms —the first
term on the rhs of Eq. (24). This term is responsi-
ble for the formation of the Zhang-Rice singlets2 and
the lowest hole states are built from site states of this
type, 2 ~ (P &d +&

—P~ +&d~ ~)~v). In the situa-
tion of Sec. III the perturbation series starts from the
first-order, hybridization terms, and in this case it is
these terms that form hole states, while the second-order
terms are only small corrections. As a result, the pic-
ture of Zhang-Rice singlets is not appropriate here. The
lowest hole states are complex combinations of the site
states Q P (sin opt P —cos edmt Pt~ ) ~v) and

P dt P~ ~v), surrounded by a magnon cloud.

V. CONCLUSION

In the previous sections the strong-correlation limit of
the extended Hubbard model, presumably describing the
hole dynamics in the copper oxide planes of the high-
temperature superconductors, has been considered. The
ranges of the known values of parameters allow three
characteristic situations with different small parameters.
With the help of the operator perturbation theory the
extended Hubbard Hamiltonian has been transformed to
the generalizations of the t-J Hamiltonian for two of these
cases, when the Cu-0 electron promotion energy is of
the order of the Cu-0 hybridization and when the hy-
bridization is the only small parameter. By the antifer-
romagnetic ordering of lightly doped samples taking into
account and using the spin-wave approximation, the ef-
fective Hamiltonians have been obtained on the basis of
what the low-energy hole dynamics has been shown to
be essentially different in the two cases considered. In
the latter case it can be described by the one-band t J-
model, the Hamiltonian of which in the spin-wave ap-
proximation has been obtained in Refs. 5 and 6, while in
the former case the dynamics is described by Hamiltonian
(21) which cannot be reduced to the one-band Hamilto-
nian. It should be emphasized that in both Hamiltonians
hole and magnon operators are practically independent,
which essentially simplifies the calculations. The results
of such calculations, the lowest-energy bands, are shown
in Figs. 1 and 2.
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