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Problem of Josephson-vortex-lattice melting in layered superconductors
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A layered superconductor is studied in the presence of a magnetic field along the layers. With the
help of a transformation to a Coulomb-gas representation it is shown that even in the limit of high
field the phase transition into the phase with efFectively decoupled layers is impossible. Contrary to
the suggestion by Efetov [Sov. Phys. JETP 49, 905 (1979)j the coherence between the layers will be
lost simultaneously with the total destruction of superconductivity.

I. INTRODUCTION

More than ten years ago Efetov put forward a
conjecturei that a strong magnetic field applied to a lay-
ered superconductor in parallel to the layers can induce
the loss of phase coherence between the layers, whereas
each of the layers will remain superconducting. In terms
of the vortices this phase transition can be described as a
melting of the vortex lattice formed by the Josephson vor-
tices lying between the layers. Discovery of high-T, su-
perconductors with well-developed layered structure has
led to revival of interest in this problem. A more detailed
investigation of properties of the quasi-two-dimensional
phase in which the vortex lattice is assumed to be melted
has been undertaken recently. 2 s It seems worth mention-
ing that according to Kes et aL4 even in the absence of
the external field many of the properties of the high-T,
superconductors can be satisfactorily explained on the
assumption that there is no effective coupling between
the layers.

At the same time some serious doubts appeared on the
possibility of the existence of such a phase. The ques-
tion of whether a transition into a quasi-two-dimensional
phase can really take place at temperatures lower than
that required for the destruction of superconductiv-
ity was addressed both in terms of the vortex lat-
tice meltingss and in the fermionic representation. r

It was shown both for strongly interactings and for
noninteractings vortices (neglecting the possibility of vor-
tex hopping between valleys and considering only the
in-plane fiuctuations of vortices) that the vortex lattice
will remain unmelted in the whole domain of parameters
where such an approximation is applicable. This makes
the existence of the intermediate phase with electively
decoupled layers impossible. The conclusion obtained by
Horovitz, 7 with the help of the transformation to the
fermionic representation, is that the transition into the
quasi-two-dimensional phase may be possible only in the
limit of large core energy and only in the narrow region of
Gelds corresponding to penetration of flux lines between
every nine or ten layers.

However the problem cannot be considered as being
completely solved. The vortex representation is re-

stricted to the case of not very strong magnetic field for
which the average distance between vortices is large in
comparison with the size of the core. On the other hand
the fermionic representations is formulated in terms of
very strongly interacting fermions (the density of which is
proportional to the field), so one cannot be sure whether
the results obtained in the framework of the renormal-
ization approach can be trusted even for small fields.

Taking also into account that the original suggestion
by Efetovi related the destruction of the coherence be-
tween the layers with the increase in the magnetic field,
one has to conclude that the high-field limit correspond-
ing to overlapping of vortex cores deserves special con-
sideration; this is the subject of the present paper. Our
conclusion is that for such fields the existence of the in-
termediate phase with efFectively decoupled but still su-
perconducting layers is also impossible.

II. THE MODEL

Let us start with the semiphenomenological Hamilto-
nian describing the fluctuations of the phase of the order
parameter in a layered superconductor:i

H = ) dxdy —
~ V~~p„——A„~
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where &p„stands for the phase of the order parameter on
the nth superconducting layer,
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is the stiKness constant characterizing the energy of phase
fluctuations in a single layer,
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is the 3osephson coupling between the layers, A~b(T) and
A, (T) )) A~b(T) are the London penetration depths for
different directions, d is the interlayer distance, A =—

A(x, y, z) is the fluctuating part of the vector potential,
and

28—A, =hx,
C

2irBd

4p

C
Pp = 2m. —.
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Here B is the magnetic field penetrating between the
layers of the superconductor which only slightly differs
from the external field.

Hamiltonian (1) is Gaussian in the fluctuations. of the
vector potential, therefore they can be integrated out of
the partition function corresponding to it. In the follow-
ing we will be mostly interested in low temperatures for
which the possibility of the formation of two-dimensional
vortices or vortex pairs in this or that layer (i.e. , the pos-
sibility of flux-line penetration across the layer) can be
neglected. That means that the order-parameter phase
Ip„(x, y) can be assumed to be continuous on every layer.
In that case the terms in the Hamiltonian containing a
nonpotential part of A decouple from the other terms
and can be omitted.

Integration over the potential part of A leaves us then
with the relatively simple nonlocal Hamiltonian:

dxdy —) g(n —n )(V()(p„) (V)((p„)
Jlj
2

—J~ ) cos(I'p~+i —(p& —As), (2)

A„(x, y) = A(x, y, nd)

is the value of A at the n-th superconducting layer. It
is convenient to choose a gauge in which the fluctuating
part of the vector potential A has only in-plane (x and y)
components and the nonfluctuating part describing the
constant field along the y axis has only a z component:

8 O
g(x) J~~ 2 +2J, cos24 coshx = 0

and for
2J, 2J,

h2g(m) Jll h2 J
has the forms

C'(x) ~ C'p cos hx. (6)

III. EFFECTIVE HAMILTONIAN
FOR SLOW VARIABLES

At finite temperatures the fluctuations on the back-

ground of the ground state should be considered. Low-

energy fluctuations can be described by introducing
slowly changing variables u„= u„(x, y), v„:—v„(x, y),
and s„:—s„(x,y) so that Eq. (4) is substituted by

ip„(x, y) = (—1)"(x/4 —u„coshx —v„sinhx) + s„.

In the ground state given by Eqs. (4)—(6) the individual-
ity of each vortex is lost but the periodicity of this state
can still be associated with the periodicity of the vor-
tex lattice. This ground state differs only slightly from
the ground state in the absence of interlayer coupling for
which p„does not depend on x. Therefore it would not
be very surprising if even at relatively low temperatures
thermal fluctuations destroy the periodic ordering, me-
diating thus a transition to the intermediate phase with
effectively decoupled layers.

Inequality (5) can be rewritten as a lower bound for
the magnitude of the magnetic field:

Pp (J, 'i ~
Pp A, b

27I'd ( J~~ J 27I d A~

which determines the domain of applicability of our ap-
proach. Prom the side of the very high fields such analysis
is restricted only by the fields that destroy superconduc-
tivity in each individual layer.

where

g(n) = dq, „
2m
—e*'"g(q)

~-(z y) = (-1)"t~/4- C(x)l,

where C (x) is the solution of the equation:

(4)

2(1 —cos q)
g(q) =

(d/A~b) p + 2(1 —cos q)
'

and q is the dimensionless z component of the wave
vector. In real layered superconductors the inequality
A~b )) d is always fulfilled. In that case g(q) for almost
all q is close to 1 and ~g(n) ~

for n g 0 is much less than
1.

For high enough field for which the vortices penetrate
between all the layers, the distribution of the order pa-
rameter phase in the ground state can be described with
the help of just one function 4(x). For example, y can
be chosen in the form

Here u„and v„can be interpreted as the variables de-

scribing the displacement and distortion of the vortex lat-
tice whereas s„describes the slow changes of the phase
proper.

Assuming that u„(x, y), v„(x, y), and s„(x,y) are
changing with x much more slowly than cos hx and sin hx
we can carry out in Eq. (1) integration over z at short
scales. It reduces to substitution:

dxslnh, x MO

dxcoshx . ~0

dxsin hx w — dx-~ 2 1
2

dxsinhxcoshx .&0,

dxcos hx ~ — dx2 1
2 )

and for ~u„~ and ~v„~ much smaller than 1 yields the ef-

fective Hamiltonian:
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H = ff dz dy
dq &g(~+q) 2 2 2
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It is possible to obtain Eq. (8) only if u„, i)„, and 8„
are changing with x much slower than cos hz and sin hz.
That means that a more complete form of the effective
Hamiltonian should incorporate also terms of higher or-
der in gradients that introduce an effective cutoff when
the absolute value of the in-plane momentum k is of the
order of k h.

Hamiltonian (8) is Gaussian in fluctuations of u„and
u„ therefore they can be integrated out giving thus the
effective Hamiltonian which depends only on 8„. If only
a leading contribution

with

Jz JCo
2J((g(z)hz 4

For the properties of the Coulomb gas which is intro-
duced in the next section the approximation neglecting
the gradient terms in u and v is not very important and is
used here only to obtain a Hamiltonian of compact form.

IV. ANALYSIS OF THE PHASE
TRANSITION IN THE COULOMB-GAS

REPRESENTATION

The partition function corresponding to Hamiltonian
is retained among the terms which are quadratic in u„
and v„ this efFective Hamiltonian will have a simple sine-
Gordon structure:

(9):

Z= Ds exp
t' H(8) &

H = ff dxdy —') g(n —n')(Vt(s )(V)~s„)

(9)

can be reduced to that of a quasi-two-dimensional (lay-
ered) Coulomb gas. If Eq. (10) is expanded in powers of
the second (nonquadratic) term in the Hamiltonian and
then in each term the Gaussian integration in 8 is car-
ried out the expansion will have a form of the partition
function of the Coulomb gas:

( ) (Y)zt (
Z = ) dr; ) ~ ~

exp ——) m, G(r, —r~, n, —n~)m~
i=a '="o & ) & ) )

where half of the charges m, are positive and the other
half are negative, for example:

+1fori = 1, . . . , t
—1 for i = l + 1, . . . , 2l

In the expansion (11) Y/2T plays the role of the fugacity
of the charges and their interaction is given by

d2k dqG(r, n) =
(2n)o 2ir

—G(k, q) expi(r k+ nq),

(12)

G(k, q) =
~ [2(l —cosq) + (d/A 8)z].

J~~I
2

From Eqs. (12) it can be easily seen that the charges
of the considered Coulomb gas are interacting logarith-
mically when they are in the same layer and also loga-
rithmically (but vrith smaller strength) when they are in

I

neighboring or next-to-neighboring layers. Initially there
is no interaction between the charges in more distant lay-
ers.

The properties of the similar layered Coulomb gas have
been analyzed in Ref. 9 when studying the thermodynam-
ics of the layered superconductor vrith fluctuating mag-
netic field in the absence of an external field. For the
case of the small dimensionless fugacity y = Y/2Tkz, „
the renormalization-group equations were shown to be
of the same structure as those derived by Kosterlitzio
for the ordinary (two-dimensional) Coulomb gas. That
means that the phase transition in such layered Coulomb
gas should belong to the Berezinskii-Kosterlitz-Thouless
universality class, i.e., should be an infinite-order transi-
tion. The same holds true for the Coulomb gas defined
by the Hamiltonian (9).

For Y —+ 0 the phase transition takes place at the
temperature at which the prelogarithmic factor in the
interaction of charges in the same layer is equal to 4. For
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the interaction of the form (12) it happens at

47t
m 3+ (d/A )2

Remarkably the same value of the transition tempera-
ture is obtained if the results of the vortex-lattice-melting
analysis5 are extrapolated to the limit of high fields corre-
sponding to penetration of vortices between all the layers.
The value of T~ obtained by Horovitz with the help of
the fermionic representation for A~p &) d is lower by a
factor of 43.

For finite Y the renormalization of the interaction due
to presence of small bound pairs of charges should be
taken into account. The renormalization decreases the in-
teraction but the transition will still take place when the
renormalized value of the prelogarithmic factor is equal
to 4. The temperature of the transition T is therefore
shifted to higher values:

other value of fugacity and different interaction G(r, n)
corresponding to

4~ Jii 2(1 —cosq)
Tk 2(1 —cos q) + (d/A~b)

The interaction defined by Eq. (14) depends logarithmi-
cally on the in-plane separation of the two-dimensional
vortices so at low temperature they can exist only in the
form of the small bound pairs. With increase in temper-
ature these pairs will start overlapping and in the high-
temperature phase the free vortices will be also present.

As in the case of the layered Coulomb gas discussed
in the previous section the phase transition should take
place when the prelogarithmical factor in the interaction
of the vortices in the same layer is equal to 4. For the
interaction of the form (14) in the limit of small fugacities
this corresponds to the temperature:

T = T [1+0(y )].
TO Jii ~

4+ (d/A. b) 9'4+ (d/A. b)'+ (d/A. b)'
(15)

In the considered model for T ~ T the dimensionless
fugacity y oc Co2 is much smaller than one so the shift of
T is small and the transition remains continuous. Thus
the higher is the magnetic field the more accurate are the
results obtained in the small fugacity approximation. In
the process of renormalization the interaction of charges
on distant layers also appears but it remains decaying
exponentially with distance between layers.

In Coulomb-gas representation the main difference be-
tween the two phases is that in one of them the free
charges are present in the system but in the other all
charges are bound in neutral pairs. In terms of the
original model the transition between these phases corre-
sponds to the transition between the three-dimensional
and quasi-two-dimensional superconductor, that is, to
the melting of the Josephson vortex lattice.

V. COMPARISON OF THE
TWO TRANSITION TEMPERATURES

Thus we have obtained the lower bound for the
temperature of the phase transition to the quasi-two-
dimensional phase. But one should bear in mind that
all the analysis above was carried out on the assumption
that this transition can take place at the temperature low
enough for the system of the decoupled layers to be in the
superconducting state. After that it should be checked
whether this assumption is really self-consistent, that is,
the value of Tm should be compared with the tempera-
ture at which the superconductivity would be destroyed
if the layers were decoupled.

In the absence of Josephson coupling between the lay-
ers the phase transition in the system of superconduct-
ing layers can be also described in terms of a quasi-two
dimensional layered Coulomb gas the charges of which
correspond to two-dimensional (pointlike) vortices in this
or that layer. A constant magnetic field along the layers
have no influence on propeties of such a system. Its par-
tition function will also have the form (11) but with some

But in contrast to the previous case the corrections due
to the renormalization of the interaction will make the
actual transition temperature T, not higher but lower
than its zero-fugacity limit T, . The difference in the di-
rection in which the renormalization shifts the transition
temperature in two cases appears because in one of them
the interaction of the Coulomb gas charges is propor-
tional to the temperature and in the other it is inversely
proportional.

The existence of the intermediate quasi-
two-dimensional phase requires T~ ( T, Com.parison
of Eq. (13) with Eq. (15) shows that in the zero-fugacity
limit the ratio of T~ and T, for any relation between d
and A b is not smaller than s. The finiteness of the fu-

gacity of the two-dimensional vortices can lead only to
further increase of this ratio. On the other hand the fu-

gacity of the Coulomb gas charges introduced in Sec. IV
is very small so its influence on T~/T, can be neglected
even if the mutual interaction of vortices and Coulomb
gss charges is taken into account. From this we can con-
clude that the scenario incorporating the existence of the
intermediate phase (which requires T~/T, ( 1) is impos-
sible.

VI. CONCLUSION

Thus we have shown that in the presence of a strong
magnetic field B » B. - (p, /2vrd')(A b/A, ) the phase
transition to the phase in which there is no efFective cou-
pling between the layers cannot happen as a separate
phase transition preceding the destruction of supercon-
ductivity in the system of the decoupled layers. Just as
in the case of a smaller Geld the coherence between
the layers will be lost simultaneously with the total de-
struction of superconductivity. The results obtained are
applicable not only to layered superconductors but also
to the superlattices formed by layers of superconducting
and normal metals in which the coupling between the
layers can be made rather weak, so that B, will be much
lower than in the bulk superconductor.

The earlier conjecture on the existence of the quasi-
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two-dimensional phase was based on the calculation of
the corrections to the correlation function. It was claimed
in Ref. 1 that for B » B, (in our notation) the form of
these corrections shows that the behavior of the correla-
tion function for arbitrarily low temperature is qualita-
tively the same as in the absence of the interlayer cou-
pling. Such calculation cannot be considered as convinc-
ing enough since for any value of the field at low enough
temperatures fluctuations are small and Gaussian so the
three-dimensional ordering cannot be destroyed. There-
fore some additional corrections to the correlation func-

tion that were not taken into account in Ref. 1 may be
also of relevance.

It is interesting to note that according to Glazman and
Kosheleviz in case of a strong magnetic field perpendicu-
lar to the layers the destruction of the coherence between
the weakly coupled layers of a layered superconductor can
actually happen as a separate phase transition the tem-
perature of which is lower than the temperature of the
vortex lattice melting. The disordering in that case is
induced by the phase fluctuations related to fluctuations
of the vortex lattice.
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