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The two-dimensional Ising model with dipolar interactions is studied using Monte Carlo simula-
tion. In the case of a pure dipolar interaction, estimates are obtained for the reduced transition
temperature, 0, = 2a3kpTn/uZg for two particular spin alignments in which the spins are aligned
parallel to and perpendicular to the plane, respectively. A comparison with measurements made
on RBa;Cu3O7-s (R=Nd, Dy, and Er) and RBa;CusOs (R=Dy and Er) show that the calculated
Néel temperature falls consistently below that observed experimentally. The model is generalized
to include an isotropic intraplanar nearest-neighbor exchange interaction and the Néel temperature
calculated as a function of the strength of the exchange coupling for configurations in which the spins
are aligned perpendicular to the plane. From this estimates of the exchange coupling are obtained
for some of these materials. The results obtained from these calculations confirm that the long-range
character of the dipolar interaction does not affect the universality class of the two-dimensional Ising
antiferromagnet. Extensions of the present analysis are discussed.

I. INTRODUCTION

One of the more remarkable features of the class of
high-temperature superconductors based on the Y-Ba-
Cu-O compounds is the fact that the substitution of
the Y ion by several of the rare-earth ions has lit-
tle measurable effect on the superconducting transition
temperature.l™3 Moreover the appearance of a magnetic
ordering of the rare-earth ions at low temperatures in cer-
tain of the R-Ba-Cu-O compounds means that a number
of these belong to the class of materials, generally referred
to as magnetic superconductors, in which superconduct-
ing and magnetic order coexist.4~® Other such materials
exhibit a number of interesting phenomena associated
with the interplay of the superconductivity and the mag-
netic interactions. While the coexistence of superconduc-
tivity with long-range magnetic order is undoubtably the
most interesting feature of these rare-earth compounds,
the magnetic properties of these intriguing compounds
are proving to be interesting in their own right. In par-
ticular the highly anisotropic nature of these compounds
combined with the various stable phases and oxygen stoi-
chiometries that can be fabricated means that such mate-
rials provide an ideal opportunity in which to study mag-
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netism in layered systems. It is also worth noting that
recent experimental work suggests that the changes in
the magnetic properties with oxygen content are closely
correlated to the decrease in the superconducting tran-
sition temperature and the ultimate suppression of the
superconductivity!%1! with decreasing oxygen content.
There is a considerable wealth of experimental evi-
dence that attests to the two-dimensional (2D) charac-
ter of these compounds. A number of recent neutron-
scattering experiments exhibit two-dimensional critical
scattering close to the Néel temperature,!?™14 while in
the case of ErBa;CuzO~, the antiferromagnetic order pa-
rameter shows remarkable agreement with the result ob-
tained from the 2D ising model.?13 In addition specific-
heat measurements, for several of these compounds, are
well described in terms of the two-dimensional Ising
model.}5717 While this may not be so surprising given the
layered nature of this class of compounds, it is clear that
the situation that pertains is far from straightforward.
Not only does a certain amount of controversy surround
several of the reported measurements and the conclusions
drawn from them,!1:18 but low-temperature neutron scat-
tering clearly exhibits three-dimensional magnetic order
in some,*6:8:9:11714,17,19 Lyt apparently not all, of these
compounds.11:14 The questions surrounding the effective
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dimensionality of these compounds is made more inter-
esting by the fact that little is known about the mecha-
nism giving rise to the interplanar coupling between the
rare-earth ions.

In addition to the uncertainties surrounding the nature
and origin of the interplanar coupling between the rare-
earth ions a number of unresolved questions also persist
with regard to the nature of the intraplanar coupling.
Early work on these compounds revealed that the mag-
netic transition temperature scaled with the DeGennes
factor (gs — 1)2J(J + 1).12 This leads one to suppose
that the exchange interaction of the Ruderman-Kittel-
Kasuya-Yosida (RKKY) type is the dominant interac-
tion in these compounds. However as Maple et al. have
pointed out? this rather naive interpretation is mislead-
ing since it assumes that crystalline electric-field (CEF)
effects are negligable, which they are not, and does not
account for the data of Dunlap et al. on GdBayCuzO,,%°
which yields a virtually identical transition tempera-
ture for both the orthorhombic (superconducting) and
tetragonal (semiconducting) phases. Moreover calcula-
tions show that the dipolar interaction contributes sig-
nificantly to the magnetic energy of the ground state in
these compounds.?1:22

One aspect of these compounds about which there
is little controversy is the importance of the crys-
talline electric fields (CEF’s) in determining the magnetic
properties of the compounds. Both inelastic-neutron-
scattering'®23728 and specific-heat?:3:2973! experiments
show that the degeneracy of the rare-earth ions associ-
ated with the rotational invariance of the free ion is re-
moved by the crystalline electric fields, with the result,
in the case of the Kramers ions, that the ground state
of the rare-earth ions is a doublet several meV below
the first excited state. An exception to this is of course
Gd, which has an orbital S-wave ground state and which,
specific heat experiments indicate, retains the eightfold
degeneracy of the free-ion ground state.:32° While the
nature of the ground state of the individual rare-earth
ions in these compounds is well established, the nature
of the transition and, by implication, the character of
the magnetic ground state appears to be strongly de-
pendent on the oxygen content. Experiments on Nd
(Ref. 17), Sm (Ref. 17), Dy (Ref. 29) and Er (Refs. 11,
29, and 30) all show a substantial rounding of the tran-
sition in the change from the orthorhombic (supercon-
ducting) phase to the tetragonal (insulating) phase. This
has led several authors to postulate that the transition
from orthorhombic to tetragonal induces a crossover from
two-dimensional Ising-like behavior to spin—% X-Y type
behavior.29:3% This is not an unreasonable assertion and
may well be related to the change in the CEF ground
state that arises as a consequence of the increased sym-
metry of the 4f wave function of the rare-earth ions in
the tetragonal phase.3? The fact that in Gd the magnetic
transition is almost identical in both the orthorhombic
and tetragonal phase?® lends weight to this argument re-
garding the importance of CEF effects in accounting for
this difference.

Much of the difficulty in trying to arrive at a systematic
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understanding of these compounds undoubtably stems
from the fact that the magnetic interactions in these com-
pounds are sufficiently complex that they are not easily
accounted for within the framework of a single tractable
theoretical model. While a comparison with existing the-
oretical studies provide some insight into certain aspects
of the behavior of these compounds the limitations of
the models used as the basis for these studies should be
kept in mind. The effect of the dipolar interaction pro-
vides a case in point. While it is without question a fact
that the dipolar interaction contributes significantly to
the magnetic properties of these componds at low tem-
peratures, little quantative work has been done on the
magnetic properties of dipolar systems. For example, few
reliable estimates, beyond those provided by mean-field
theory, of the transition temperature and phase behavior
of dipolar spin systems in two dimensions exist. More-
over studies that have been done indicate that the pres-
ence of the dipolar interaction can modify the magnetic
properties in some very subtle ways that, not surpris-
ingly, differ significantly from the predictions provided
by mean-field studies.3?:33 In the present work we exam-
ine by means of Monte Carlo simulation the properties of
a two-dimensional spin—-é— Ising model on a square lattice.
We consider the case in which the easy axis of magneti-
zation is aligned perpendicular to the plane as well as the
case in which the easy axis is aligned parallel to the plane.
The interaction between the spins is assumed to consist
of both a dipolar interaction and a nearest-neighbor ex-
change interaction. While such a model falls far short
of accounting for the many facets exhibited by the R-Ba-
Cu-O compounds it is nevertheless of obvious relevance in
the interpretation of existing experimental studies. The
results obtained from the analysis of such a model should
serve to provide some bounds on the strength of the in-
terplanar coupling as well as providing the basis for a
more realistic modeling of these systems.

It is well known that the long-range character of the
dipolar interaction presents a problem in the Monte Carlo
simulation®* which is, by necessity, carried out on a small
finite system. In the context of the present work, earlier
studies by Kretschmer and Binder3® suggest that finite-
size effects may best be treated by considering an infinite
sytem of spins but restricting the allowed spin configura-
tions to those which satisfy periodic boundary conditions.
Imposing such a restriction allows us to specify the state
in terms of a finite number of variables, namely the ori-
entation of the spins in a single cell consisting of a finite
number of spins, while the energy of each configuration
may be calculated in terms of an effective interaction be-
tween the spins in this cell. This is discussed in more
detail in Sec. II, in which we consider the case of a pure
dipolar interaction (i.e., no exchange interaction).

Section III summarizes the results of the simulation
studies obtained from Sec. II and provides a comparison
with the experimental results. In Sec. IV the model is
generalized to include an intraplanar exchange interac-
tion and its effect on the transition temperature is ex-
amined. Section V contains a discussion of the results
obtained in the present work and examines their impli-
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cations. Possible generalizations of the model employed
in the present analysis are considered.

II. THE HAMILTONIAN

In this section we consider the case of a two-
dimensional spin-% Ising model in which we include only
the dipolar interaction between the spins. In the follow-
ing section we will consider the more general case that
includes both the dipolar interaction as well as a nearest-
neighbor exchange interaction. The analysis of a spin sys-
tem that includes a long-range interaction, such as the
dipole-dipole interaction, by Monte Carlo simulation, is
complicated by difficulties associated with the mapping
of the system onto a lattice of finite extent.33:34 In compa-
rable systems that involve only a short-range interaction
between the spins, finite-size problems may be overcome
by applying suitable boundary conditions (such as cyclic
boundary conditions) and then extrapolating, by finite-
size analysis, to infinite systems. The extension of such
techniques to the case of dipolar systems is complicated
by the long-range character of the interaction. A com-
parison of various schemes by Kretschmer and Binder,33
has shown that finite-size effects may best be treated by
considering an infinite system of spins but restricting the
allowed configurations to those whose spins satisfy the
periodic boundary condition. We define the magnetic
moment at the nth lattice site as

Hn = Neﬂ'sn ) (1)

where S,, is a unit vector (i.e., |S,| = 1) defining the
orientation of the magnetic moment and pes defines the
effective magnitude of the magnetic moment. The pe-
riodic nature of the allowed spin configurations requires
that

=82, where ry=r,+G, (2)

where r,, denotes the position of the nth lattice site and
the vector G satisfies the requirement that

G =aL(gs,g,) for ‘3’}6{0,:!:1,:!:2,...}, 3)
Yy

where a denotes the lattice spacing (we have assumed
a square lattice, a = b) and L is an integer character-
izing the periodicity of the allowed configurations. The
restriction imposed by the periodic boundary conditions
given in Eq. (2) means that the state of the system may
now be specified in terms of a finite number of variables,
namely the L? spins in a L x L unit cell, allowing the
analysis of the system by Monte Carlo simulation. The
result for the infinite system is then obtained, using con-
ventional finite-size scaling techniques, by extrapolation.
This prescription will be followed in the work reported
here.
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The Hamiltonian for a two-dimensional spin system
that interacts solely through the magnetic dipolar inter-
action may be written as

o 8 1
™ |_.o %o axﬁ IRpm — 1

H = #eff Z SaSﬁ , (4)

n#Em
a’ﬁ

where a and (§ label the spin components and R,,, =
In —'m.

In order to exploit the periodic character of the al-
lowed spin configurations and hence reduce the infinite
summation in the Hamiltonian given in Eq. (4) to one
over a finite number of lattice sites, we introduce the
reduced vector r,,, as

Roim=Tam+ G, (5)

where G is chosen such that ry., lies in the first unit cell.
A schematic representation of an allowed spin configura-
tion is given in Fig. 1.

The Hamiltonian may then be written as

8 0 1
™ e l—»o 8z, 51:3 |G + rom — 1

p’effzz asﬂ

n;ém
a,B

2 L 2 a \? 1
g i — ——————————————
+ (o)’ 2 3 (57) |3|‘E‘o<ax,,> IGt+rn—1]

G#0 n,a
(6)

The periodic nature of the allowed spin configurations
allow us to rewrite the above expression as

L?
H = /J'eff Z SaSﬁ
n#Em
a,B

|r|—>0 3.’L'a a(L‘ﬁ Z [G’ +pm — 1

8 \? 1
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+I~‘eff§: (52)° ! |r|—»o (3xa) Z |G +rn—1|

n,x

N\ p2 U

N (ﬁ) 522 Ca®+ > SEW* (tam) SE| . (T)
n#Em
a,B

Thus we see that by restricting the allowed configura-
tions to those that satisfy the periodic boundary condi-
tion given by Eq. (2), the Hamiltonian may be expressed
as a sum over a finite number of sites which involve the
effective interaction W*# (r,,,), which is defined as
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The constant C, which appears in Eq. (7), arises from
the interaction of a spin in the first unit cell with the
spins at equivalent lattice sites and is given by

_aszm—-o (6%) Z |G+rn IG¥rn—1]° )

G#0

The Hamiltonian given by Eq. (4) contains no infor-
mation regarding the nature of the allowed spin states.
In a magnetic solid the 2J + 1 degeneracy of the elec-
tronic states forming the 4f shell, associated with the
rotational symmetry of the free ion, is typically re-
moved by the perturbing effects of the crystalline elec-
tric fields (CEF’s). In the case of Nd, Sm, Dy, and Er
specific-heat datal:3:29731 together with inelastic neutron
scattering!%23728 indicate that the ground state of these
ions is a Kramers doublet several meV below the first
excited multiplet with a magnetic moment whose magni-
tude and axis of orientation are determined by the wave
function of the CEF ground state. Confining our atten-
tion to compounds comprising only those particular ions,
we therefore restrict the orientation of the spin variable
in the Hamiltonian defined in Eq. (7), to lie along the
easy axis of magnetization, defined by the CEF ground
state and assume that the magnitude of the magnetic
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FIG. 1. Diagram showing a particular spin configuration
that satisfies the periodicity requirement imposed by Eq. (2)
with the vectors r,, and G defined by Eq. (5).

4, 0 0 erfc (n|(x — xpm) /L + G|) exp[Zm’G-(x—xnm)/L]M G
 ea s | % x—mam) [LTG] T & fc( )

G#0 G n

(8)

moment peg is equal to the ground-state magnetic mo-
ment of the rare-earth ion. Our description of these sys-
tems then reduces to a spm-— Ising system, in which the
orientation axis and the magmtude of the magnetic mo-
ment are determined from experimental data. For the
purposes of the present analysis, two distinct spin align-
ments are considered, which we refer to as the in-plane
alignment and the out-of-plane alignment. In the case
of the out-of-plane alignment the spins are assumed to
orient in the z direction, parallel to the ¢ axis. This
describes the nature of the magnetic ordering that is ob-
served in the case of DyBay;Cuz07,%7 DyBayCuyOg,14
NdBa;Cu307,!71% and GdBa;Cu307.8:35 In the case of
the in-plane alignment the spins are assumed to orient
in the y direction parallel to the b direction. This de-
scribes the various magnetic orderings that have been
observed in both ErBasCuzO; and ErBa,CuyOg,' al-
though it should be noted that the nature of the order-
ing between the planes, in the case of the ErBas;CusO7
(Refs. 4, 9, 11-13, and 18) and GdBayCu3O7, appears
to be sample dependent, a fact that is attributed to the
weak interplanar coupling in these compounds.

In the present calculation, the effective interaction ma-
trix W (r,m), defined by Eq. (8), is calculated, for both
the in-plane spin alignment (oo = § = 2) and the out-of-
plane spin alignment (« = 8 = 3) (using the symbolic
manipulation program MATHEMATICA) prior to running
the simulation and is stored in a “look up” table for use
during the simulation. The reduced temperature scale 6
used in the simulations is related to the temperature T’
in kelvins through the relation

3
6= 2a kBT (10)
iu’eff
Also we have neglected the small difference between the
lattice spacing along the a and b axis and assumed a
square lattice.

III. DISCUSSION OF RESULTS

Simulations were carried out on various size lattices,
from N = 4 x 4 up to N = 64 x 64, and for various
lengths of time. The normal Monte Carlo simulation on
the larger of the lattices comprised 10000 initialization
steps and typically 105-107 Monte Carlo steps. Nor-
mally an initial configuration was chosen from a pre-
vious run at a lower temperature (to prevent “freezing
in” of high-temperature domain-wall formations),3¢ al-
though low-temperature simulations were initialized to
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FIG. 2. Specific heat as a function of temperature for sev-
eral values of L (in-plane spin configuration).

the groundstate with a larger number of initial steps to
allow the system to reach equilibrium.

The results of the Monte Carlo simulations for the
magnetic specific heat are shown graphically in Figs. 2
and 3 for the in-plane and the out-of-plane spin align-
ments, respectively, for several values of lattice size L.
In both cases the resultant ground-state spin configu-
ration corresponded to what is observed experimentally
and gave a ground-state energy that was in excellent
agreement with those obtained previously.2?

Using the peak of the specific heat as the estimate of
the Néel temperature 6, (L) in the reduced temperature
scale , we find the critical exponent v =~ 1 for both cases,
where v is defined by 6,(L) ~ L™. Values of §,, cal-
culated for different values of L are plotted in Fig. 4,
for both the in-plane and the out-of-plane spin configu-
rations. Extrapolation of our results to L = oo puts 6,
at 3.9 = 0.1 for in-plane ordering and 6,, = 2.39 + 0.05
for out-of-plane ordering. In order to make a compari-
son with experimental data values 2a3kgT,/u? are plot-
ted against puZ; in Figs. 5 and 6 for samples, for which
both peg and T, are available. The figures correspond to
the in-plane (Fig. 5) and out-of-plane (Fig. 6) spin align-

| I | 1
2 T T T T

15 T

—&—C,(4x4)
—o—C,(8x8)
5 1 Gy (16x16)
—8—C,(32x32)

FIG. 3. Specific heat as a function of temperature for sev-
eral values of L (out-of-plane spin configuration).
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FIG. 4. Estimates of the Néel temperature as a function of
L~? for in-plane (o) and out-of-plane (O) spin configurations.

ments, respectively. The results obtained from the Monte
Carlo simulations are represented by the solid line. From
the comparison given in Figs. 5 and 6 we see that the
results obtained from the Monte Carlo simulations are
consistently lower than the experimental values. This im-
plies that there must be some other interaction, besides
the dipolar interaction, contributing to the magnetic or-
dering.

Finally we comment on the critical indices we obtain
for this model. Using the corresponding susceptibility
and order parameter data together with the relations,

M ~ (=t)P(t = 07) ~ L¥ (t = 0), (11)
T~ (1)t — 0) ~L¥ (¢ =0), (12)

the exponents are found to be /v =02 £0.1,v/v = 1.9
+ 0.1 and /v = 0.14 £ 0.10 and /v = 1.8 £ 0.1, for in-
plane and out-of-plane spin alignments, respectively. The
lack of precision is, in part, due to the curvature in the
plots resulting from the small system sizes. Nonetheless,
these numbers are in agreement with the expected result
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FIG. 5. Comparison of experimental Néel temperature
with result from pure dipolar interaction (in plane). Data
points are (A) ErBa;Cu3sO7 (Ref. 12), (o) ErBaz;CusO.
(Ref. 11), and (O) ErBazCusOs (Ref. 14).
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FIG. 6. Comparison of experiment and result from pure
dipolar interaction (out of plane). Data points are (o)
DyBazCu3O7 (Ref. 6), () DyBazCusOs (Ref. 14), and (o)
NdBa2Cu3O7 (Refs. 17 and 19).

that the pure dipole system is in the universality class of
the two-dimensional Ising model.?2:37

IV. EFFECTS OF INTRAPLANAR EXCHANGE

The fact that the values of the Néel temperature ob-
tained from the preceding analysis fall consistently be-
low the observed values in all cases for which a quan-
tative comparison is possible, suggests that some form
of exchange interaction between the rare-earth ions con-
tributes to the magnetic interaction. While this has been
the source of some speculation®® little is known about the
origin and character of this interaction. This said, how-
ever, given the highly anisotropic nature of these com-
pounds, it is undoubtably the case that both the nature
and magnitude of the exchange interaction between rare-
earth ions located in the same crystalographic plane (in-
traplanar coupling) will differ qualitatively from that be-
tween ions located in successive planes (interplanar cou-
pling).

Given that the different crystal structures that
have been observed in these compounds (RBa;Cu3Or,
RBay;Cuy0s, and RBay;CusO) differ primarily in the
stacking of the planes containg the rare-earth sites, it
might be hoped that a comparison of the various mag-
netic properties would permit the identification of the
intraplanar and interplanar contributions to the mag-
netic interaction between the rare-earth ions. While such
studies have been conducted the magnetic properties,
such as the Néel temperature and the saturation mo-
ment Les, determining the results do not appear to ad-
mit a systematic interpretation. One point concerning
the stuctural differences between the rare-earth lattice
in the RBasCu3O7 compounds and in the RBay;CusOs
compounds is the fact that in the case of RBayCuyOg
succesive planes of rare-earth ions are displaced half a
lattice length along the b axis relative to the correspond-
ing planes in the RBa;Cu3zO7 compounds. Consequently
the rare-earth ions are no longer stacked in rows along
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the c direction. In the case of the out-of-plane spin
alignments Lynn has argued, on the basis of crystallo-
graphic considerations, that this results in a cancellation
of all interplanar interactions.!¢ This is indeed borne out
by the fact that as one lowers the temperature below
the Néel temperature in ErBa;Cu3O7, ErBay;CuyOg, and
DyBayCu30O7 one begins, as one must, to observe three-
dimensional ordering. In DyBayCuyOg, however, exper-
iments are not able to detect any evidence of a crossover
to 3D ordering.14

In order to gain some insight into the magnitude of the
exchange interaction, within the context of the present
model, the Hamiltonian given in Eq. (4) is generalized to
include a nearest-neighbor exchange interaction.

2
_ K agh fym 20 1
H 2 l: Z SnSm |Hr—no0 0zq 0z |Rpm — 1|

n#Em
o,

J
+5 ZS::S:::} :
v

where )\ denotes a sum over nearest neighbors and
J characterizes the strength of the exchange coupling.
The variation of the Néel temperature with the exchange
parameter J is shown in Fig. 7 for a 16 x 16 lattice for
the out-of-plane spin configuration. The relationship be-
tween the Néel temperature 6,, and the exchange param-
eter is well characterized in the range shown by the linear
relationship

(13)

0, = 2.4242 + 2.3523J . (14)

Extending the range of the calculation to include larger
(negative) values of the exchange coupling leads ulti-
mately to the destabilization of the pure antiferromag-
netic ground state. If the value of the exchange interac-
tion is sufficiently large (and negative) then Monte Carlo
simulations, in which the system is slowly quenched from
a random initial configuration at high temperature, show
that the ordered state is no longer the pure antiferromag-

FIG. 7. The Néel temperature 6, as a function of the
exchange parameter J for out-of-plane configuration. The
straight line is given by Eq. (14).
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TABLE I. Estimates of the exchange coupling parameter J for several compounds.
peft J On pigJ/2ksa’ (K) T (K)
DyBa2CuzO~* 7.25uB 0.509 3.67 0.138 0.95
DyBa.;»Cu‘;Osb 5.3 uB 1.703 6.44 0.251 0.95
NdBa,Cu3O7° 1.14up 33.3 80.77 0.454 0.551

2Reference 6.
bReference 14.
°Reference 19.

netic state but corresponds instead to the ferromagnetic
state. The Monte Carlo simulations also reveal an inter-
esting region intermediate between the ferromagnetic and
pure antiferromagnetic phase, in which the spins order
ferromagnetically along one axis and antiferromagneti-
cally along the other axis at sufficiently low temperature.
A comparison of the energy of this configuration, with the
energy associated with the ferromagnetic and the pure
antiferromagnetic configurations, reveals a range of val-
ues for the exchange coupling for which the energy of this
antiferromagnetic ordering is less than both energy of
the ferromagnetic and the pure antiferromagnetic states.
Given the degree of symmetry with respect to the a and
b axis inherent in the out-of-plane spin configuration this
result is somewhat surprising and serves to illustrate the
subtle phenomena that can arise as a consequence of the
interplay between the long-range character of the dipolar
interaction and the short-range exchange interaction. As
a consequence of the complex phase behavior manifest by
the variation of the strength of the exchange coupling J
the temperature at which the peak in the transition tem-
perature appears is no longer described by the simple
formula given in Eq. (14) but shows instead a nonmono-
tonic behavior that delineates, at least approximately,
the boundary between the various ordered phases and
the paramagnetic phase.

Despite the complexities discussed above, the relation
between the strength of the coupling and the Néel tem-
perature given by Eq. (14) is nevertheless valid over a
sufficient range of temperature that we can obtain an es-
timate of the strength of the exchange coupling required
to reproduce the experimentally observed Néel temper-
atures, for the Dy and Nd compounds, all of which are
observed to order with spins aligned perpendicular to the
plane. However, it should be kept in mind that the fol-
lowing analysis assumes that the exchange interaction
is both isotropic and restricted to ions located in the
same plane. While these assumptions are possibly valid
in the case of DyBa;Cu4Og their validity in the other
compounds is less certain. Estimates of the exchange
parameter J for several compounds are given in Table I.

A similar analysis for the in-plane spin configuration
has also been carried out. Results indicate that the dipo-
lar ground state is stable only for a particular range of
coupling, with the pure antiferromagnetic or ferromag-
netic state being stabilized with the inclusion of a suffi-
ciently large positive or negative coupling constant, re-
spectively. While this is hardly surprising calculations in-
dicate that the magnitude of the coupling required to sta-
bilize the ferromagnetic phase is relatively small, and as

a consequence we are unable to reliably describe the de-
pendence of the Néel temperature on the strength of the
exchange coupling J in terms of a simple linear relation-
ship similar to that given by Eq. (14) for the out-of-plane
spin configuration in the domain of interest (i.e., J = 0).
The problem is compounded by the fact that finite-size
effects are stronger for the in-plane spin configurations
than for the out-of-plane spin configurations, while the
problem of stable domain-wall formations is found to be
more prevalent in the in-plane spin configurations. Both
of these problems, finite-size effects and domain-wall for-
mation, make the studies for the in-plane spin configura-
tions more time consuming and make it more difficult to
obtain consistent results than in the corresponding stud-
ies for the out-of-plane spin configurations.

A more detailed discussion of the phase behavior
of these systems and the possible relevance of the re-
sults obtained with regard to the RBay;Cu3zO7_s and
RBayCuyOg compounds will be deferred till later.

V. SUMMARY

In the following analysis we have obtained, by means
of Monte Carlo simulation, a reasonalkly accurate esti-
mate of the transition temperature of a two-dimensional
Ising dipolar system for two distinct magnetic configu-
rations in which the spins are aligned out of plane and
in plane, respectively. A comparison of the results ob-
tained from the analysis with results obtained for several
of the Nd, Dy, and Er compounds show that, in all in-
stances for which a comparison is possible, the observed
transition temperature is higher than that predicted by
theory. By generalizing the analysis, to include the ef-
fects of a nearest-neighbor exchange, estimates of the ex-
change interaction that yield the observed value of the
transition temperature are obtained. The results show
that the exchange and dipolar interactions are of com-
parable magnitude for the Nd and Dy compounds. This
conclusion is, however, based on the assumption that the
exchange interaction is isotropic and is restricted to ions
located in the same plane. While these assumptions may
be valid in the DyBay;CusOg compound, for crystallo-
graphic reasons, their validity in the other materials con-
sidered is less certain. One other important result of this
study is the fact that, for the relevant range of parame-
ters, it would appear that the magnetic properties of the
two-dimensional antiferromagnetic Ising model are not
qualitatively affected by the long-range character of the
dipolar interaction, in particular our results confirm the
conclusion that the presence of the dipolar interaction
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does not change the universality class of the system.
There are two rather obvious extensions to the present
analysis. In the first instance, while one can argue that
the interplanar coupling between the rare-earth ions is
in some sense weak, experiments clearly show the ap-
pearance of three-dimensional magnetic order in all but
a few instances at sufficiently low temperatures. The ex-
tension of the present work to include the interplanar
coupling in some manner would therefore be of obvious
value. Such work is currently in progress. A second as-
pect of the present work that deserves closer scrutiny is
the validity of the Ising model in describing these sys-
tems. While there is little doubt that in the case of the
Kramers ions a spin S = % model is appropriate in the
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temperature range of interest, the precise character of
the CEF ground state does not, obviously, justify the as-
sumption of an Ising model. It may therefore be of some
value to consider the origin of the Ising-like behavior of
these systems from within the context of a more basic
model.
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