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Bose-Einstein condensation, phase fluctuations, and two-phonon effects in superfluid He
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Various infrared divergencies characterizing the static particle Green's function and the momentum

distribution of Bose superfluids are investigated through a direct analysis of the thermal and quantum
fluctuations of the phase of the order parameter. We explicitly investigate the role of two-phonon effects
which are responsible for logarithmic (at T =0) and 1/q (at TWO) divergencies in the longitudinal static
Green's function of a three-dimensional Bose superfluid. The temperature dependence of the condensate
fraction of superfluid He is finally discussed with special emphasis to the contribution arising from the
thermal excitation of rotons.

I. INTRODUCTION

Much theoretical work has been devoted in the litera-
ture to the study of the particle Green's function of Bose
superfluids (for a recent review and an up-to-date list of
references see, for example, Ref. l). Important features
of such a function are associated with the occurrence of
the phenomenon of Bose-Einstein condensation (BEC).
In particular BEC is responsible for the existence of a
discrete pole at low rnomenta and frequencies, corre-
sponding to the propagation of phonons, and for the con-
sequent appearance of infrared divergencies in the static
particle Green's function as well as in the momentum dis-
tribution. The divergencies associated with one-phonon
effects are well established and rather rigorously proved.
These include, in particular, the 1/q divergency of the
momentum distribution at T =0 (Refs. 2 and 3) and the
1/q divergency of the static Green's function. The
occurrence of additional divergencies in the longitudinal
static Green's function as well as in the momentum dis-
tribution has been pointed out in Refs. 10—12 using di-
agrammatic analysis and functional integration methods.
More recently the same problem has been investigated in
Ref. 13 in the case of a dilute Bose superAuid.

The purpose of this work is to discuss the various
I

divergencies occurring in the particle Green's function of
a 30 Bose superQuid by a direct investigation of the
phase fluctuations of the order parameter (Secs. III and
IV). The analysis is carried out using the hydrodynamic
picture of Bose superAuids which is expected to provide
the correct description of infrared divergencies in in-

teracting Bose systems. This picture allows for a natural
distinction between one-phonon and two-phonon contri-
butions and permits us in particular to calculate in a sim-

ple and transparent way the infrared divergencies arising
from two phonon effects.

In Sec. V we discuss the problem of the temperature
dependence of the condensate fraction no(T) In addit. ion
to the well-known low-temperature behavior fixed by the
propagation of long-wavelength phonons, ' we explore
the region of higher temperature and discuss the contri-
bution to no( T) arising from the thermal excitation of ro-
tons.

II. STATIC PARTICLE GREEN'S FUNCTION
AND MOMENTUM DISTRIBUTION

The diagonal and off-diagonal retarded particle
Green's functions are defined by the equations

G' '(q, co)=( i)f "d(t —t')e' I' —"([a&(t),&&(t')])8(t —t'),

G "(q,co) =( —i)f "d (t —t')e' " "t [a (t), a ~(t')]) 8(t —t'), (2)

where a (t)=e' '& e
In the following we will be mainly interested

in the static limits G«(q, co =0), G "(q,co =0), and in
the momentum distribution of the system defined by

n(q)=(a a )

+~ 1 a'ade ImG' '(q, co),
l —exp( —

Pco )

where P= l /ks T and fi= l. Definitions (I)—(3) hold both

at T=O and TWO. In the latter case the dissipation-
fluctuation theorem permits us to relate the low-q limit of
the above quantities through the equation

a an (q) o= —kgTG' '(q, co=0)

At low q the behavior of the particle Green's functions
(I)—(2) in a Bose superfluid is fixed by the following
laws:
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G' '(q, co=0) 0= —G"(q,co=0)»ta

2nom
7

q
2

(5)

where no is the condensate density (no=NO/V) and p, is

the superfluid density of the system. Result (5) can be
used, together with the dissipation-fluctuation relation

(4), to determine the low-q behavior of the momentum

distribution at finite temperature

kg Tm np
n(q, T)»

p q
2

(6)

On the other hand at zero temperature the momentum

distribution obeys the low-q law: ',
mno

n(q, T =0)
2qn

(7)

In fact in GL the leading terms in 1/q of Eq. (5) cancel
out, differently from what happens in the transverse
Green's function:

a~aG (q, r0=0)=-,([G' '(q, F0=0)—G"(q,F0=0)]
f ' (qia)=0)

that diverges as 1/q . The divergent nature of the longi-
tudinal component was first anticipated by Gavoret and
Nozieres and later explored in Refs. 10—13. In the next
section we provide an explicit derivation of the low-q be-
havior of GL(q, co=0) by a proper inclusion of two-
phonon effects.

III. THERMAL FLUCTUATIONS OF THE PHASE

In this section we study the behavior of the momentum
distribution at small momenta and finite temperature by
looking at the fluctuations of the particle operator. At
small momenta these are governed by the fluctuations of
the phase which are responsible for the divergent behav-
ior of n (q). It is convenient to work in the coordinate
space where the one-body density [Fourier transform of
n (q) ] is given by

p'"(.) = &4'(.}4(0)& . (10)

In Eq. (10) 0' is the particle operator whose macroscopic
component O'M can be written as:

which originates from the zero point motion of phonons.
In Eq. (7) c is the sound velocity.

While results (5)—(7) are well established and have been
rather rigorously proven, the occurrence of additional
divergencies in the particle Green's function as well as in
the momentum distribution has been the object of less
systematic work in the literature. In particular an in-
teresting question to discuss is the low-q behavior of the
longitudinal static Green's function

a'a
GL (q, co=0)= —,'[G' '(q, co=0}+G"(q,co=0)]

—(Ga +a,a+a
(q ~

fj (r) —Qn elk(f)

where no is the condensate density and 4 is the phase
operator.

In the following we will consider only the contribution
to p"'(r) arising from fluctuations of the phase 4 which
fix the long-range behavior of p'"(r). Using Eqs. (10) and
(11) one can write

P(54) ~exp
0

k~T

E,
=exp

k~T

=exp — g k ~54), ~

2m ksT
(13}

where we have decomposed the phase fluctuation in its
Fourier components. The above expression for the
superfluid kinetic energy is meaningful only in the frame-
work of the hydrodynamic picture of superfluids and con-
sequently only for the small-k components of the phase
fluctuations. From Eq. (13) we find ( ~54), ~ )
=ks Tm 2/P, k z and for a 3D system

k, rm2
(4(r)4(0) )„„= (14)4', r

and consequently the asymptotic behavior of the one-
body density takes the form

k~ Tm
p (r)„„=no 1+

4mp, r
k, rm

2'2
+- + ~ ~ ~

2 4~p, r

(15)

The factor e ( ' ' ) [see Eq. (12)] gives a renormaliza-
tion of the condensate density no. This renormalization
is fixed by short-range effects and cannot be calculated in
this approach. In momentum space Eq. (15) yields

nom ks T nom (ks T)
n(q) = + +

2 16p, q
(16)

Result (16) generalizes the well-known Equation (6)
through the inclusion of the divergent tenn in 1/q whose
origin, as we shall see more explicitly in the next section,
can be associated with two-phonon effects. Using the
fluctuation-dissipation theorem (4), result (16) yields the
following low-q behavior of the static particle Green's
functions:

())(r) —n (& &'[»'(r) —»(0)] ) —n e
—([4(r)—4(0)] )/2„—no e —noe 7

(12)

where we have used the fact that the probability distribu-
tion for the occurrence of phase fluctuations is Gaussian.
The phase fluctuations induce changes in the grand
canonical potential through the changes in the superfluid
kinetic energy I(:,= f ,'p, u,—dVwith v, =V@/m As. a
consequence the explicit form of the probability distribu-
tion is given by
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npm kaT m np
2

6' '(q, co=0)~ 0= —
2

p q2 q 16p2

npm 2

6"(q,co =0)
~

psq

kgT m np

q 16p,

(17)

kgT m np
GL (q, co =0)

q 16p2
(18)

The occurrence of such a behavior was already pointed
out in Refs. 12 and 13. The authors of Ref. 12 did not
however calculate explicitly the coefficient of the corre-
sponding law, while the results of Ref. 13 concern the di-
lute Bose gas at low temperature (no=n, ps=mn)
(Note that the results of Ref. 13 differ by a factor 4 from
the ours both at TWO [Eq. (18)] and at T=0 [see Eq.
(28) below]. )

where the result for G" is straightforwardly obtained
starting from the calculation of ((p(r)(I((0) ).

Results (17} show that the longitudinal Green's func-
tion exhibits a 1/q divergency:

tp(t, r)= g 2 Vppk

' 1/2
i (kr —co(k)t]cke

1/2
ppk

p (t, r)= gi
2VC

—i [kr—co(k)t] )cke ),
i [kr —co(k)t]

eke
—i (kr —ru(k1t] }

(21)

Similarly to Sec. II, the link between the phonon
description and the formalism ofyarticle operators is ob-
tained using the relation q&(r}=4(r)/m between the ve-
locity potential and the phase operator 4 of the macro-
scopic component (11)of the particle operator.

The applicability of the above formalism is limited to
the regime of low temperature, where the whole system is
superfluid (p, =p), and of large wavelengths, where the
behavior of the quantities (1)—(3) is dominated by the
phase fluctuations of the order parameter.

By expanding the exponential (11) up to second-order
terms in 4 and taking the Fourier transformation of the
particle operator qt(r), one finds

IV. QUANTUM FLUCTUATIONS OF THE PHASE

Results (16}—(18) give the behavior of the momentum
distribution and of the static particle Green's function in
the "classical" regime dominated by thermal fluctuations.
This regime is fixed by the condition kz T ))co(q), where
co(q) gives the elementary excitation spectrum of the sys-
tem. In superfluid He this condition is in practice
equivalent to imposing kz T ))cq where c is the sound ve-
locity.

In the opposite limit k&T(&cq the behavior of the
momentum distribution and of the static Green's func-
tion is dominated by the role of quantum fluctuations. In
order to explore this "degenerate" regime, as well as the
interpolation between the two regimes, we make explicit
use of hydrodynamic picture of superfluids. This picture
assumes that the many-body system can be replaced by a
gas of noninteracting phonons and is consequently de-
scribed by the hydrodynamic energy functional:

ppU &2 2

F. = JdV +
2 2pp

where the velocity field of the superfluid is fixed by the ir-
rotational law v, =Pep and p'=p —

pp is the change with
respect to the equilibrium density of the system.

By quantizing the fields y and p' we can introduce the
hydrodynamic Hamiltonian

&q =+no V 5q 0+i+no 4& —
—,
' Q C&~4 . (22)

V P q P
'

mc

2nq
(cq+c q) (23)

for the phase operator 4q in terms of the phonon opera-
tors cq and cq. Equations (22) and (23) permit us to write
Eqs. (1)—(3) in terms of the expectation value of products
of phonon operators. If one ignores interaction terms
among phonons these values are straightforwardly calcu-
lated. In particular the expectation value of odd prod-
ucts of phonon operators identically vanishes and in the
physical quantities (1)—(3) one can distinguish in a natu-
ral way between one-phonon and two-phonon contribu-
tions. The inclusion of interaction terms among phonons
gives rise to higher-order effects in the final results and
will be ignored in the present work.

Inserting Eqs. (22) and (23) into Eqs. (1) and (2) we find
the following result for the static particle Green's func-
tion:

mnp
G,(q, ~=O)=-

nq
(24)

Higher-order terms are not expected to give rise to diver-
gent contributions. They however provide a renormaliza-
tion of the condensate density equivalent to the one dis-
cussed in Sec. II. From Eq. (21) we obtain the simple ex-
pression (qAO)

1/2

(20) GI (q co 0}H= g ck(ckc„+—,'),
k

where ck(ck) are the creation (annihilation) operators rel-
ative to the phonon carrying impulse k and frequency
co(k) =ck. These operators are related to the operators g
and p through the expressions' '

(mc ) no 1 F(p)
~'(p) ~'(p) —~'(Iq —

p~ )

(25)

where in the sum we exclude the term with ~p ~

=
~q

—p~.
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A similar calculation yields the result

E(q)
n (q) =nome

neo (q)

(mc } no 1 E(p)E(lq pl)
2n' I'

p co'(p)co'(lq —pl)
(26}

for the momentum distribution. If one uses the phonon
dispersion co(p) =cp the sums of Eqs. (25) and (26) contain
unphysical ultraviolet divergencies that can be avoided
by introducing a cutoff in the sum. The inclusion of such
a cutoff does not affect the singular low-q behavior that is
the object of the present investigation and for which ex-
plicit results can be derived starting from Eqs. (25) and
(26). In the above equations we have introduced the
thermal average energy

E(p) =co(p)[N(p)+~1] (27)

m cno2

G, (q, ~=o),=, , ln(qI. ),
4n (2n. )'

(28)

where N(p)= [exp[Pco(p)] —1] ' is the usual Bose fac-
tor. The occurrence of such a factor suggests the distinc-
tion between two different regimes.

(i) The "classical" regime ks T))cq, dominated by
thermal fluctuations, where E(q)=k&T. Carrying out
explicitly the summation over p one straightforwardly re-
covers the results of Sec. II [see Eqs. (16) and (17)] under
the hypothesis p, =p (notice that this hypothesis is impli-
citly assumed in the low-temperature description of this
section).

(ii) The "degenerate" regime kn T «cq, dominated by
quantum fluctuations, where E(q) = ,'cq and we —find the
following result for the longitudinal static Green's func-
tion:

a) 1
GL, (q, co=0)=— dco —ImGI (q, co},

7T p Q)
(30)

mnpC m C np
2 2

n (q)» o= — ln(qL)
2nq ]6~n

(32)

and to a 1/q divergency in the longitudinal Green's func-
tion

m cno2

G~(q, co=0) o=-
16n q

In this case the strength ImG~ (q, co) behaves as
1/+co —c q for small q and co) cq as illustrated in Fig.
l(b). [Note that the coefficient of Eq. (33) differs by a fac-
tor 2 from the one of Ref. 11).]

(33)

nL (q)= ——f dcoImGL (q, co), (31)

where nI (q) =
4 ((aq+a }(a +at ) ). Inspection of

the low-co region in the integrand of Eqs. (30) and (31) re
veals the typical situation shown in Fig. 1(a) where we
find a continuum of two-phonon excitations for m ~ cq
whose strength Im GL (q, co) approaches a constant value
when co~cq. Note that for co (cq the strength must van-
ish because of the phonon gap typical of superAuids.
This co dependence of ImGL (q, co) is actually responsible
for the logarithmic contribution to Gz (q, co=0) and ex-
plains why the two-phonon contribution does not give
rise to divergent terms in the momentum distribution at
T =0.

The analysis of the longitudinal static Green's function
and of the momentum distribution at zero temperature
can be naturally extended to the 2D problem. In this
case one finds that the two-phonon contribution gives rise
to a logarithmic divergency in the momentum distribu-
tion

where L is a constant of the order of interatomic dis-
tances (qL « 1). The coefficient of the logarithmic
divergency coincides with the one first calculated by Po-
pov" using a different method based on functional in-
tegration.

Similarly for the momentum distribution we obtain the
result

8
0'

0
E

3-D

mnoc
n (q)» o= +const .

2nq
(29)

Note that differently from the "classical" regime, the
only divergency characterizing the momentum distribu-
tion of a 3D superfiuid arises from the one-phonon con-
tribution (7).

It is worth noting that the new logarithmic divergency
appearing in the static longitudinal Green's function is
the consequence of two-phonon effects. The origin of the
logarithmic divergency has a clear interpretation if one
investigates the imaginary part of the longitudinal
Green's function. Such a function is related to
Gl (q, co=0) and to the longitudinal component of the
momentum distribution through the equations (we work
here for simplicity at T =0):

8
CF

0
E

FIG. 1. Schematic picture of the longitudinal strength
ImGL(q, co) versus co at small momenta and frequencies. Note
the 1/+co —c'q behavior exhibited by the two-phonon contri-
bution to ImGL (q, co) in the 2D case.
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Direct consequences of the above results concern the
behavior of the static diagonal and off-diagonal self-
energies X++ and X+ defined, for Bose systems,
through the equations'

static particle Green s function implies the vanishing of
the off-diagonal self-energy in 3D superfluids according
to the following laws.

(i) "Classical" limit (kT ))cq)

aa~G" (q, to=0) =—

X+
G "(q,to=0) =

where

q
2m

@+X++
(34)

(35)

lim X+
4Ps q

q p m np k&T

(ii) "degenerate" limit (kT « cq)

n (2n. )
lirn X+
q p tn ~cn& ln(1/qL )

(37)

(3&)

9+&++ ~+—q
2m

q —p+X+++X+
2m

(36)

Using the results of our analysis we find that the diver-
gent behavior of the two-phonon contributions to the

I

in agreement with the findings of Ref. 11.
It is finally interesting to point out that result (26) for

the momentum distribution of a Bose superfluid has the
same form as the one of the static structure factor in
solids expanded in one-phonon and two-phonon contribu-
tions (see, for example, Ref. 17):

EQ EPEE P

g(k) g (k) —
~f(k)~2

—2w(k) y ~k. q~2 J + ~f (k)~2
—2lv(k) y y ~k p ~2~k q

—
p~2 j J

(39)

In Eq. (39) So(k) is the elastic Bragg contribution, q is re-
lated to the reciprocal lattice vector g by q=g —k, f (k)
is the atomic scattering factor, e '"' is the Debye-
Waller factor, e~ is the polarization vector, and j indi-
cates the various polarizations of the phonons. At TAO
the static structure function near the Bragg value exhibits
the typical 1/q and 1/q divergencies due to one-phonon
and two-phonon contributions, respectively. The analogy
between Eq. (39) and Eq. (26) is further exploited by not-
ing that in crystals the proper order parameter is propor-
tional to the Debye-Wailer factor and the typical energy
mc of superfluids is replaced by the term ~ke)~ /m.

V. TEMPERATURE DEPENDENCE OF THE
CONDENSATE FRACTION

In this section we investigate the temperature depen-
dence of the condensate density no(T) in superfluid He.
This problem has been the object of several experimental
studies via neutron-scattering measurements. ' From
a theoretical point of view the temperature dependence of
the condensate was investigated in Refs. 7 and 14 by ex-
ploring the role of long-wavelength phonons which fix
the low-temperature behavior of no( T) [see Eq. (56)
below]. More recently ab initio microscopic calculations
of no(T) employing realistic interatomic potentials have
also became available.

The main purpose of this section is to point out the
role of the roton contribution to no(T) employing a
method similar to the one first used by Landau to calcu-
late the roton contribution to the specific heat and to the
superfluid density. This approach permits us to explore
the region T=1—1.5 K where the deviations from the

'1=0 value of np start to be appreciable. To this purpose
we study the termodynamic behavior of a Bose system
governed by the Hamiltonian

8'(a) =8' — —f dr()II+)Il )
2&V

=8' ——(a()+a() ) (40)

obtained adding the term —(a/2)(Go+80) to the grand
canonical Hamiltonian O'=P —pk The inclusion of
such a field breaking the gauge symmetry of the system is
a usual procedure in the theoretical study of Bose
superfluids. ' In the presence of the perturbation the
average value ( a o ) is a real number and the following
identity holds:

+n () ( T) V = ( a() ) =— ()8'(a)

an(a)
Bcx

(41)

Q(a, T) =Q(a, T =0)

k~ TV
+ f dp inj 1 —expI —Pe(a,p)]],(2')

(42)

where Q(a, T =0) and e(a,p) are, respectively, the ener-

where the grand canonical potential Q(a) has to be cal-
culated in the ensemble relative to the Hamiltonian
H(a). Under the hypothesis that the termodynamics of
the system is equivalent to the one of a gas of nonin-
teracting elementary excitations, the grand canonical po-
tential can be written as
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gies of the ground state and of the elementary excitations
of the system governed by the Hamiltonian A'(a). By
explicitly carrying out the derivative of Eq. (41) with

respect to a we obtain the following result for the tem-
perature dependence of the condensate density np( T):

ry excitations in the framework of the hydrodynamic
theory of superfluids.

By developing the particle operator (11) up to second-
order terms in the phase we obtain [see Eq. (22}]

N (p), (43) &0+@0=2+no V—
v V

(50)

where no is the value at T =0 and N(p) is the Bose factor
relative to the unperturbed elementary excitations. In
the region of temperatures where the thermal correction
is small, Eq. (43) can be rewritten as

The corresponding term —(a j2)(ito+80) has to be add-
ed to the hydrodynamic Hamiltonian that takes the form

&(a)=g ', l~), l'+
'

Ip, l'+

no(T)=no — fdpv(p)N(p),
1

(2n )

where we have introduced the dimensionless quantity

(44)
(51)

v(p) =2+no V
Be(a,p}

Ba a=o
(45)

ps(T)=p+, Jd pp'1 2 BN(p)
3(2~)'

(46)

for the temperature dependence of the superfluid density.
The quantity v(p) entering Eq. (44) has an alternative

microscopic interpretation. In fact the temperature
dependence of the condensate density can also be written
as"

no(T)=no+ Jdp((plaoaolp)
1

(2m )

—(ola,'a, lo& }N(p), (47)

where lp) are the elementary excitations of the system.
Comparison with Eq. (44) yields

v(p) = (Olaotaolo) —(plaotaolp)

and shows that v(p) corresponds to the number of atoms
leaving the condensate when an elementary excitation
lp) is created in the system.

In the limit of a dilute Bose gas (DBG) the quantity
v(p) takes the analytical expression'

e'(p)+ eo(p)
v (p)= (49)

2ep eop

where eo(p) =p /2m, e(p}=[c p +eo(p)]', and c is the
sound velocity expressed in terms of the scattering
length. The same result for v(p) can be obtained from
the calculations of Ref. 13 for the energy of the elementa-
ry excitations of a weakly interacting Bose gas in the
presence of the symmetry-breaking term (40).

In the region of very low temperatures the temperature
dependence of no( T) is determined by the long-
wavelength excitations of the system, similarly to what
happens for the superfluid density pz(T). This behavior
was explored in Ref. 7. Here we recover the results of
Ref. 7, by calculating the energies e(a,p) of the elementa-

Result (44) is the analog of the most famous Landau re-
sult

k~p am +no+a~" m v'V (52)

The violation of the equation of continuity is a direct
consequence of the fact that the perturbation field in Eq.
(40) breaks the gauge symmetry, yielding a nonconserva-
tion of the number of particles. Vice versa the Euler
equation is not affected by this term and the energy of the
elementary excitations is finally given by the expression

' 1/2
a nom

e(a,p)=cp 1+
n&V p

(53)

The a dependence of Eq. (53) accounts, as already dis-
cussed, only for the effects of the phase fluctuations in-
duced by the particle operators Qo and &o entering Eq.
(40) and ignores other effects originating, for example,
from the fluctuations in the density induced by such
operators. The effects of the phase fluctuations are the
dominant ones at small momenta and give rise to a gap in
the excitation energy at p =0

e(a,p =0)=c
1/2

a nom

&Vn
(54)

The occurrence of a gap in the quasiparticle spectrum in-
duced by the inclusion of perturbation terms of this na-
ture has been already discussed in the literature. ' The
quantity v(p) entering the relevant formula (44) is easily
obtained from Eqs. (45) and (54) and exhibits the diver-
gent behavior

cm no
v(p)~

p n
(55)

The same divergency (with no =n ) occurs in the dilute
Bose gas [see Eq. (49)]. By inserting result (55) in Eq.
(44) we recover the result of Refs. 7 and 14

where 4& and p& are the Fourier transforms of the phase
and the density operators, respectively. The presence of
the term in a has a crucial consequence on the equation
of continuity that takes the form
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no(T) —no

no
Jdp N—(p)

p(2vr) p

(mk~ T)

12pc
(56)

no( T)= no v(po )Na ( T)
2

Po
ps(T) =p

(57)

(58)

holding in the T~0 limit.
When the temperature of the system is increased the

role of long-wavelength phonons becomes less and less
important with respect to the one of rotons. The roton
contribution to no(T) can be investigated using the same
procedure currently employed in the study of ps(T). In
particular in the roton region the relevant p dependence
in the integrals (44) and (46) comes from the Bose func-
tion N(p). In the range of temperature where we can ig-
nore the phonon contribution as well as the interaction
among rotons one finds the following equations:

phase transitions according to which no and p, are ex-
pected, ' in liquid helium, to have practically the same
temperature dependence in the critical region:
no -p, - ( Tq —T)

Using the theoretical value n o/n =0.09 given by
Green's function Monte Carlo calculations, ' Eq. (61)
gives the estimate v(po) =0.6. A larger value [v(po) —1]
is obtained comparing directly Eq. (60) with the experi-
mental value 5no/no-——0. 1 at T=1.S K. The fact
that in both estimates the coefficient v(po) turns out to be
of the order of 1 suggests the appealing idea of a direct
correspondence between the atoms that leave the conden-
sate and the thermally excited rotons. This idea leads,
via Eq. (61), to a surprising connection between the small-
ness of the ratio no ln and of the quantity 3k~ Tzm /po.

A very difFerent picture would emerge if one tried to
extrapolate the hydrodynamic result (55) to the high-
momentum region. A reasonable procedure is in this
case to use "dispersive hydrodynamics" where the sound
velocity is momentum dependent and one finds

where

e(po)m no
v (p )= =0.02 .

p2 n
(63)

2p (pk T)' e
NR(T) =

(2m )
(59)

k~T
no(T) =no —3v(po) p„(T),

Po
(60)

is the density Nz of the thermally excited rotons and po,
p, and 6 are the usual parameters characterizing the ro-
ton spectrum. Note the difFerent temperature depen-
dence in the factors proportional to N~(T) in Eqs. (57)
and (58).

It is worth noting that the roton coefficien v(po) can-

not be safely calculated using the long-wavelength expan-
sion (55) valid only in the phonon regime (see also the
comment at the end of the section) and consequently its
determination requires a fully microscopic calculation. A
rough estimate of v(po) can be, however, obtained by
rewriting Eq. (57) in the form

The discrepancy between this estimate and Eq. (61) sug-

gests that in general one might expect two possible
scenarios for the temperature dependence of no. In the
first one, corresponding to estimate (61), this dependence
is exploited over the full roton region of temperature. In
the second one, corresponding to estimate (63), the tem-

perature dependence essentially occurs in the critical re-

gion where Eq. (57} is not applicable and where no(T)
rapidly jumps to zero. Experimental data seem to
confirm the first scenario.

In Fig. 2 we present the prediction of Eq. (62) together
with the experimental values taken from the recent
analysis of neutron-scattering data of Ref. 20. Clearly
much more accurate measurements in the range
T =1—1.S K are needed in order to check the validity of
Eq. (57) and to determine the coefficient v(po ) with better
accuracy. In this context we note that the ab initio calcu-
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where p„=p—p, is the actual normal density of the sys-

tem. In this form the law for no(T) is expected to be

more accurate than Eq. (57) at high temperatures where

the interactions among the elementary excitations be-
come important. By extrapolating result (60) up to the A.

point where no(T& ) =0 and p„=p=mn, one finds

2
o no

v(po }=
3k, T,m n

and the T dependence of the condensate fraction takes
the simple form

QQ — ii ir

O
ir

c
O

5—

T P„(T)
no( T)=no 1—

Tg p
(62)

Note that the behavior of Eq. (62) near Ti agrees with

the predictions of the scaling theory for second-order

FIG. 2. Temperature dependence of the condensate fraction

no(T)/n in superfluid He. Experimental points are taken from

Ref. 20. The continuous line gives the prediction of Eq. (62).
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lations of no(T) of Ref. 22, based on a path integral
Monte Carlo simulation, cannot be used to extract v(po)
because of the large statistical errors.

It is finally worth noting that if one neglects the possi-
ble pressure dependence of the parameter v(po), Eq. (61)
can be used to estimate no at different pressures. The re-
sulting predictions for no(P) agree reasonably well with
the experimental data of Ref. 20.

VI. CONCLUSIONS

In this paper we have explored in a systematic way the
consequences of the thermal and quantum fluctuations of
the phase of the order parameter in a 3D Bose superfluid.
Such fluctuations have been shown to be at the origin of
the various infrared divergencies exhibited by the static
particle Green's function and momentum distribution.
The method developed in this work, based on the hydro-
dynamic theory of superfluids, has permitted us to em-
phasize in a clear way the role of the elementary excita-
tions of the system. In particular it has provided an ex-

plicit distinction between one-phonon and two-phonon
contributions. The results for the two-phonon contribu-
tion to the infrared divergencies of the longitudinal static
Green's function as well as of the momentum distribution
have been explicitly derived and discussed at T =0 [Eq.
(28)] and TAO [Eq. (16) and (18)].

We have also discussed the relevant problem of the
temperature dependence of the condensate fraction. In
the region of temperature where the thermodynamic be-
havior of the system is determined by rotons, the thermal
depletion of the condensate is proportional to the density
of rotons [see Eq. (57)]. A rough estimate of the
coefficient of proportionality has been given. An accu-
rate determination of this coefficient remains however an
open experimental and theoretical problem.
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