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Depression of the superfluid transition in He: Renormalization-group theory

R. Haussmann and V. Dohm
Institut fiir Theoretische Physik, Technische Hochschule Aachen, D 510-0Aachen, Germany

(Received 6 April 1992)

We study superfluid He near Tz in a homogeneous metastable state where a finite superfluid velocity

v, is present. Neglecting vortices we perform a renormalization-group calculation of the superAuid

current J,(v, ) and determine the critical velocity v„(T) at which the superfluid state becomes unstable.
We apply this result to the situation where the superfluid velocity is induced by a finite heat current Q.
A critical heat current Q, (T) corresponding to v„(T) is found which implies a transition temperature

Ti ( Q) = Tg [ 1 A 0Q ] that is lower than Tq. We determine the exact exponent
x = [(d —1)v] '=0.744 in d =3 dimensions and calculate Ao in one-loop order. Our results for Ao and
x are compared with recent experimental data on the depression Tz —Tzl Q) of the superfluid transition
temperature.

I. INTRODUCTION

According to two-fluid hydrodynamics, ' the flow in
superfluid He can be characterized by two velocities v,
and v„of the superfluid and normal component, respec-
tively. The superfluid current J, at the temperature
T & T& can exist only at velocities v, smaller than a cer-
tain critical velocity v„(T) (for reviews see, e.g., Refs. 2
and 3). (More precisely, the relevant quantity is the rela-
tive velocity v, —U„but for simplicity we assume U„=O in
the following. ) The state at finite v, & v„(T) may be in-
terpreted as a metastable state, since it remains stable
over a long period of time due to large potential barriers
associated with the creation of vortices. If, at con-
stant U„ the temperature T is raised the superfluid
current J, is destabilized at some (perhaps sharply
defined) temperature T, (v, ) that is lower than the usual
transition temperature T&=T,(0). In the T v, plane—
this yields a boundary T, (v, ) that can be identified as the
line v„(T) of critical velocities (Fig. 1). On the basis of
phenomenological considerations it has been argued that
near T& the asymptotic temperature dependence is

in the presence of a finite heat current Q the superfluid
transition occurs at some temperature Ti(Q) below the
ordinary transition temperature Ti (0)= Tt„. In the T-Q
plane this yields a line Ti(Q) (Fig. 2), which under ideal
circuinstances, should be closely related to T,(v, }. Near
T&(Q) the heat transport depends on Q in a nonlinear
fashion. Recently we have studied the nonlinear region
(Fig. 2) of normal-fluid He. ' ' The main objective of
our present work is to extend this study to the nonlinear
region of superfluid He. In particular we wish to calcu-
late the depression Tt„—Ti(Q) of the superfluid transi-
tion temperature.

In early experimental work' ' a depression
Tt„—Ti (Q) of the superfluid transition temperature by a
heat current Q was indeed reported but an unambiguous
interpretation of these measurements remained
diScult. ' ' Recently a depression was measured in
a range of sufficiently small Q where perturbing effects

v„(T)= A„[(Tt„—T) /Tt, ]

and thus

Tx —T, (v, )=Ti A,, ' "v,' ", (1.2)

Vs
nstable

with an exponent v= —,
' in good agreement with experi-

ments on persistent superfluid currents. No reliable
quantitative estimate is available so far for the amplitude
A„. Clearly the effect of critical fluctuations on T, (v, )

or v„(T) is non-negligible and should be treated by
means of the renormalization group (RG}. It is remark-
able that up to now there exists no RG calculation on
this interesting problem (as far as we know). In this pa-
per we shall present such a calculation.

Apart from persistent-current methods a superfluid
(counterflow) velocity v, (more precisely v, —v„) can also
be induced by a heat current Q. ' Therefore, one expects,
in accordance with phenomenological theories, ' that

FIG. 1. Schematic plot of the critical super8uid velocity v„
(solid line) as a function of temperature according to (1.1). In
the small-v, region the superAuid current J, is a linear function
of v, . Near v„(T), the v, dependence of J, becomes nonlinear.
Above v„(T) the super6uid phase is unstable.
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T(z, Q) in the presence of a finite stationary heat current
Q (in the z direction). The average in (1.5} is defined by
the dynamic statistical weight of model F, where the
complex field lt(x) is a (conveniently normalized) effective
wave function of the Bose condensate. ' We shall
neglect the effect of vortices, which implies BT/hz=0
below Ti (Q), hence we obtain the relation

(1.6)

Our strategy is to perform a RG calculation of
J, =J,(u„T) at given u, and T and to determine a critical
velocity u„( T) beyond which a homogeneous current
J,(u„T) becomes unstable. The corresponding critical
current J„(T)=J,(u„,T) determines a critical heat
current Q, =Q, (T) according to (1.6),

FIG. 2. Schematic plot of the transition temperature Ti {Q}
(solid line) in the presence of a heat current Q. Above Tz{Q}
the superfluid phase of He becomes unstable. The normal-Quid
state at finite Q is inhomogeneous with a finite temperature gra-
dient. The dashed lines (not sharply defined) indicate where the
small-Q region crosses over to the nonlinear region, compare
Fig. 1 of Ref. 16. In the nonlinear region the superfluid density
below Ti {Q) and the local thermal conductivity above Tz{Q}
become Q dependent (Ref. 17).

due to thermal gradients in the superfluid were negligible.
Quantitative data for Ti —Ti (Q) were obtained, which
could be represented as

(1.3)

with an effective exponent x=0.813+0.012. This ap-
peared to be in good agreement with the effective ex-
ponent x =0.80 obtained from a prediction by Onuki'
but disagreed ' with a subsequent modification' '

x =3/4 of this prediction.
Obviously critical fluctuations play a non-negligible

role in the vicinity of the point T=Ti, Q=O in the

Q —T plane from where the line Ti(Q) emerges (Fig. 2).
While earlier theories ' neglected critical fluctuations
altogether, an attempt was made by Onuki' ' to antici-
pate their possible influence on Ti(Q) at the level of
mean-field and scaling considerations. Clearly a more
fundamental treatment of these fluctuations is desirable
in order to see whether the scaling considerations can be
justified and what is the quantitative effect of the fluctua-
tions on the depression of the superfluid transition. In
this paper we present a renormalization-group treatment
of this problem.

In the following we give a brief outline of our ap-
proach. Consider the equation for heat conduction in the
stationary state of liquid He (Refs. 16, 17, and 28)

Q, ( T)= go ka Ti J—„(T), (1.7)

which can then be inverted to obtain Ti(Q).
In Sec. II the statistical model and the mean-field re-

sults for J, and v„are presented. The free energy of the
metastable state is defined in Sec. III, and the contribu-
tions of the fluctuations to the order parameter and the
superfluid current are calculated up to one-loop order. In
Sec. IV the field-theoretic RG approach is employed
to determine the effect of the critical fluctuations in d di-
mensions. Our results can be expressed in terms of the
effective parameters that are known from critical statics
of He at Q=0. In Sec. V we discuss our results with
respect to the instability at the critical velocity u„(T) and
present a quantitative prediction on the corresponding
depression of the superfluid transition temperature
Ti (Q). As an exact result for the exponent x in (1.3) in d
dimensions we find

1

v(d —1)
(1.8)

II. STATISTICAL MODEL AND MEAN-FIELD THEORY

We consider superfluid He at a given temperature
T & T& in a homogeneous state at a given superfluid ve-

locity v, . As noted above, this homogeneous state consti-
tutes a metastable state that can be considered as a
quasiequilibrium state if vortex configurations are
neglected. A statistical description of this state has been
suggested, ' in analogy to the equilibrium state at v, =0,
in terms of the probability distribution

where v is the correlation-length exponent. We also com-
pare our results with previous measurements ' of u„(T)
and Ti (Q) and predict the temperature dependence of
the superfluid density near u„( T).

A,c
' +goJ, +Q!k~Ti =0,

z
{1.4) p I tt(x) I

—exp —H I Q(x) I, (2.1)

J, =Im * x (I
az

(1.5)

where go is the dynamic coupling of model F. ' Equa-
tions (1.4) and (1.5) determine the temperature profile

for a (conveniently normalized) effective wave function
g(x) of the Bose condensate. ' The fluctuations are as-
sumed to be restricted to some small neighborhood of a
locally stable minimum of H I QI (see also Sec. III). Near
T& the functional H I it I is identified with the free energy
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(divided by k~'J) of the phenomenological Ginzburg-
Landau-Pitaevskii theory,

Thus an instability arises at the critical wave nurn-

be 3, 8 —15

H{@(x)}=f&"x ' I@I'+—IV@I'+uolgl' (2.2)
i mf

( 2 )1/21
"o (2.12)

where ro( T) depends linearly on Tz —T. The main quan-
tity of interest is the superAuid current density, which is
proportional to

(2.3)

For v, AO this theory was previously ' ' treated in the
mean-field approximation where only the configuration
1it gx) at a local minimum of H was considered,

corresponding to the critical velocity v„=(A/m)k, .
We note that the mean-field functions (2.6) and (2.8) do
not show any singular behavior at k =k, . It will be in-

teresting to see (in Sec. V A) how the fluctuations affect
the critical wave number and the analytic structure of
( g) and J, near the instability.

III. FREE ENERGY AND BARE
PERTURBATION THEORY

H
t x)

with the solution

g gx)=ri t(ro, k)expikx,

ro+k
ri t(ro, k) =-

4uo

(2.4)

(2.5)

(2.6} f(x)—
( )

(3.1)

In order to take critical fluctuations into account we
shall perform a perturbation expansion around the
mean-field solution (2.5)—(2.7) at given ro and k (or v, ).
For this purpose it will be convenient to express the mod-
el (2.1), (2.2) in terms of the two-component vector

y, (x)

v, =—k.
m

where the real fields y& and y2 are defined by
(2.7)

P(x) = [y,(x)+ iy2(x) ] expikx (3.2)

In this approximation the superQuid current density is
given by

at given k. Then the Hamiltonian (2.2) and the superfluid
current (2.3) can be expressed as

J, (ro, k)=1m[/ t(x)*V/ Px)]

ri=t(rt)k) ,k,
= V dH {Q{mf }/Bk,

(2.8)

(2.9)
+uo(p p)'j,

J,(,k)=(p( )[(k—IV)q( )]),
(3.3)

(3.4)

H {p(x),k}= f d x Prop. p+ —,'[(V+1k)p] [(V+1k)y]

a'H {@.,}/aa'&0 .

Because of (2.9) this implies

(2.10)

a
ak

ro+3k
4uo

&0. (2.11)

where V is the volume of the system. The mean-Qeld
solution is therrnodynarnically stable only if the free ener-

gy H {f r j satisfies

with the antisymmetric matrix

0 —1I= (3.5)

In (3.3) the differential operator V acts on p(x} only
within a square bracket.

In order to calculate averages such as (g) and J„we
introduce the free energy

+{"o" —"(*)}= »fDyexp H{p(x),k}—fd'x~(x)a( ) (3.6)

From (3.6) we obtain

(y)=
g(ro, k)

0
5F

5h(x} L=0

and one easily verifies

J,(ro, k) = V 'BF {ro, k, O} /Bk, (3.8)

where V is the volume of the system. Since we are in-
terested in the description of a metastable state at k&0
the functional integration in (3.6) must be restricted in
the sense that fDp . denotes an integration over the

( g(x) ) =g(ro, k ) expikx, (3.9)

corresponding to a uniform current-carrying state with

I

space of functions p(x) only in some neighborhood
around the local minimum (2.4)—(2.6). The allowed fluc-
tuations y(x) —y & at given k should not pass beyond the
barrier between neighboring uniform states with di8'erent
k as discussed in detail in Refs. 5 and 38. This excludes
vortex configurations of Q(x). In practice, perturbation
theory around y & will provide an operational definition
of the functional integral (3.6). This will lead to an order
parameter of plane-wave structure,
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the superfluid velocity v, given by (2.7). Equation (3.9)
has the same spatial dependence as g f(x), (2.5), but with
a different amplitude rl&rl f due to the effect of the fluc-

tuations.
For the purpose of a perturbation calculation it will be

convenient to turn to a thermodynamic potential that de-
pends on (lp). This is achieved by the Legendre trans-
forrn

I [(lp(x)),r, k] =F[r,k, h(x)]+ f d x(q&(x) ) h(x),

(3.10)

which is the generating functional of vertex functions.
We shall consider (3.10) only in the physical case h ~0,
where ( q& ) is of the form (3.7). Using the notation

A
1(7},ro, k)=I' ' O, ro, k ', (3.11)

The mean-field part of I (g, ro, k) corresponds to
H j g &I and is given by

I f(ll, ro, k)= V[ —,'(ro+k )rl +uoq ) . (3.15)

In Appendix A we calculate the contribution of the flu-
ctuation in one-loop order. The result is

I (q, ro, k)=I ill, ro, k)

+ ,' V—fln[(ro+p +k ) —4(p k)
P

+16u rj (r +p +k )+48u ll ]

(3.16)

with f p
= f—d p /(2n. ) . According to (3.12) and (3.13)

we obtain from (3.16) the bare one-loop expressions for
the square of the order-parameter amplitude and for the
superfluid current as

we obtain the amplitude rl(ro, k) of the order parameter
(3.9) as the solution of the equation

(3.12)

J, (ro, k.) = V I (q, ro, k ) ~„ (3.13)

[compare (2.9)]. Thermodynamic stability requires that
8 I (rl, ro, k )/Bk is positive [compare (2.10)]. Together
with (3.13) this implies the stability property

because of h =0. Substituting (3.10) and (3.11) into (3.8)
we obtain

g(ro, k) =g (r Ok) M(co,—k)+0(uo)

with

M(co, k) = f (4p +co }b,(p)
P

co=[—2(ro+k )]'

b(P)=P (P +cll) —4(k.P)2,

and

J,(r Ok)=J, (ro, k) kL(co, k)+—0(uo)

with

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.14)

which is the generalized version of (2.11). The remaining
task is a perturbative calculation of the potential
I (l},ro, k } (3.11).

L(co, k)= f [2p +4(lt p) /k ]b(p) '. (3.22)
P

In Appendix B the integrals (3.18) and (3.22) are evalu-
ated in d dimensions using dimensional regularization (at
infinite cutoff A). The results are

M(co, k)= ——Adco 4F —,—;—;4k/co F —,—;—;4—k /co1 d 2 d —2 1 d 2 2 c. 1 d (3.23)

L(c k)= ——A c 2F — ——4k /c + F—1 d p d —2 1 d 2 p 4 d —2 3 d+2
0~ d 0 2 '2'2' ' d 2 '2' 2

.4k /c (3.24)

where F(a,b;c;z) is the hypergeometric function and

Ad= I (3—d/2)
~77d ~~( d —2 )

(3.25)

is a geometric factor. The bare perturbative results do of
course not yet correctly describe the effect of the Auctua-
tions as the critical point ro=ro„k=O (or v, =0) is ap-
proached. In the subsequent section we shall employ the
minimal renormalization procedure in d dimensions
to obtain the correct critical behavior of g and J, .

zl/2qR

ro ro, =Z„r, r =a(T——T„)/T

(4.1)

(4.2)

IV. RENORMALIZATION OF (Q) AND J,

The field-theoretic renormalization of the model (2.1),

(2.2) at k=O is well established. ' Obviously, no new

ultraviolet divergencies arise at k+0, hence it is not

surprising that the Z factors of the standard renormaliza-

tions
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Qo —p Ag Z Z~Q

will suffice to renormalize the bare results

J, =J, (r 0
—ro„uo, k}

and

(4.3)

(4.4)

rl (r, u, p, k)=Z+ ' rl(Z„r, p'Az 'Z Z„u, k),
thus in one-loop order

vp(r, u, p, k) =rl(Z„r, p'Az 'Z„u, k)+O(u),

(4.6)

(4.7)

'g='g(ro ro uo k) (4.5)

presented in the preceding section. We note that ro, is of
O(u /'), 5 thus we may replace ro by ro —ro, in all one-

loop expressions (3.16)—(3.24}. The renormalized coun-
terpart of (4.5) is

since Z~(u)=1+0(u ). Together with 4

Z„(u)=1+16u/e+O(u ), Z„(u)=l+40u/e+O(u ),
(4 8)

this yields

[rl"(r, u, p, k)] = A&p~

with

c = —2(r+k ) .

I
8Q

1 c+-
6, p

q+ —( 2rlp—)
S c2

p
d —2 r

4F —,—;—;4k« F ,—; —;4—k'—/c' +O(u)
d —2 1 d 2 2 e 1 d

2 '2'2' 2'2'2' (4.9)

(4.10)

To identify the renormalization of J, we invoke the fact' that the dynamic coupling go of model F and the heat
current Q are multiplicatively renormalized by the same (static) Z factor Z . These normalizations read' '

g
—

( e/A )1/2(~~ )1/2g

Q
—(~~ )1/2Q R

(4.11)

(4.12)

with Z being related to the additive renormalization of the specific heat. ' Thus Z is cancelled in (1.6) if (1.6) is
rewritten in terms of the renormalized quantities g and Q . This implies, as an exact result valid to all orders, that the
superfluid current J, (2.3), is renormalized according to

J, (r, u, p„k)=J, (Z„r,p'Az 'Z& Z„u,k),

J, (r, u, p, k) =kp" A&

i.e., without multiplication by a Z factor. Combining (4.13) with (3.21) and (3.24) yields in one-loop order

1 5 c 2 2+—( 2r/p )—
8Q 8 p

d —2

(4.13)

1 c+-
E, P

d —2 1 d 2 2 4 d —2 3 d+22F —,—;—;4kIc +—F —,—;;4kIc +O(u)
2 '2'2' d 2 '2' 2

(4.14)

with c given by (4.10). Equations (4.6) and (4.13) imply

rl"(r, u, p, k)

exp f g (u(1'})dl'/I' rl"(r(l), u(l), pl, k) (4.15)
I

and

with u(1)=u. So far we have not yet specified the flow
parameter I. If the above results were applicable to the
entire k Tplane (or u, T-plane) includi-ng the region
k » r(l },a k-depe—ndent choice of the flow parameter 1

would be necessary, for example,

J, (r, , ukp)=J, (r(1},u(l},pl, k), (4.16)
c(l) = —2[r(l)+k ]=p212 .

1—u(1)=P„(u(1))d
dl

(4.18)

where r(l) and u(l) are the standard effective parameters
(see, e.g., Ref. 37) determined by

r(l)=r exp f g, (u(l') }dl'/1' . (4.17)
1

From (4.9) and (4.14)—(4.16) we find, however, that the
one-loop terms of g and J, exhibit an imaginary part if
4k /c(l) & 1 or k & [ —2r(1)]/6, thus a static theory for
a (stable) order parameter and superfluid current exists
only in the small-k region k ([—2r(l)]/6. This corre-
sponds to the onset of the instability at k =k, (2.12), ob-
tained already in mean-field theory. This instability will
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—2r(1) =1
pl

(4.19)

be further discussed in Sec. V. It is well known that in
the "hydrodynamic" region k ((—2r(l) the standard
choice of the flow parameter below T3 (Ref. 37)

fJIu, k/pj:—J, (
—

—,', u, l, k/p) . (4.23)

pl =((—2t) '[1+O(u )], t (0, (4.24)

These functions are given in one-loop order by (4.9) and
(4.14). Equation (4.19) is equivalent to

is appropriate. We employ this k-independent choice
also up to k ~ k, as will be justified in Sec. V.

Since the canonical dimension of the order parameter
is A' '/ we obtain from (4.15), (4.16), and (4.19)

with

t =(T—T3 )IT3,
where

(4.25)

I

21 (r, u, p, k) = exp I g, (lp) f„Iu(l),k/pl]IP I I

(4.20)

and

(4.26)

is the correlation length above T&. The parameters in
(4.26} are v=0. 672, b, =0.50, and (0=1.43X10 cm,
a& =0.0363 at saturated vapor pressure (SVP).

J,"(r, u, p, k) =(lp)" 'fJ I u(l), k/pl j,
with the dimensionless amplitude functions

f„[u, k Ip j
=—rl ( —

—,', u, 1,k Ip )

(4.21)

(4.22)

V. RESULTS AND DISCUSSION

We summarize our results for the order parameter and
the superAuid current in d dimensions as a function of the
reduced temperature t & 0 and the wave vector
k=(m /fi)v, :

I

2) =Z (u) expI,du' g( 2t) "f„—Iu [ 2t], kg( —2t—)j,
u[ —2~} P„(u')

J, =g( —2t)' "(k/k)fqIu[ —2t], kg( —2t)j .

The dimensionless amplitude functions f„and fz read in one-loop order

(5.1)

(5.2)

f [u, ffj = A~ ~ (Su) '(1 —21' )+—(
—3+101' )

+—(1—21f )'" '/ 4F —,—;—;z —F —,—;—;z +O(u)1 d —2 1 d c 1 d
2 '2'2' 2'2'2' (5.3)

fJIu, sj =zA~ (Su) '(1 —21f )+—( —3+10@ )

+—(1—2ff )' ' 2F —,—;—;z+ F —,——;;z +O(u) . ,
1 d —2 1 d 4 d —2 3 d+2

2 '2'2' d 2 '2' 2
(5.4)

where

z =4' /(1 —2ff2) . (5.5)

kmf g( 2 )
—1 1

v'6 ' (5.6)

For d =3 the hypergeometric functions F(a,b;c;z) can
be expressed in terms of elementary functions (see Ap-
pendix C). For g(

—2t) and u[ —2t] see (4.26) and Refs.
37 and 43, respectively.

the zero-loop term of f~ has a maximum. We see that for
K + K the one-loop contributions are rather small, which
justifies the choice (4.19) for the flow parameter. The
one-loop contributions contain nonanalytic terms with
algebraic singularities at If=if, =I/3/6. The leading
nonanalytic terms are (see Appendix D)

A. Determination of the instability

In Figs. 3 and 4 we have plotted the functions (5.3}and
(5.4) for d =3 and u =u ~ =0.0362 The zero-loop terms
-O(u ') corresponding to the mean-field approxima-
tion yield the dashed lines. At K = K, = 1/&6 corre-
sponding to

and

1
2

—3/261/4( mf
)

1 /2

7T

1
2

—3/265/4( mf )3/2

(5.7)

(5.8)
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k, (T)=0.972k, '=0.397$( —2r) ' . (5.9)

We believe that the smallness of the one-loop correc-
tion indicates that (5.9) is close to the exact result for k,
(apart from the effect of vortices). A comparable situa-
tion appears to exist for the order-parameter function f„
at ~=0 where the one-loop correction vanishes and the
(Borel) sum of all higher-loop terms turns out to be negli-
gibly small.

We note that it would be misleading to perform a strict
expansion of k, with respect to the coupling u. This ex-

for f„and fz, respectively, in d=3 dimensions. (We
note that the exponents depend on the dimension d, see
Appendix D.) The algebraic singularities are clearly seen
in Figs. 3 and 4. For «& «., these terms develop (unphys-
ical) imaginary parts that are shown as dotted lines in

Figs. 3 and 4. We interpret these findings as follows.
Within mean-Geld theory the range of stability of a

thermodynamic state is identified on the basis of a phe-
nomenological stability criterion such as (2.10}. By con-
trast, no separate requirement is needed in an exact sta-
tistical theory. In fact, the appearance of imaginary parts
at k=k, in our one-loop result shows that the mean-

field instability comes out of the calculation in a direct
way. Thus it is not necessary to impose the stability re-
quirement (3.14) on the superfiuid current, since (3.14) is
automatically satisfied as a result of the statistical treat-
ment. We are of course interested in the correction
k, —k, of the critical wave number due to fluctuations.
One way to determine this fluctuation effect in leading or-
der would be to calculate f„and fz in two-loop order
and to identify the shift k, —k, from the onset of imagi-
nary parts of the two loop term-s. An alternative way is to
invoke the stability property (3.14) and to look for the
maximum of the one-loop function fJ (5.4), i.e., for the
maximum of the solid line in Fig. 4. We see that the shift
of the position of the maximum due to the one-loop term
is very small. The numerical value of k, is (for d =3 and
u =u*)

pansion, as obtained from the solution 1~=«,(u) of the
equation Bfz{u,«j/B«=0, would yield

k, =k, [I—a, u+O(u )]

with the large correction amplitude (d =3)

a, =m.&24—8=7.39,

(5.10)

(5.11)

which for k ~0 is reduced to the known one-loop expres-
sjon36 45

p, (0)= constAdg( —2t) +—2-d
8Q [ —21] d

(5.13)

The ratio p, (k)/p, (0) is a function of «=kg( —2t), which
is plotted in Fig. 5 for d =3 and u =u*. The ~ depen-
dence is rather weak, with a finite value at ~, and with an
algebraic singularity of the type (5.8).

From Fig. 4 we see that the superfluid current is a
linear function of k in the small-k region k ~0.5k„
where p, (k)/p, (0) is approximately constant (Fig. 5).
Thus J, and v, are linearly related in this "linear regime"
(Fig. 1). Similarly there is a linear relationship between
the heat current Q(t, k) (see subsection C below) and the

thus (5.10} would be applicable only to the uninteresting
range u &&u*. We see that the expansion of k, with

respect to u is considerably less useful than performing a
loop expansion only for fz with k, being determined
directly from the maximum offJ.

From the superfluid current J, =p, v„one obtains the
superfiuid density at finite superfiuid velocity as J, /v, .
Thus, apart from a constant prefactor, the superfluid den-

sity at finite k is given by

p, (k) =const. J, /k

=const(( —2t)' k 'fJ{u(—2t), kg( —2t)],
(5.12)

0.3
0.10— Kc

0.2—

0.1—
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0.05
~X

0.00
0.0 0.2 0.4 0.6

0.0
0.0

I

0.2 0.4 0.6
K

FIG. 3. Amplitude function f„[u,sc] (solid line) of the
square of the order parameter as a function of «=kg in d =3
dimensions, as given by (5.3) and (C10). At «, f= 1/v 6, f„ is
singular according to (5.7). In the unstable region («& «, '), f„
becomes complex (solid line: real part; dotted line: imaginary
part). The dashed line represents the mean-field (zero-loop) re-
sult, which is regular at W

FIG. 4. Amplitude function fj{u,~j (solid line) of the
superfluid current J, as a function of ~=kg in d =3 dimensions,
as given by (5.4) and (Cl1). At «, '= I/v'6, f~ is singular ac-
cording to (5.8). For ~&«, , f~ is complex (solid line: real part;
dotted line: imaginary part). The dashed line represents the
mean-field (zero-loop) result with a maximum at a, . The insta-
bility of J, sets in at sc, (W', (5.9), where the solid line has its
maximum.
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an experiment where a sufficiently small heat current Q
induces a superfluid counterflow. In the following sub-
section we shall apply our results to this situation.

C. Critical heat current and Tq(Q}

0.5—

0.0
0.0

I

0.2
]

O. C

FIG. 5. Superfiuid density p, (k) (5.12), at finite superfluid ve-

locity v, =(fi/m)k divided by p, (0) (5.13), as a function of
g=kg in d =3 dimensions. At k=k, ', p, (k} is singular but
finite.

Q(t, k) = A& l
tl" "F[kg( —2t) ] (5.18)

From (1.6) and (5.2) we obtain the relation between the
heat current Q and the superfluid velocity v, =(fi/m)k
(apart from a minus sign)

Q(t, k)=gokttTi„g( 2t)'—fq[u[ 2t—),kg( —2t)] .

(5.17)

At SVP, nonasymptotic static effects are rather small, '
therefore we confine the following discussion to the
asymptotic region ltl 510, where g( —2t)=go2 "ltl
and u [—2t]=u'. In this region, Q(t, k) has the scaling
form

superfluid velocity U, -k in the linear regime below the
dashed line on the left-hand side of Fig. 2. This line is, of
course, not sharply defined. It rather indicates a cross-
over region between the linear and nonlinear regimes,
similar to the dashed line above Tz in Fig. 2 as discussed
recently. ' '

with the universal scaling function (5.4) (see Fig. 4)

F[a)=f~[u', a] .

The nonuniversal amplitude A& in (5.18) is

g=go a i.ko
' " "

(5.19)

(5.20)

B. Critical superBuid velocity

Asymptotically, (5.9) yields a critical velocity (1.1),

u„(T)=(fi/m )k, (T)= A„[(Ti —T)/Ti, )", (5.14)

with the amplitude

=8.03X10 Wcm at d =3 . (5.21)

Q, (T)=Aqltl" ""fJIu",0 397]

with

(5.22)

The critical value t~, =0.397 (5.9), corresponds to the
critical heat current (1.7),

A„=(fi/m )go
'2" 1——0.0112

6
(5.15) fJ[u",0.397] =0.0944 (5.23)

=7.03 X 10 cm/sec .
for d =3. Inverting (5.22) yields the line

(5.16)

Since the order parameter is nonzero at v„(T) the corre-
sponding borderline T, ( v, ) in the u,

—T plane (Fig. 1)

should of course not be interpreted as a A, line of critical
points [except for T, (0)= Ti] but rather as an analog to a
spinodal line of a first-order-like transition where a
homogeneous metastable state with a finite order parame-
ter becomes unstable. Within our perturbation theory
this transition is not caused by the creation of vortices.
Nevertheless local vortex generation may be the dom-
inant mechanism for the actual decay of superflow in ex-
periments using persistent-current methods. The experi-
mental critical velocity has an amplitude A„=3.8 X 10
cm/sec, thus it is about 20 times smaller than the theoret-
ical value (5.16). In the experiment, the helium liquid
was flowing through a material with small pores, which
our theory does not take into account. This may be the
reason for the discrepancy. A considerable discrepancy
exists also with the phenornenological estimate
A„=1.5 X 10 crn/sec by Langer and Fisher. Clearly,
further theoretical work is necessary to explain these
discrepancies but also new experiments would be desir-
able where the influence of vortices and of geometry
effects is less dominant. This appears to be realizable in

T~(Q) = Ti.[1—AoQ" ]

in the Q-T plane (Fig. 2) with the exponent

x =[(d —1)v]

=(2v) '=0.744 at d =3

and the amplitude

Ao =( Ag fJ [u ', 0.0397] )

(5.24)

(5.25)

(5.26)

(5.27)

Equation (5.26) confirms Onuki's (corrected) result' for
x. From his scaling arguments within model F, however,
it is not clear whether dynamic-transient effects are can-
celled exactly. In our approach the purely static nature
of x is a simple consequence of the fact that the ratio

go/Q of the dynamic quantities go and Q is not renormal-
ized [see (4.11) and (4.12)], thus (5.25) is seen to be an ex-
act result. The earlier expression' x =1/(1+v —xi)
employed in the data analysis is incorrect and mislead-

ing, since it suggests to interpret xi as the effective dy-
namic exponent of the thermal conductivity. In view of
the stability of the weak-scaling fixed point ' in d =3
dimensions the exponent (1+v—x&) ' would become
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nonuniversal even asymptotically, in contrast to the
correct universal result x =(2v) ' (5.26). Now, however,
instead of the apparent agreement, we are faced with a
discrepancy between our theoretical value (5.26) and the
experimental value x'" '=0.8113+0.012, as noted al-
ready in Refs. 16, 24 and 26. In Fig. 6 the original data
are shown. The dashed line represents our theoretical re-
sult, with Ao being adjusted. The larger experimental ex-
ponent x'" ') 0.744 is clearly reflected in the larger slope
of the data compared to the slope of the dashed line. So
far this discrepancy regarding the exponent x is unex-
plained.

Furthermore, there is a disagreement between our
theoretical one-loop value Ap of the amplitude, (5.27),
and the measured value 3 0" by a factor of about two,
Ao"~/Ap=2. In Fig. 6 the solid line represents our
theoretical result with Ao given by (5.27). We suspect
that part of this discrepancy is not due to our one-loop
approximation but due to the fact that our theory does
not take vortices into account. Although the experimen-
tal temperature gradient in the superfluid has been shown
to be negligibly small, it is nevertheless conceivable that
vortices may be part of the reason for the discrepancies
between the theoretical and measured values of both x
and Ao.

It should also be mentioned that in the experiment an
inhomogenous situation was studied in the presence of an
interface between superfluid and normal-fluid helium.
Deeply in the superfluid phase the temperature profile ap-
proaches the asymptotic value T„(Q) (see Fig. 1 of Ref.
17). It is this quantity that has been measured but it is
not identical with Ti(Q), since the latter quantity is
defined in an ideal homogeneous superfluid state in the ab-
sence of an interface. We consider Tz(Q) only as an
upper bound for T„(Q) beyond which the homogeneous
superfluid becomes unstable. On the other hand, a
theoretical study of the interface problein below Tz (in

Q&(AoX10 ) '~"=0.7 W/cm (5.28)

The previous experiments on the depression of the A, tran-
sition have been performed at considerably smaller heat
currents of the order of 1 )MW/cm (Refs. 24 and 25) or 1

mW/cm (Refs. 20 and 21), i.e., well within the expected
range (5.28) of applicability of model F.

APPENDIX A: THERMODYNAMIC POTENTIAL

In this appendix we derive the one-loop expression
(3.16) for the generating functional of vertex functions
(3.10). We decompose the vector p(x) (3.1), as

~(x)=(q )+5q(x), (A 1)

where (y) is the exact average of y. Expanding the
Hamiltonian (3.3) with respect to 5(p yields

5H Iy, k I
H Ip, kl =H

I (y), k)+ fd x 5(p(x)
g=(g)

+ ,' f 5j—(—p)&(p)5g(p)

+f d x[4up((g)5p)(5g5q&)+up(5g5p) ) .

(A2)

lowest order of renormalized perturbation theory} (Ref.
46} indicates that the difference between T„(Q} and

Tz(Q) is presumably of O(10%) or less, which is smaller

than the expected inaccuracy of our one-loop result for
Ao. Thus it seems to be justified to compare our calcu-
lated Tz(Q) with the measured T„(Q).

Finally we attempt to estimate the expected range of
validity of model F with respect to the nonlinear Q
dependence near T&. Good agreement between theory
and experiment in the linear region is verified in the tem-
perature range ~(T —Ti„)/Tz~ &10 . A rough esti-
mate of the corresponding Q range is obtained by the re-
placement T~Ti(Q), where Tz(Q) is given by (5.24).
This yields

-6.0—
~I

~O
~ r

~~r
~0

Here we have written the bilinear term in terms of the
Fourier amplitude 5f(p)= f d"x5y(x) exp ipx —The.
2X2 matrix

-6.5—
t-

S

I

l— 70
C)

Ol
O

E(p)=

with

rp+8up(g i &

(A3)

2ikp+ 8up( tIoi & (q, )
—2ikp+8uo(q&i &(pz) ro+8uo(y2&

—7.5—

—0.5 0.5 1.0
I og0 [Q(p, W / cm}]

1.5

FIG. 6. Depression of the super6uid transition temperature
vs the heat current Q on logarithmic scales. The data corre-
spond to T„(Q) as measured in Ref. 25. The solid line
represents [ Tq —Tq ( Q) ] /T„, (5.24), with x =0.744 and with the
one-loop result {5.27) for Ao The dashed line represents {5.24)
with x=0.744 but with Ao being adjusted to the data. The
effective exponent of the data is x'"P'=0. 81 {Ref.25).

r, =r, +k'+p'+4up((q, )'+(q, )') (A4)

f'I(g)), rp, kJ =HI(y), k)+ g f'tI(g), ro, kI
1=1

with

(A5)

defines the propagator G(p) =E(p) ' of the perturbation
theory. The vertices are determined by the third- and
fourth-order terms of (A2). The generating functional of
vertex functions (3.10) is given as usual by
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f', [(y),ro, k] = ,' —VJ ln[detK(p)], (A6)
P

where V is the volume of the system. For I ~ 2 the terms
f'& are given by the negative sum of all one-particle irre-
ducible vacuum diagrams with l loops. Here, we confine
ourselves to the one-loop term (A6) for the special case

These integrals are of the type

I= f f(p', cos'8) (B3)
P

=Sz J dp p 'Nz ' J d8( sin8) f(p, cos 8)
0

(B4)

(p) =
0 7 (A7)

dpp +d dt t 1 —t p
0

APPENDIX B: ONE-LOOP INTEGRALS

In the following we calculate the integrals (3.18) and
(3.22) in d dimensions using dimensional regularization.
These integrals are not standard because of the anisotro-
py of the integrands due to the finite wave vector k.
Defining 8 by k p=kp cos8, we rewrite (3.18) and (3.22)
as

M(c k)=
z

p p (p +c —4k cos 8)

2+4cos eL c, k =
pp +c —4k cos 8

(Bl)

(B2)

where q does not depend on x. In this case we obtain
from (A3)

detK(p)=(ro+k +p ) —4(k p)

+16uorl (ro+k +p )+48uog . (A8)

Together with (A5) —(A7) this leads to the one-loop result
(3.16).

1 d —1X =8
d 2' 2

(B9)

The t integration can now be performed using the in-
tegral representation of the hypergeometric function

tb —1(1 t)c —b —I

F(a, b;c;z) =B(b,c b) ' f dt—
0 (1 rz)'—(B10)

for Rec )Reb & 0. This yields

with Sz '=2 'm. ~ I (d/2) and

X,= f"a8(sin8)' ' (B6}
0

(B7)
0

In (B5) and (B7) we have substituted t = cos 8. In terms
of Euler's beta function

1

B(a,b)= J dt t' '(1 t)" —'=I (a)l (b)/I (a+b),
0

(BS)

we have

M(c, k) =S&J dpp" 'w '(4+c'/p )F 1,—;—;4k'/w'1

0
(B1 1)

L(c,k)=S& f dp p w 2F 1,—;—;4k /w + F 1,—;—;4k /w
1 d 2 2 4 3 d+2

'2'2' 2 2
(B12)

with

m2=p2+c2 (B13)

In the limit p~ ~ the hypergeometric functions in (Bl1) and (B12) become F(a, b;c;0)=1, hence the ultraviolet be-
havior of the integrands is determined by pd 'm -p . This implies that both integrals are convergent for d & 2
and (ultraviolet) divergent for d )2 According to the procedure of dimensional regularization we first perform the in-

tegrations at d (2 and then extend the results to d ) 2 by analytic continuation in d. Substituting x =c /w we obtain

d —2 (d —2)/2 —d/2 1
M(c, k)=S~ —,'c dx (1—x)' 'i x i [4+x/(1 x)]F 1,—;—;4x—k /c

0
(814)

L(c,k)=S —'c gx (1—x)' ' x ~ 2F 1,—;—;4xk /c + F 1,—;;4x—k /cd —2 2 — 2 1 d 2 2 4 3. d+2. 2 2
dp '2'2' d '2' 2

(B15)

(B16)

By means of the hypergeometric series for F(a, b;c;z) [see (Dl} below] and (B8}one can show

f ~» (1—x)'- 'x -'F(l, b;c;xz)=I (A, )I (1—A, )F(1—A, , b;c;z) .
0

This integral is convergent only if 0&A. &1. This condition is satisfied for d &2 if we identify A, =d/2 and
A, =(d —2)/2 in (B14) and A, =d/2 in (B15). Thus we finally obtain
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M(c, k)= ——A~c 4F —,—;—;4k/c F——,—;—;4klc1 d 2 d —2 1 d 2 2 c 1 d 2

2 '2'2' 2'2'2' (817)

1 d 2 d —2 1 d 2 2 4 d —2 3 d+2
L(c,k)= ——Aqc 2F —,—;—;4klc + F——,—;;4k/c

2 '2'2' d 2 '2' 2

with the geometric factor

E, E d 2 dW=Sr1 ——r 1+—= —S —I —rd d 2 d2 2 2

At k =0, Eqs. (817) and (818) yield

M(c, O)= ——A c d —2
d

(818)

(819)

(820)

L(c,O)= ——A c (2+4/d)
E.

d

because of F(a, b; c;0)= 1.

(821)

APPENDIX C: AMPLITUDE FUNCTIONS IN THREE DIMENSIONS

In d =3 dimensions the amplitude functions (5.3) and (5.4) read

f„[u,~] =(4m. ) '[(8u) '(1 —2a ) —3+10~ +(1—2a )' [4F( —
—,', —,'; —,';y ) —F(—,', —,'; —,';y )]+O(u)],

f [u, a] =(s/4m. )I(8u) '(1 —2a ) —3+10~ +(1—2a )' [2F( ,', ,'; ,',y )+—~4F—(————,', —', ; —', ;y )]+O(u)],

where

y=z'"=2~(1 —2~') '"
Using F(a, b;c;z)=F(b, a;c;z) and

(c b —1)F(a,—b;c;z}=(c—1 )F(a,b;c —1;z) bF(a, b + l—,c;z),
d abF(a, b;c;z)= F(a+ l, b+1;c+1;z),

(Cl)

(C2)

(C3)

(C4)

(C5)

we rewrite the amplitude functions as

f~[u, K] =(4m ) '[(8u) '(1 —2a ) —3+10K +(1—2' )' [2F( —
z, —,'', —,'', y )+F( z, z', —,'', y )]+O(u)], (C6)

fJ[u, a] =(v/4m. ) (8u) '(1 —2a. )
—3+10~ +(1—2a )'

X F( —
—,', —,'; —,';y )+F(—,', —,'; —,',y )+F(—

—,', —'„—,';y ) — [F(—
—,', —,'; —,';yz)+F( —,', —,'; —,';yz)] +0(u) .

We note that

F(a, b;b;z) =(1—z)

(C7)

(C8)

for arbitrary b, and

F( —,', —,'; —'„'y )=y 'arcsiny .

Thus the amplitude functions at d =3 can be expressed in terms of elementary functions:

f„[ , ]u=N(4') '[(8u) '(1 —2a }—3+10m +(1—2a )' [2(1—y )' +y 'arcsiny]+O(u}],

fqI u, ~] =«f„[u,v]+(a/8m )(1—2a )' y [y
' arcsiny —(1—y )' ]+vO(u) .

These functions are plotted in Figs. 3 and 4 for u = u =0.0362.

(C9)

(C10)

(Cl 1)
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The hypergeometric series

APPENDIX D: AMPLITUDE FUNCTIONS NEAR K,

I(a+n) I(b+n) I(c) z"
I (a) Pb) Pc+n) n!

is convergent for ~z ~
& l. At z = 1, F (a, b;c;z) has an algebraic singularity that is explicitly seen in the formula

I (c)I (c —a b)—
F(a, b;c;z)= F(a,b;a +b —c +1;1—z)Pc —a)I (c b)—

b Pc)I (a +b —c)+(1—z)' F(c —a, c b;—c —a b+—1;1—z) .Pa)I (b)

(D 1)

(D2)

Replacing the hypergeometric functions on the right-
hand side by the series (Dl) we see that the leading non-
analytic term of F(a,b;c;z) for z~l is

(5.4), we obtain the leading nonanalytic terms

))/4 r(d/2)r(5/2 —d) f d —5/2

r(e/2)r(i /2)
I (c)l (a +b —c)

Pa)Pb) (D3) (D6)

The amplitude functions f„Iu,a. ] and fJIu, x] are ex-

pressed in terms of hypergeometric functions with the ar-
gument

2
—f/26d —3/4 r(d /2)r(3/2 —d) f )d

—3/2

I (1—d/2)I (1/2)

(D7)

z=4tt /(1 —2tt ) (D4) for f&Iu, a] and fJIu, ttI, respectively For d. =3 the
leading nonanalytic terms are

(1—z)= —,'6 (tt, —tt) . (D5)

Applying (D2) —(D5) to the amplitude functions (5.3) and

[compare (5.3)—(5.5)]. The critical wave number
a., =1/&6 corresponds to z =1. Thus for a.~t~, one
obtains to leading order

1
2

—3/261 /4( mt
)

1 /2

77

2
—3/265/4( mf

)
3/21

7T

respectively.

(D8)

(D9)
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