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Temperature variation of the elementary excitation spectrum of thin liquid- He films
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The temperature variation of the elementary excitation spectrum of thin liquid- He films is derived
within the ring diagram approximation. This theory is microscopic only in the long-wavelength limit.
Using this anomalous spectrum, the specific-heat data adsorbed on Grafoil graphite and the first, second,
and third sounds are analyzed. The temperature variation of the phonon spectrum is very negligible for
low temperatures. However, with increasing temperature from 0.6—0.7 K to near the vicinity of the
two-dimensional transition temperature of 1.21 K, the temperature effect is significant regarding the
physical properties of thin liquid- He films.

I. INTRODUCTION

The understanding of the elementary excitation spectra
of two- and three-dimensional liquid He has been one of
the important problems in low-temperature condensed-
matter physics. After Landau's well-known phenomeno-
logical theory' for liquid He, many microscopic theories
have been developed by Bogoliubov, Feynman and
Cohen, Lee and Yang, and others. By considering the
interactions between quasiparticles, Kebukawa,
Yamasaki, and Sunakawa and Iwamoto have tried to ex-
plain the multiexcitation spectrum in bulk liquid He.
However, most theories have been primarily developed
for absolute zero temperature and have yielded the nor-
mal dispersion (convex down) relation, which yields the
wrong spectrum, whereas the anomalous dispersion (con-
cave up) relation is correct. In the former case four-
phonon processes turn out to be the lowest order, while
in the latter case three-phonon processes are the lowest.

Recently, Chin and Krotscheck computed the
ground-state structure and collective excitation energies
of He droplets at zero temperature, which are described
by a generalized Feynman theory, while Rama Krishna
and Whaley calculated the excitation spectra of
compressional modes of He for 20, 70, and 240 clusters
at 0 K. Chakraboty, Kallio, and Puoskari' derived the
excitation spectrum from the random-phase approxima-
tion with the assumption that Bogoliubov excitation is
noninteracting, and they found that the spectrum agrees
only qualitatively with the experiment. On the other
hand, Wong et al. " observed sharp cusplike heat-
capacity singularities in coincidence with the superfluid
transition, which is strongly related to the excitation
spectrum, and confirmed that He-filled aerogels are not
in the same universal class as bulk helium. Stirling and
Gyde' performed high-precision neutron-scattering mea-
surements of the temperature dependence of the phonon
and roton excitations in liquid He at saturated vapor
pressure in both the superfluid and normal-fluid phases.

For two-dimensional liquid He, in recent develop-

ments of experimental techniques, the properties of He
films have been widely investigated. Some years ago,
Isihara and Um' derived successfully the elementary ex-
citation spectra, which are microscopic only in the long-
wavelength limit, for two- and three-dimensional liquid
He in the zero-temperature limit using the ring-diagram

approximation, which gives anomalous phononlike be-
havior at low momenta and rotonlike behavior at high
momenta. Starting with these elementary excitations, we
have successfully explained phonon decay, ' first, '

second, ' and third sounds, ' their sound attenuation, '

thermal conductivity, ' first viscosity, and thermal
diffusion. '

According to the experiments performed by Wood
and others, it is well known that the temperature varia-
tion of the elementary excitation is small, but becomes
significant in the vicinity of the k point. However, we
have not found any calculations of this temperature vari-
ation in two-dimensional liquid He. All the more, we
still do not know whether or not the effect of the temper-
ature variation on three-phonon processes is significant,
which is a question not addressed by Landau or Khalat-
nikov.

It is the purpose of this paper to evaluate the tempera-
ture variation of the elementary excitation spectrum of
two-dimensional liquid He on the basis of a microscopic
theory in the long-wavelength limit in the ring-diagram
approximation and then to investigate the temperature
effect on the structure factor, thermodynamic functions,
fluid density, and various sounds of two-dimensional
liquid He. In Sec. II we shall treat the pair-distribution
function using the chain-diagram approximation and
present some basic formulas that will be used in the fol-
lowing sections. The structure factor and elementary ex-
citation spectrum wi11 be evaluated in Secs. III and IV,
respectively. The thermodynamic functions and fluid
densities will be given in Sec. V. We shall evaluate the
first, second, and third sounds in Sec. VI, and finally in
Sec. VII we shall discuss our present results in compar-
ison with related work.
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II. CHAIN-DIAGRAM APPROXIMATION

u(q)A, (q)
dq eiq r

(2 ) p . „1+u(q)AJ(q)
(2.1)

where n is the number density, p=1/k+T, u(q) is the
Fourier transform of the interaction potential, A,j. is the

jth eigenvalue of the effective boson propagator
representing the unit of a chain, and I2(r) is the ideal-gas
contribution given as

Iz(r)= fdpdqf (p)f(p +q)e'~'.1

(2n )
(2.2)

The eigenvalues A, (q} of the effective propagator can be
obtained from the expression

In this section we offer the formula of the pair-
distribution function within the chain-diagram approxi-
mation and related formulas and then derive the excita-
tion spectrum in the long-wavelength limit at absolute
zero temperature. The chain-diagram approximation is
justified since in a two-dimensional Bose system the pair-
distribution function depends on the modified Bessel
function of order zero, i.e., Eo(r), in contrast to an ideal

gas. Within this approximation the pair distribution
function p2(r) of a two-dimensional Bose liquid is given

as

p2(r)=n +I2(r)

U(T)= Uo(T)+ —f dg fdr/(r) [Pp2(r, P,g)],

(2.8)

U(T) = Uo(T)+ fdr P(r) —nA—f u (q)
n A 1 dq

2 (2n )

A 8 "
& dq+

2 BP,. „o (2~) 1+gu (q)A, (q)

(2.9)

The effective eigenvalues A, (q) evaluated to first order
from Eq. (2.3) are given by

2nq
A, (q)=

q +(2' /P)
(2.10)

and substitution of Eq. (2.10) into (2.9}yields the final ex-
pression for the internal energy at absolute zero tempera-
ture as

U(T}= nA—fdr/(r)1

2

where g is a coupling constant, Uo( T) is the ideal-gas en-

ergy, A is the two-dimensional volume, and P(r) is the
two-body interaction potential. Substituting Eq. (2.7) for
the pair-distribution function into Eq. (2.8), we obtain the
internal energy as

A,,(q)=, f da f dp f(p)[1+f(p+q)]

Xexp[a[p —(p+q) ]]e

where f (p) is the Bose-Einstein distribution function

(2.3)

+—,Eq —q' —nuq
2 (2n)

+A Eq E
(2m )

where f(E)=1/[e~ —1] is the Bose distribution func-
tion and

2

f4»=
1 —ze»' (2 4)

From the definition of A, (q) in Eq. (2.3), the first term on
the right-hand side of Eq. (2.5} yields

——y f A, (q)e' '= —n5(r) —. Iz(r) .1 dq
p J (2n)

Hence the pair-distribution function pz(r) becomes

(2.6)

where z is the fugacity.
The integrand of Eq. (2.1) can be divided into two parts

as

u (q)A, (q) A~(q)

E(q)=[q +2nu(q)q ]'~ (2.12)

III. STRUCTURE FACTOR

is the excitation energy, which was given originally by
Bogoliubov and Zubarev.

In the expression for the internal energy given by Eq.
(2.11},the first and second terms represent the ground-
state and quasiparticle excitation energies, where the
latter demonstrates a Landau-type excitation, but does
not provide for the temperature variation of the elemen-
tary excitation spectrum. For finite temperatures the
above approach is not quite correct; the eigenvalues must
have terms which are dependent on the de Broglie
thermal wavelength, and we shall discuss this problem in
the following sections.

A, (q)e'~'
p2(r) =n n5(r }+—g-

p . (2~}2 1+u(q}A, .(q)
(2.7}

In the chain-diagram approximation, the structure fac-
tor S (q} is given by the integrand of Eq. (2.7}as

The ideal-gas term is eliminated, and it is much easier to
treat Eq. (2.7) than Eq. (2.1) because the numerator of in-
tegrand in the latter is linear in A, (q).

In terms of the pair-distribution function, the internal
energy is given by

S(q)=
A,J.(q)

Pn . 1+u (q)A, (q)

Combining Eqs. (2.10) and (3.1},we obtain

(3.1)
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q coth( —,'pq)[q +2nu (q)]'~
S(q) =

[q +2nu (q)]'i
(3.2}

This result agrees with those obtained by others. In or-
der to extend this calculation to higher temperatures, we

may use

16y (z )nq

P[q +(2' /P) ]
G2(z) oo 1y(z)=, G, (z)= gGi(z) i=i I'

The structure factor to first order in AA, is

(3.5)

k (q)=A, (q}+bA~(q),

where

2nq 12n y(z)q

[q +(2' /P)z] P[q +(2' /P) ]
A,, q=

and

(3.3)

(3 4)

A, (q)
S(q)=

Pn . 1+u (q)XJ(q)

1 bl( )

Pn, [1+u (q)A,, (q)]
(3.6)

Substituting Eqs. (3.4) and (3.5) into (3.6) and summing
over j, we obtain (see Appendix A)

q coth( —,'Pq )[q + U+ ]'~
1+

2[q + U+]'

q coth( —,'Pq)[q + U ]'~
+ 1—

2[q 2+ U ]
i/2

aq coth( —,'Pq)[q +U ]'+.
12[[nu(q)] +nu(q)a]'~ [q +
aq (P/2) cosech ( —,'Pq)[q + U

+
6p[[nu(q)] +nu(q)a]' [q +

2nu (q)+a
2[[nu(q)] +nu(q)d]'

S(q)= .

where

a(p, z)= 12y(z)

U+ =nu (q) [1+[1+a(P,z )/nu (q)]' ],
U =nu (q) [1—[1+a(P,z ) /nu (q) ]' ] .

2nu (q)+a
2[[nu (q)] +n u(q) a]'

aq coth( —,'Pq)[q + U+ ]'~

U ] ~ 12[[nu(q)] +nu(q)a]' [q +U+]
]'~ aq cosech ( —,'Pq) [q +U+]'

U ] 6P[[nu(q)] +nu(q)a]' [q +U+]
(3.7)

(3.8)

In Eq. (3.7) the first bracket represents the first-order modifications and the second bracket shows the hA, , correction.
We will later discuss these terms in detail in Sec. VII.

IV. ELEMENTARY EXCITATION SPECTRUM

In Sec. II we used Eq. (2.10), evaluated in the first-order approximation, to obtain the excitation spectrum at absolute

zero temperature. In this section we evaluate the temperature variation of the excitation spectrum. Within the chain-

diagram approximation for the pair-distribution function, we have the following expression for internal energy:

U(P)= Uo(P)+ — Pn fdr/(r) Pn f u (q) +——,g f z ln[1+u (q)Aq(q)]
2 8 (2ir )' 2 8, (2~)'

(4.1)

The above equation for the internal energy is equivalent to the result of the ring diagram. Making use of the first-order

approximation for A. - and summing over j, we arrive at

n AU(P)= Uo(P)+ fdr&(r)+Pnn'3 fdr P(r)

2

+—f q coth +nu(q)+Pn'u(q) —q[q +2nu(q)]'~ coth X[q +2nu(q)]'
(2~)

pnu (q)q coth(pq /2)[q +2nu (q)]'

[q +2nu (q)]'
(4.2}
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where n
' = [Bn /BP], .

The expressions of interest in Eq. (4.2) are the terms that have the form —,'E(q)coth[E(q)/2], which can be reex-

pressed as

—,'E (q)+ E (q)f (E), (4.3)

+—
q q+U ' coth q+U

(2n) [[nu(q)] +nu(q)a]'~

nu(q)q acoth( —,'Pq )

I [nu (q)] +nu (q)a) '~2U+

coth(Pq/2) [q + U+ ]'~2

[q + U ]'~
nu (q)a

[[nu (q)] +nu (q)aJ'~2

cosh(Pq /2) [q 2+ U+ ]'~2

[q2~ U ]1/2
nu (q)aq

[[nu(q}] +nu(q}a]'~ U~

Pq coth(Pq/2) [q + U+ ]'~

2[q +U/]'
2nn'u (q} +n'u (q)a+nu (q)a'n'u q+

2[[nu (q)] +nu (q)a]'~

where f (E) is the Bose distribution function. As can be readily confirmed, the total energy in Eq. (4.2} consists of two
parts: one corresponding to the ground-state energy, i.e., the zero-point energy, and the other to quasiparticle excita-
tion energy. Since we are mainly interested in the quasiparticle excitation energy, we will discard the constant ground-
state energy term.

Extending this calculation to higher order in the temperature by including terms of order P ' in the eigenvalues and
using Eq. (3.3}together with Eqs. (3.4) and (3.5) and summing over j, we obtain

U(P) = Uo(P)+ fdr P(r)+Pnn'A fdr&(r) —f— nu (q) ——f Pn'u (q)
n A A dq A dq

2 2 (2n )~ 2 (2m)~
r

+ A dq
2 (2m)

coth(Pq/2)[q + U ]'

[q +U ]'
nu (q}aq

[[nu(q)] +nu(q)a}'~~

coth(Pq/2)[q + U ]'

[q'+ U-1'"
nu (q)aq

[ [nu (q)] +nu (q)a]'~2U

Pq coth(Pq/2)[q + U ]'~
+

2[, +U ]~
n'u (q}—2nn'u (q) +n'u (q)a+ nu (q)a'

2[n u (q) +nu (q)a]'~2

nu(q)q[q +U ]'
pqcoth [q + U ]'~~

[[nu(q)] +nu(q)a]'~

+
nu(q}aq coth( —'Pq }2

I[nu(q)] +nu(q)a]' U

(4.4)

nu (q)aq

[ [nu (q) ]2+nu (q)a J
'

[q + U+ ]'~

13q, 2nn'u (q) +n'u (q)a+nu (q)a'
2[q + U+ ]' 2[[nu (q)] +nu (q)a] '~

nu (q)aq

[ [nu (q}]2+nu (q)a) '~ [q2+ U~ ]'~2U~

where a'=(Ba/BP), . As we did before, taking only the quasiparticle excitation spectrum from Eq. (4.4), we get

nu(q}q [q +U+]'~ nu (q}aqE(T)= .
[[nu(q)] +nu(q)aJ' [[nu(q)) +nu(q)aJ'~ U+

nu (q)q [q + U ]'i nu (q)aq
I[nu(q)] +nu(q)a]' [[nu(q)] +nu(q)a]'~ U

nu (q}aq
[[nu (q)] +nu (q) a'~][q2+ U ]'~2

nu (q)aq
[[nu (q)] +nu (q)a] '~

[q + U ]'~2U

Pq, 2nn'u (q) +n'u (q}a+nu (q}a'
2[q +U ]' 2[[nu(q})~+nu(q)a]'

(4.5)
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In Eq. (4.5) the terms inside the first bracket represent the
temperature-dependent phonon spectrum, while the
second bracket corresponds to the free particle in nature.
Equation (4.5} reduces to the excitation spectrum [Eq.
(2.12)] at absolute zero temperature because a(P, z) tends
to zero in this limit. Since a depends on Bose statistics,
the excitation spectrum depends on statistics.

To have a more explicit form for the excitation spec-
trum, we may choose a mock potential. However, we
have adopted a soft potential with a Lennard-Jones-type
tail in our previous works, which we introduce again
here, i.e.,

2nu (q) = A (0)+ A iq + A 2q
—A3q ln(qa)

—A4q +
where the coefficients A,. are given as

A (0)=2vrna ( Vo
—

—,'Eo),

4

Vo EO
A 2 =4rrna — (1016+48X 10 y )

X 3f 10X 101

(4.7)

Vo, r+a
' 12

aE
r

6

r a

(4.6)

From the Fourier transform of this soft potential, we may
find an expression' for small q,

y =0.5771 . (4.8)

For small q and the low-temperature region, substitut-
ing Eq. (4.7) into Eq. (4.5), the temperature variation of
the phonon spectrum can be evaluated from the expan-
sion

E(q, T) = Ao+
4AO

where

2

q
—

q + B— 3(Ai+1) q + q + C-
AO 8AO Ao 8AO

A A1 A

4AO 2AO
q5+ o ~ ~

(4.9)

B=(1+A i)/2AO, C= 1

2AO

(1+A )

2 4 A

We can easily confirm that Eq. (4.9) is the elementary excitation spectrum of the Bose liquid at very low momenta, and

as T~0, a tends to zero, so that Eq. (4.9) reduces to what we have derived for the spectrum at absolute zero tempera-

ture, '

E (q) = A (0)q +Bq +Cq +
For large q we take only the dominant term to get

E (q) =q [q +(4m na /qa) VOJ, (qa) ]'r

(4.10)

(4.11)

The Bessel function J, is oscillatory, and hence there can be a minimum in the energy curve. Around this minimum

one can find the familiar roton spectrum'

g2
E(q)=b+ (q —qo)

2m

where m, 6, and qo are the roton effective mass, energy gap, and minimum point, respectively.

(4.12)

V. THERMODYNAMIC FUNCTIONS

In the view of the energy spectrum, we follow Landau's theory to obtain the phonon and roton energies. Using the
small- and large-q expansions of the energies, i.e., Eqs. (4.9) and (4.12), we obtain the thermodynamic functions in a
straightforward fashion as

(T 1 2g(3) k )3 2X3!y(z}g(3}(k 4

2' A 2((}) A (0}

E„,(T)=

4X4!$(5)B 1+ 3$(4)y(Z) k p+ 6!$(7)C k T 7+
A '(0) 4$(5)B A '(0)

1/2m'k~T —b, /kj T
qo[b, + —,'(k~T) )e

(5.1)

(5.2)
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The corresponding specific heats are given by

C, (T)="' ~( ) (k, T)z+ " 'y')~( '(k T)'
A '(0) A'(o)

L

Cy (T)=
rot

—LL/k~ T

4X5!$(5)B 1+ 3$(4)y(z) k T 4+ 7!(7)C
k T 6+

A (0) 4$(5)B A (0)
1/2 2m'k, T

kaqo —+ „+
(5.3)

(5.4)

The theoretical expressions for other thermodynamical functions are
r

F h(T)= — (kzT) — (kzT)A'(o) ' A'(o)

m'F (T)=— (k T) ie

4!$(5)B
1

3y(z)g(4) k 5 6!yBg(5) k T 6+
A'(O) A (o)Bg(5) ' A'(O)

1/2

(5.5)

(5.6)

a 3g(3) k T i 4!y(z)g(3) k T i 5$(5)B
1

3y(z)g(4) k T 4 180X3!y(z)B$(5)
A'(O) ' A'(O) ' A'(0) BA (og(5) ' A'(O)

&„,(T)= 3
kaqo + e

2 k~T

105 X 5!Cg(7)
A (0)

' 1/2m*k~T

27rfi2

—5/k~ T

(5.7)

(5.8)

P „(T)=—
~ (k T) —(k T) — 1 — (k T) +

A (0) A (0) A (0) A (0)Big(5)
(5.9)

P„t(T)=
3/2

(k T)3/2 B

2M2 qo a (5.10)

If the quasiparticles move with an average drift veloci-
ty with respect to the rest system and this momentum is
associated with the normal fluid, then its density is given
by

1 { 3 Bf(E(q))
4ir "o &E(q)

(5.11)

Since the normal fluid consists of phonon and roton
parts, from Eq. (5.11) we can obtain directly

t' 3
k~T

fiA (0)
3!$(3)fi a

4ir A (0) 4A (0)

6 X 3!$(4)aA'

A (0)
1/2

1 m'iri'

2 2irkii T

4
k~T

A'A (0)
(5.12)

(5.13)

We note that Eqs. (5.1)—(5.14) are reduced to the thermo-
dynamic functions in Ref. 8 when we take a to be zero.

VI. FIRST, SECOND, AND THIRD SOUNDS

For temperatures below 0.6 K, where the roton excita-
tion can be neglected, there has been confusion regarding
the normal and anomalous excitation spectra. Some
researchers ' have used the wrong normal dispersion to
obtain the temperature variation of the first sound.
Maris and Massey point out that the dispersion relation
should be anomalous because of ultrasonic attenuation.

As we mentioned earlier, we have derived the anoma-
lous excitation spectrums and introduced an ap-
proach, ' ' which includes a collision term in the
Boltzmann equation, and obtained the first and second
sounds simultaneously. At low frequencies such that
~,~&&1, where co, is the sound frequency and ~ is the
characteristic time, one can make use of a hydrodynami-
cal approach to sound propagation, and for the opposite
case of co, v. &&1, it is appropriate to make use of the ki-
netic equations. We shall evaluate the first and second
sounds in the kinetic approach. Since we have treated
the kinetic approach in detail, ' we will briefly review
only the essential features and give the results on the
basis of our temperature-dependent excitation spectra.
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We solve the equation of motion for the velocities of
first and second sounds for temperatures below 0.6 K,
where roton excitation is negligible, but phonon excita-
tion dominates. Our approach is similar to that
developed by Andreev and Khalatnikov and Disatnik,
and in order to obtain both the first and second sounds,
we include a collision term and treat the kinetic equation
for the phonon-distribution function n(p, r, t), equation
of continuity, and equation for the superAuid velocity v, .
%hen the liquid is slightly perturbed from equilibrium,
we assume that the perturbation terms from the distribu-
tion mass density p and superfluid velocity (v, ) are pro-
portional to exp[i(k r —co, t)]. Here k is the complex
wave vector k, +ik2, where the ratio kz/k, characterizes
the attenuation of sound. When k~/kt &&1, we may
linearize the above-mentioned three perturbed terms for
n', P', and v,'. To simplify, we adopt the single-collision
model and use our excitation spectrum, obtaining two
linear homogeneous equations in p'/p and v,'/c:

l+. '
l CO7 l CO%

Co co3
1 —2u gr g(gr )

Co P.—2 u g(gr)
Po Po

T

s & cos Co
1 + —. —2u gr 'g(gr)

l co% kC l co'7

Co P. "s
+2u erg (gr ) —=0,

C Po

Co cos
1 —2u gr g(gr )

Co co 1
Q +

C kC in~
'2

Co+2 'Q Pn

Po P

(6.1)

Co & co, Co
u + . gr —2u gr g(gr)

l CO'T

I
Co pn 1 2

v—2u —+g g(g ) —=0,
C 2 T T C

(6.2)

where
co c0/kv ( T)

kv (T) '
j [co/kv (T)] —I]'

A nontrivial solution can be obtained from Eqs. (6.1) and
(6.9) under the condition that

2

where we replace the group velocity by its thermal aver-
age to obtain

v ( T)=Co(1+a'+ 3y'Pr2+ . . }, (6.5)

a'= 12 (z) 2
q k~T, y'= ~

4A (0) & (0)
(6.6)

and

1 ice rg(gz')

COs V j.

24'r

lCO V
(6.7)

A. Hydrodynamic region (co,~ && 1)

In the low-frequency limit (e,r « 1), P can be approx-
imated as

1+24'r —,' [6 1]—i~—,r . —
Substitution of Eq. (6.9) into (6.4) yields a quadratic equa-
tion in (co, /kC) . Solving Eq. (6.4) for (co, /kC) together
with Eq. (6.8), we obtain the first and second sounds and
their attenuation coefficients:

(6.9)

C, (T) p„=1+ (2u +1)z+2(2u'+3u +1)a
CT Po

+(6u +5u+1)P ', (6.10)

k2 COs~ Pn
(2u +3u +1)——(2a+P), (6.11)

1

8 4Po

C2(T)

CT
1+—(2a+P) — (u + 1)

1 1 Pn

v'2 2 Po
(6.12}

k2 CO, ~ Pn1+(7u +4u+1)
k, 2 8 Po

where a and P are given by

(6.13)

Since the expression C can be written as

2 pn ~Co
C =C +—Co =C +2u C, (68)

Po Bp P

where Cr=(BP/Bp)T is the isothermal sound velocity,
we find the unknown in Eq. (6.4) to be co, /kCo or

co/kC T. From Eq. (6.4) we can obtain the solutions for
the hydrodynamical region (co,r«1) and collisionless
region (cds1 ))1).

kC

Pn

Po

—1+ '"
Po

2
Cp CO

Cov(T} kC

C2

Cov (T)

2

2 Po 8 C P„a =a'+ 3@PT 56Pr, p= ———
3 Co ()P Po

with

5=[23 (0)] '[A2 —(1+2 i) /4& (0)]

(6.14)

2El

'2 2
Co p„

Po
(6.4)

8. Collisionless region (cu, v. &&1)

In the high-frequency limit, we can approximate Eq.
(6.7) as
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3 a z (1—a)
1 ——+2)z—

2 3 2lN 7
(6.15)

Substituting Eq. (6.15) into (6.4) and solving the quadratic
Eq. (6.4) for (co, /kC), we obtain the velocities of the first

and second sounds and corresponding attenuation
coefficients: C3 ( T) =—p, ( T)K( T),1

(6.21)

reanalyze the third-sound data.
When sound waves with wavelength longer than the

film thickness propagate along a helium film, the normal
fluid is held rigid to the substrate, while the superfluid
shows density fluctuations. For the third-sound velocity,
we make use of the formula

C, (T) =1+—[(6u +8u+3)+(8u +15u+6)a
Cz- 2

+(10u +llu+3)P],
k2 —(6a+ 3P)+ (u + 1)

pn

k) ) 2', w 8 po

C~(T) Q3
I + (a'+ 3yPr 55P, )—

T

(6.16}

(6.17)

where m is the helium mass, p, ( T) is the superfiuid num-

ber density, and the adiabatic elastic constant ~ can be
obtained from the second derivative of the excitation
spectrum with respect to the surface number density n.
Using Eqs. (5.1), (5.13), and (5.14), we obtain the third-
sound velocity

C3(T)=Co[1+X,(k~T) +X2(kaT) +X3(k~T)

+X,(k, T} ~e """
(5u +12u +6)+

o ~p Po where

+X5(kgT} e + ) (6.22)

k2 1

k) 2 6', s 1 2(a'+ 3y—Pr 55Pr )—

2 $2C
+—11 —6+2

3 Co gp Po

(6.18} Vp = Vp
—

—,'Eo,
D ( ( 2g g 2 Ve )

1/2

D2= ,'na ( ', E—o—Vo—),
QB =ma Vo 1+ Vo [3+21n(na Vo )]

(6.23)

(6.19)
and the coefficients Cp and X; are given by

In the derivation of Eq. (6.4), we have adopted the
single-collision time model for the collision integral term.
If we neglect these collisions among excitations and solve
this equation for (co, /k), we obtain

nB
0 m*

g(3) 2 3a
77.D n B 2D n

3 a
D2 D2n

sos5C= —C=k 3!g(4} 18

enD B
10

D2 (6.24)

1 1 po o= —Co (u+1) +———
2 3 Cp Bp

4!$(5) 2 10a
~n 5D6 B ' nD2

6aD2
D2

—2(u +1) a pn

. Po
(6.20) (1+nD2) 1—

2D2
" ' nD2

We note that except for the a term, Eq. (6.20) is identical
to what we have derived in our previous paper. '

In the case of low frequencies (co,r((1), we can apply
the superfluid hydrodynamics equations together with
the dissipation function to obtain the first and second
sounds. However, this derivation is not related directly
to our temperature variation of the excitation spectrum,
and thus we will not discuss this here.

Since the third sound in superfluid helium films has
been observed in both thick and thin films, ' researchers
have investigated this sound in diferent ways. Recently,
we have also analyzed thin-film data in terms of the ele-
mentary excitations obtained by a microscopic ap-
proach. ' Using these previous results and the
temperature-dependent excitation spectrum, we will

' 1/2
Vo m'
n 2'

2((3)qoX5=-
~n BD

3a
2nD2&

m*
2'

1/2

As in Eq. (4.12), m', b„and qo are the roton effective
mass, energy gap, and minimum point, respectively.
These parameters are given as a function of the potential
parameters in our previous work. ' In Eq. (6.22) the first
term is associated with the ground-state energy, and the
next three and remaining exponential potential terms are
related to the phonon and roton energies, respectively.
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VII. RESULTS AND DISCUSSION

In the previous sections we introduced the eigenvalues
of the effective boson propagator and the effective eigen-
value for higher temperatures, and then we evaluated the
temperature-dependent structure factor and elementary
excitation spectrum. We used these quantities to obtain

thermodynamic functions, Aux density, and various
sounds in thin liquid- He films.

The elementary excitation spectrum can generally be
determined from neutron-scattering measurements and
various sound-velocity data. However, the shape of the
spectrum in the very-low-momentum region cannot be
determined well by such experimental methods, but it can
be done indirectly from specific-heat measurements. The
existence of the anomalous phonon spectrum (concave
up) was revealed in measurements of the specific heat
above 0.3 K by Phillips, Waterfield, and Hoffer. More
recently, Greywall has measured the specific heat of
bulk liquid helium with high precision in the temperature
range from 65 to 80 mK and for various molar volumes
under high pressure up to 25 bars. The analysis of these
data through our excitation spectrum at absolute zero
temperature gives the anomalous phonon dispersion and
also agrees with the results obtained by sound propaga-
tion.

Concerning the specific heat of thin liquid- He mono-
layer films, there are several measurements of the heat
capacity of He films adsorbed on various substrates.
Among these, we now analyze the specific data of "He
monolayers adsorbed on "Grafoil graphite" substrates

by using our Eqs. (5.3) and (5.4) at y(z) =0. Here we as-
sume that (l) the interaction between He atoms is a soft
potential, (2) the system is perfectly two dimensional, and

(3) substrate effects are negligible.
Concerning substrate effects, Krotscheck considered

that liquid helium is translationally invariant in the xy
plane, using three z-dependent substrate potentials U(z),
i.e., the Aziz potential, ' artificially weakened Aziz po-
tential, and Dupont-Roc potential, which model the
adhesion force between the He atom and substrate. He
then displayed the one-body densities p(z) for the above
three potential models for helium films of the different
surface coverages and made use of them to evaluate the
correlation energy and collective excitation energy.
Adopting Krotscheck's method, the number density,
which we should treat, will be changed. Then, in order to
fit the specific-heat data, another set of parameters in

Table I should be chosen. However, in the analysis of the
superAuid properties of the hehum films, we proved that
L /Do, where L is the healing length and Do is one sta-

1.5—

1.0

~Nk8

0.5

ooo Q Qrn
+ 0 + ++

'I

Surface Densify ( A )

0 0273

0 02r9

0.0399

O 04i9

0
0

I

2

T (K)

0

tistical atomic layer (DO=3. 6 A), by one standard layer
thickness, is almost constant below 1 K. Therefore, to
simplify the problem, we have neglected the substrate
effect.

When the phonon part is truncated after the third
term, we obtain the numerical values for the parameters
that give the best results for fitting the specific-heat data
at various densities, which are listed in Table I. When
higher-order terms of the phonon part are included,
another set of parameters should be found.

Figure 1 illustrates our theoretical specific heat in com-
parison with experimental data. At temperatures be-
tween 0.5 and 0.6 K, the phonon and roton contributions
are comparable for the given densities, and the latter be-
comes dominant as the temperature increases. In the
range of temperatures around 1.2 —1.6 K, the phonon
part increases, but the roton part decreases more rapidly
and hence dominates the overall behavior. Thus the
specific heat reaches a maximum, which depends on the
density, and then falls sharply. When we determine the
temperature T& at which the density becomes equal to
the actual density of liquid He, we find T& =1.5 K at the

density of 2.79X10 A . Adjusting this value in ac-
cordance with the ratio of the theoretical and experimen-
tal values for bulk He, we obtain T&=1.2 K. Bishop
and Reppy measured the superAuid transition tempera-
ture of a thin helium film adsorbed on an oscillating sub-

strate and reported T&=1.215 K, which is in excellent

FIG. 1. Specific heat of He films plotted against tempera-
ture. The solid, dashed, dotted, and dot-dashed lines represent
the theoretical calculation, and the experimental data are

represented by +, X, 0, and 6.

TABLE I. Potential and roton parameters to fit the experimental data of specific heat in the micro-

scopic theory presented in this paper.

n (1/A ) a (A) Vo (K) Eo (K) qo (A ') h(K)

0.0273
0.0279
0.0399
0.0419

3.565
3.581
3.161
3.295

9.331
8.369
9.297
8.040

8.005
7.140
7.943
6.820

0.875+0.275
0.814+0.302
0.92 +0.350
0.90 +0.320

2.027
2.042
2.184
1 ~ 891

3.29
3.35
4.00
4.30
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FIG. 2. Theoretical excitation spectra of the He films de-
duced from the specific data as a function of the dimensionless
parameter qa.

agreement with our estimate. In Eq. (5.3) the specific
heat varies as T at very low temperatures when y(z) is
zero. This variation is an essential characteristic of a
two-dimensional continuum and two-dimensional Debye
model.

Figures 2 and 3 represent the elementary excitation
spectra and structure factors, respectively, deduced from
the numerical values of the parameters at various densi-
ties in Table I. Because of the scale factor, the upward
dispersion is not shown clearly in Fig. 2, but we have pre-
viously reported that the upward bending becomes
stronger as the density increases in two dimensions. ' '

In Fig. 2, as the density increases, the sound velocity and
roton energy gap increase, but for the case of structure
factors, we cannot find a general tendency as for the exci-
tation spectra.

Let us now return to the temperature variation of the
structure factors. In Eq. (3.7) the first bracket expresses
the first-order modification due to the finite temperature.
The effect of this finite temperature comes from the
effective interaction U+(q, P,z). The second bracket

$.5—

FIG. 4. Temperature variation of y(z).

represents the b, /I, (q} correction terms. For low temper-
atures and small q at fixed density, the interaction effect
of U+(q, P,z) appears since a(P, z) has finite growing
values with increasing temperature Th. erefore Eq. (3.7)
gradually has larger fixed values as q~0. %'e can easily
confirm that in the limit T~0 and a(P) ~0, Eq. (3.7) is
reduced to the zero-temperature expression of Eq. (3.1).
We note that a(P, z) depends on statistics because of the
factor y(z).

To draw the structure factor and excitation spectrum,
we must first evaluate y(z) as a function of temperature.
However, y(z) cannot be represented as a finite closed
function (see Appendix B), and so we evaluate these
values numerically as a function of temperature. Figure
4 illustrates y(z) versus temperature, and the results of
the numerical calculations for y(z} are listed in Table II.

In order to fit the specific-heat data at a density of
2.79X10 2 A 2, using Eqs. (5.3) and (5.4), which in-
clude the y(z) term, we have chosen the potential and ro-
ton parameters as

a =3.95 A, V=8.75 K, ED=7.49 K,
q0=0. 814+0.302, m*=2.04m, 6=3.35 K .

Figure 5 illustrates the elementary excitations as a func-
tion of temperature using the above parameters. As the
temperature increases, the phonon part shows strong up-
ward bending. However, the roton energy gap decreases
significantly with increasing temperature, while the roton
momentum qo maintains almost the same values and thus
seems to be independent of temperature.

1.0

S(q}

0.5

aty (A )

273
hC

3

UJ

%a 0 ~ ~ ~

FIG. 3. Structure factor S(q) deduced from the excitation
spectrum as a function of the wave vector q.

3
aq

FIG. 5. Temperature variation of the excitation spectrum.
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TABLE II. Numerical values of y(z) =G2/Gl(z) vs T.

Gi(z) =2.12/T Gp(z) p(z) =G2(z)/Gl (z) 15— T~0.3714K
T ~ 0 2357K0.0714

0.1732
0.2357
0.2857
0.3286
0.3895
0.4393
0.4507
0.5000
0.5571
0.6571
0.6893
0.7321
0.7750
0.8571
0.8940
0.9643
1.0914
1.1634
1.2120
1.2720
1.3790
1.4450
1.5150

29.6918
12.2401
8.9944
7.4203
6.4516
5.4428
4.8258
4.7037
4.2400
3.8054
3.2262
3.0755
2.8957
2.7354
2.4734
2.3713
2.1984
1.9424
1.8222
1.7491
1.6666
1.5373
1.4671
1.3993

1.6449
1.6448
1.6436
1.6398
1.6331
1.6169
1.5980
1.5930
1.5689
1.5369
1.4741
1.4528
1.4242
1.3955
1.3409
1.3169
1.2721
1.1955
1.1548
1.1286
1.0974
1.0451
1.0149
0.9844

0.0554
0.1343
0.1827
0.2209
0.2531
0.2970
0.3311
0.3386
0.3700
0.4038
0.4569
0.4723
0.4918
0.5101
0.5421
0.5553
0.5786
0.6154
0.6337
0.6452
0.6584
0.6798
0.6919
0.7035

Figure 6 represents the theoretical temperature depen-
dence of the structure factor. This factor takes on gradu-
ally larger values with increasing temperature as q~0.
The peak becomes higher for higher temperatures be-
cause the roton energy gap decreases with increasing
temperature. This result agrees with the temperature
dependence of the liquid structure function obtained in a
variational density-matrix approach for liquid "He at
nonzero temperatures. Extending Landau's theory,
Bendt, Cowan, and Yarnell took into account the tem-
perature dependence of the excitation energy curve in the
temperature range 1.1 —1.8 K, showing that the excita-
tion spectrum generally decreases with increasing tem-
peratures. Recently, Suebka and Lu adopted a modified
Brueckner-Sawada method together with an external
potential and reproduced the results given by Bendt,
Cowan, and Yarnell.

T =OK

10
U'
lg

CO

05

6
aq

10

FIG. 6. Temperature variation of the structure factor de-
duced from the excitation spectrum in Fig. 5.

Campbell et al. employed a variational density-
matrix theory, together with the minimum principle of
the Helmholtz free energy, to derive the elementary exci-
tation spectrum and the structure factor. Their results
agreed very well with the experimentally determined en-
ergy of Cowley and Woods ' at low momentum (k &0.4
A ), and their excitation spectrum exhibits strong
anomalous dispersions with increasing temperature at
very short wavelengths. We note that Samulski and
Isihara showed that within the chain-diagram approxi-
mation the excitation spectrum decreases, while the
structure factor increases with temperature in bulk liquid
4He.

We note that for the thermodynamic functions the
phonon part contains both odd and even functions of
temperature, and for the specific heat the leading term is
quadratic in temperature, which is characteristic of two
dimensions. The roton part is characterized by the ener-

gy gap 6 and roton momentum qp. Because of the ex-
ponential factor, it is small for low temperatures.

In Sec. VI we adopted the single-collision time method
model for the collision term and obtained the first and
second sounds. Making use of Eq. (6.8), we can express
Eqs. (6.10) and (6.16) as

5Ci(T) =Ci(T) —Co= Cpp. 1 1 Pp ~ Cp 1(u+1) ——+- +(u +1)(2u +1)a+—(3u +1)(2u +1)P, co, r «1,
Pp 2 3 Cp ()p 2

(7.1)

2 g2g
5C&(T)= 2(u+1) ——+-

&
+—(u +1)(8u +5)a, co,r»1 .

po 2 3 Cp ~pp2
(7.2)

Since the normal-fluid density is given by Eqs. (5.13) and (5.14) in both frequency regions, the leading term for the first
sound increases as T, in striking contrast to the T lnT ' increase of bulk liquid He. The absence of the logarithmic
term in two dimensions stems from the angle integrals. Figure 7 illustrates the temperature variation of the first-sound
velocity in both frequency regions at very low temperatures. In the region above about T-0.9 K, the sound velocity
decreases because of a(P, z). We can confirm that the phonon excitation spectrum is strongly anomalous, and the first-
sound velocity in the hydrodynamic region increases more than in the collision region. In this plot, the parameters u
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and (po/Co)(B Co/Bpo) are taken to be 1.8 and 0.19, respectively, as used by Singh and Prakash and Maris. The
corresponding attenuation coefficients in Eqs. (6.10}and (6.16}are given by

s Pn 1
(2u + 3u + 1) ——(2a+P), ro, ~ && 1

8 po 4
(7.3)

a, {T)= '

po

1 1—(6a+3P)+(u +1)Pn

2$s7 8
co,w&&1 . (7.4)

The second sound and corresponding attenuation coefficient given in Eqs. (6.12), (6.13), (6.18},and (6.19) can be ex-
pressed as

Cz(T) = 1 ——P+2u
Co 2Pn

2 p,
1+—(2a+P) —(u +1)1 Pn

2 Po
(7.5)

C2 Pn 1 ,Pn
C2(T) = 1 —a+(u +1) +—P +a 1 ——P—u2

P0 2 2 Po
(7.6)

a(T)= '

2
COs 7

2 Pn1+(7u +4u +1), ro, r«1
0 Po

2 2P0 BC0 pn1+—11u —6+ 2(a'+ —y PT 55PT ) co~~ && I
o t}po po

(7.7)

(7.8)

The attenuation coefficients ai( T) and az( T) in both re-
gions show the variation with p„(T) under the assump-
tion of constant ~. This result is similar to the bulk
case. However, a, (T) in the hydrodynamics region and
az(T) in the collisionless region at temperatures above
-0.6 K will depend not orily on p„(T), but also
moderately on a(p, z) and p [Eq. (6.14)].

Figures 8 and 9 represent our theoretical results for the
temperature variations of the first and second sounds at
low frequencies, respectively. We find that at absolute
zero, the second-sound velocity Cz is about 1/'(/2 of the

0.3—

first-sound velocity. As temperature increases above-0.8 K, the contribution of a(p, Z} to the first-sound ve-
locity is significant, causing a dramatic decrease in the
velocity.

We note in Fig. 9 that as temperature increases, the
second sound passes through a gentle maximum, reaches
a minimum at about 0.6 K, and then arrives at another
moderate plateau. After this, it decreases rapidly. How-
ever, the effect of a(p, Z) on the second sound, which is
different from that of the first sound, is a slight increase
of the velocity on the plateau.

In order to fit the data of the third sound correspond-
ing to an atomic coverage of D =1.77, we have adopted

QCt/Co

x10

0.2—

C, (cm/s)

16-

12-

0.1—

0.5 1.0
I

1.5
T(K}

FIG. 7. First-sound velocities in the hydrodynamic
(co,~(& 1) and collisionless regions (co,r && 1). The dashed lines
are the velocities when a(p, z) is taken into account in both re-
gions.

I

0.5
I

1.0
T (K)

I

1.5

FIG. 8. First-sound velocity vs temperature. The dashed line
is due to the effect of a(p, z).
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I
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64

0
I

0.1 0.2 0.3 0.4 0.5 0.6 0,7

T(K)
FIG. 9. Second-sound velocity vs temperature. The dashed

line is due to the effect of a(P, z).

the following potential and roton parameters:

a =2.55 A, E&=0.12 K, V0=2. 17 K,
q0=0. 73 A ', 6=2.80 K, m*=2.04m .

These parameters are slightly different from those we
have taken in Ref. 17, which is due to a(P, z). In Fig. 10
we show that our microscopic approach reproduces the
temperature variation of the third-sound velocity. Our
Eq. (6.22) is very similar to the result given by Rutledge
et al. , who obtained a T term [see their Eq. (29)] with
a temperature-dependent coefficient. However, the
coeScient X& of the T term in Eq. (6.22) contains the
potential parameters as well as being temperature depen-
dent, and we have also obtained higher-order terms, such
as T and roton terms. Therefore our derivation is more
meaningful and should fit the data more accurately.

In conclusion, we have evaluated the temperature vari-
ation of the elementary excitation spectrum of thin
liquid- He films within the ring-diagram approximation.

I

FIG. 10. Third-sound velocity for D =1.77 as a function of
temperature, where the circles are data from Rutledge et al.
(Ref. 53), and the solid curve is the present theory.

The effect of temperature on the phonon spectrum is very
small for very low temperatures, and thus three-phonon
processes do not play much of a role. However, as tern-
perature increases from 0.6 K to the vicinity of the two-
dimensional transition temperature T& = 1.21 K, the tem-
perature effect is very significant for the physical quanti-
ties of thin liquid- He films as in bulk liquid He.
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APPENDIX A: DERIVATION OF EQ. (3.7)

Substituting Eqs. (3.4) and (3.5) into Eq. (3.6) and re-
taining just the first term, we have

2nq

1 q +(2nj/ )
first term=

1+U(q) .
q (2' /P)

naq

[q +(2~h/P) ]

naq
[q"+(2' /P) )

(A 1)

where a = 12y(z)/P. We can rewrite this equation in two parts as

q 1+(2nu +a)/2[(nu) +nua] '~
first term=

P ~ q +nuq +q [(nu) +nua]' +(2rrj /P)

q 1 (2nu +a—)/2[(nu) +nua] '

P,. q +nuq q[(nu) +nu—a]'~2+(2' /P)2
(A2)

Using the summation formula
1 m

coth(vrx ), —
~X +J

the first term of Eq. (A2) becomes
1 2

(A3)

q coth( —,'Pq)[q +U+] ~

2[q + U+ ]' 2[(nu ) + nu a] '~~

where U+ =nu [1+(1+a/nu)' ]. Through a similar

7r' 2cosech —+ coth
m 2m, m

(A5)

we then obtain Eq. (3.7).

I

calculation for the second terms in (Al) and (A2) and
making use of the summation formula

CO
1

„(1+mj )
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APPENDIX B:
NUMERICAL EVALUATION OF y(z)

The total number of particles of the system is deter-
mined by integrating the distribution function together
with the two-dimensional density of states,

2am p dE
h 2 J I3(E —p)

For sufficiently low temperatures, i.e., 8» 1, Eq. (B2) can
be expressed as

p 1 —ne= ——e
k~T n

(B3)

At a density of 2.79X10 A, the numerical value of t9

is 2.124/T, and we can make the approximation
z=l —exp[ —2. 12/T] for 8&1 (T &2. 12 K). Therefore
G, (z) can be expressed approximately as

where p is the chemical potential. Expanding the denom-
inator of Eq. (Bl) and performing the integration over en-

ergy, we obtain the simple form

2. 12
G, (z)= g —= —ln(1 —z)=

) l T

On the other hand, we can write Gz(z) as

(B4)

=in[1 —e ],k~t

where we have used the relations

(B2)
oo j'

1G (z)= f g —dz= —f dz —ln(1 —z) .
dz I=~ l z

(BS)

g —.e = —in[1 —e ], 8=1 jp/k~ T —IM/k~ T

j J
Nh

A 2~mk~ T

However, this function cannot be expressed as a finite
combination of elementary functions. Therefore, for
y(z), we must perform the numerical calculation.
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