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The thermally induced escape rate of a particle trapped in a two-dimensional (2D) potential well has
been investigated through experiment and numerical simulations. The measurements were performed on
a special type of superconducting quantum interference device (SQUID) which has 2 degrees of freedom.
The energies associated with the motion perpendicular to (transverse) and along (longitudinal) the escape
direction are quite different: the ratio between the transverse and longitudinal small oscillation frequen-
cies is cv, /co& -7. The SQUID s parameters, which were used to determine the potential shape and ener-

gy scales were all independently determined. All data were obtained under conditions for which the 2D
thermal activation (TA) model is expected to be valid. The results were found in good agreement with

the theoretical prediction. The measured thermal activation energy is found to be the same as the bar-
rier height calculated from the independently determined potential parameters. No evidence of apparent
potential barrier enhancement recently reported in a similar system was found. In addition, the results
of our numerical simulations suggest that the region in which the 2D thermal activation model is applic-
able may be extended to barriers as low as 6U- k~ T.

The escape rate of a particle trapped in a one-
dimensional (1D) potential well via thermal activation
over the potential barrier was first studied by Kramers. '

The thermal escape rate was found to have the simple
form of the Arrhenius law:

co Eo
I =a, exp' 2m. k~t

where co is the small oscillation frequency at the bottom
of the well, a, is a damping dependent numerical factor of
less than unity, Eo is the activation energy, which is

equal to the potential barrier hU, k~ is the Boltzmann
constant, and T is the absolute temperature. The predic-
tion of Eq. (1) has been verified by many experiments and
numerical simulations. In particular, the measured
thermal escape rate from the metastable zero voltage
state to the finite voltage state of the current biased
Josephson junction and the thermal transition rate be-
tween the different Auxoid states of the single junction su-
perconducting quantum interference device (rf SQUID)
agree very well with Eq. (1). In these experiments, the
sample parameters of Josephson junctions and rf
SQUID's were determined via independent measure-
ments in order to accurately compare experiment and
theory. A comprehensive review on the escape rate in
1D and multidimensional system has been given by
Hanggi et al.

Brinkman first generalized Kramers' calculation of es-
cape rate from 1D to multidimensional potentials. Later,
Landauer and Swanson also performed a theoretical
study on the effect of higher dimensionality on the
thermal escape rate. They found that the escape rate
through any one of the several saddle points obeys the
Arrhenius law with activation energy Eo equal to the po-
tential barrier AU which is the energy of the saddle point

measured relative to the bottom of the potential well.
Ben-Jacob et al. and Tesche have studied the thermal
escape rate in a 2D potential. The total escape rate is the
sum of all the escape events in a unit time through all the
saddles surrounding the well. The rate through any one
of the saddle points is given by

00 Eo
I =a, exp'2m B

(2)

with Eo =hU, where IIo=cot co, /co„ is the attempt fre-

quency, co, (co, ) and cot, (to„) are the longitudinal (trans-
verse) small oscillation frequencies at the bottom of the
we11 and the saddle of the potential, respectively. The 2D
thermal escape rate was experimentally confirmed by
Naor, Tesche, and Ketchum' in a dc SQUID with the
transverse to longitudinal frequency ratio (TLFR)
co, /cot —-1. Recently, Sharifi, Gavilano, and Van Har-
lingen"' reported that the thermal escape rate, ob-
served in a dc SQUID with TLFR=7 and A'co, /ks —-23
K, was significantly suppressed, compared to Eq. (2).
They suggested that their data could be explained if the
activation energy Eo were enhanced to about 2.5 times
4U. They also suggested that the observed deviation
from Eq. (2) might be related to the large transverse fre-
quencies (co„and co, ) involved in their experiment. "
Here, we report measurements of the thermal escape rate
in a 2D potential using a variable I, rf SQUID [see Fig.
1(a)], which has fuu, /kz-—15 K and 5~TLFR~9. The
activation energies Eo derived from our data are in good
agreement with Eq. (2), i.e., Eo = b, fJ, where the potential
barrier height 5U was determined to a high degree of ac-
curacy via independent measurements. We have also per-
formed numerical simulations of the escape rate from the
2D potential well. These results are found to be in excel-
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tance, pd,
=2—mlI, p/@p«1, symmetric dc SQUID [Fig.

1(a}]. Here 2l is the loop inductance, I,p= i—,&+I,2 is the
sum of the critical currents of the two junctions, and 40
is the flux quantum h/2e. The macroscopic dynamical
variables of this system are the magnetic fluxes
through the rf SQUID loop and 4d, through the dc
SQUID loop. Thus the system has two degrees of free-
dom. In the classical limit, based upon the resistively-
capacitively shunted junction (RSCJ) model of Josephson
junction, ' the deterministic EOM of the variable I, rf
SQUID with two nearly identical junctions each having
shunt capacitance C, shunt resistance R, and in general
different critical currents I, &

and I,2 are given by'

2C4+

c-
2 dc +

2R

BU(4,4g, )

84 (3a)

(3b)

where overdot and double-overdot indicate the first- and
second-order derivative with respect to time t. If the flux
is expressed in units of 4p/2m, then the 2D potential of
the variable I, rf SQUID is given by'

U(f, Pdc) = Uof(f' td ) (4a)

f'dc 0'dc
Pp cos coslp+5P sin sing (4b)

FIG. 1. (a) Schematics of a variable I, rf SQUID. Inset: the
I-V curve of a typical Nb/A1203/Nb trilayer tunnel junction
measured at 4.2 K with its critical current suppressed by a mag-
netic field. (b) Two-dimensional SQUID potential and its
equal-potential contour at 4„=—,'4p and 4„d, =0.

lent agreement with Eq. (2). The rest of this paper is or-
ganized as follows: in the first section the deterministic
equations of motion (EOM) of a variable I, rf SQUID, its
2D potential, and the corresponding Langevin equation
in the presence of thermal fluctuation are presented. In
the second section the experimental techniques and the
results of the thermal escape rate measurements are de-
scribed and analyzed. This is followed by a section in
which the techniques employed to independently deter-
mine the sample parameters are described. In the next
section the method and the results of numerical simula-
tion are presented. In the final section the implications of
our results are discussed.

I. EQUATIONS OF MOTION AND 2D POTENTIAL
OF A VARIABLE I, rf SQUID

In the variable I, rf SQUID, the single Josephson junc-
tion in a standard rf SQUID is replaced by a small induc-

where Up= 4p/(4' —L), y= L/2l is th—e ratio of the in-
ductances of the rf SQUID and the dc SQUID; qr„(qr„d, }
is the externally applied flux to the rf SQUID (dc
SQUID) loop, p (pd, } is the flux enclosed in the rf
SQUID (dc SQUID) loop, Pp

=2n.LI,p/4p, —and
5P:2nL (I,z

—I,&)/@p. —
The dynamical variable y describes the in-phase

motion of the two junctions which results in a current
circulating in the rf SQUID loop. On the other hand, yd,
describes the out-of-phase motion which results in a
current circulating in the dc SQUID loop. The shape of
this potential is completely determined by the dimension-
less function f (p, yd, ) and the energy scale of the poten-
tial is determined by Uo. The two sample parameters
which determine the shape of the 2D potential are Pp and
y. For the sake of simplicity we take 5P=O in the
remainder of this section. As we shall see below this
gives an adequate description of our sample. For Pp) 1,
in general, the potential has metastable states. In addi-
tion, if y)Pp/4, the potential has only well(s) and
saddle(s} but no hill. For Pp& 1 and y )Pp/4 the poten-
tial only has one well and has no metastable state. The
ratio between the transverse and longitudinal frequencies
co, /co&, for a given value of y and y„d„only depends on

Pp and y. This ratio can be modulated within some range
by changing the applied flux y„and/or y„d, . Among all
the different potential configurations one can obtain by
manipulating the sample parameters and applied fluxes
(@„,4„d, ), a particularly interesting and important one is
the symmetric double-well potential. This can be realized
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by applying an external flux of {n + —,
'

)40, i.e.,
y„=(n +—,')2n, to the rf SQUID loop [see Fig. 1(b)].
The height of the barrier hU which separates the two
wells can be readily adjusted by varying y d, . This per-
mits the rf SQUID parameters such as the barrier height
of the symmetric double-well potential and the small os-
cillation frequencies at the bottom of the potential well to
be continuously varied in situ. ' In the limit of I~o,
(y~aa) one has yd, =y„d„so U(p, pd, ) goes over to the
1D potential of a rf SQUID with a single junction whose
critical current is adjustable. Of course this could also be
done by applying a magnetic field to a single junction.
However, this approach requires either a large capaci-
tance junction or a large field, either of which is undesir-
able for our purpose. The critical current of this variable
I, junction is given by I,=I,pcos(g7 d /2). These prop-
erties greatly enhance our ability to measure the sample's
parameters accurately and to select parameters suitable
for performing many different kinds of experiments such
as thermal activation, macroscopic quantum tunneling,
incoherent relaxation, photon-induced transition, and
possibly macroscopic quantum coherence using a single
sample.

By making a linear transformation of the variables
from y and pd, to q, =v 2(p and qz =yd, W 2, the EOM
can be written as

q; BU(q, , qz)
Cj;+—=—

R Bq;
i =1,2. (5)

Equations (5) are homologous to the deterministic EOM
of a particle of mass C moving in a 2D potential
U(q„qz) with damping coefficient 1/R. One can either
use Eq. (3) or Eq. (5) to describe the motion of the flux
"particle. " Since in our experiment the measured (con-
trolled) quantities are fluxes p and (pd, (y„and (p„d, ), it is

convenient for us to choose tp and yd, as the system's
dynamical variables, Eq (3) as .the EOM, and U(y, yd, )

given by Eq. (4) as the potential.
In the presence of thermal fluctuation, the Langevin

equations associated with the deterministic EOM are
given by

2Ce+

+dc
I,a cos m

—sin 2n. +I„f„(t),c0
0 0

(6a)

C" dc

2

I,p=y — sin
L 2 Np

cos 2n. +I„,„(t );

(6b}

here 6@=—4 —@ and bNd, =@„d, 4d„and I„f—„(Id,„)—
is the thermal noise current associated with the rf (dc}
SQUID loop, which originates from the Johnson noise of
junctions shunt resistors. The noise currents are statisti-

cally independent of each other and are 5 correlated.
Their amplitudes are given by the fluctuation-dissipation
theorem, i.e., their properties can be characterized by the
following equations:

(I„f„(t)) = (I„„(t)) = (I,f„(t}I„„(t)) =0,
2k~ T

(I„f„(t)I„f„(t')) = 5(t —t'},
R/2
2k~ T

(Id,„(t)Id,„(t')) = 5(t t') —.
2R

(7a)

(7b)

(7c)

To simplify the EOM, we use the following units:
current in units of I,p, time ~ in units of ~, where

cop 27TI 0 /2CC p energy in units of EJ=I pC p/2m, and
flux in units of 40/2m. The dimensionless damping pa-
rameter is defined as G =(RCco ) '. The EOM are then
reduced to

0'dcij+Gp= cos— sing&+i„f (r),
0

4X~V d,
{pd~+Gyd~ 2stn

2
cos(p+4td~ (&)

0

(8a)

(8b)

where the overdot and double overdot denote the first
and second derivative with respect to ~, respectively. The
relation between the amplitudes of the thermal noise
currents is (i„f„)=4(id,„) which reflects the fact that
the dissipation associated with the rf SQUID loop is four
times that associated with the dc SQUID loop: the circu-
lating current in rf SQUID loop sees the two junctions'
resistances in parallel while the circulating current in dc
SQUID loop sees them in series.

II. DETERMINATION OF THE SQUID PARAMETERS

Traditionally, the thermal activation energy barrier
5U is deduced from the slope of ln(I') vs 1/ktt T plot be-
cause usually one lacks knowledge about the details of
the potential, or the parameters which specify the poten-
tial cannot be independently determined. For a SQUID
the potential is exactly known in terms of the SQUID pa-
rameters such as the loop inductance and the critical
current of the junction. If one can independently mea-
sure these parameters, i.e., not determining them from
the thermal escape rate measurement, the potential then
can be completely determined and the effects other than
potential barrier height on the thermally induced escape
can be investigated.

For the SQUID potential given by Eq. (4) one can see
that at any value of the external fluxes @„and N d, a
minimum of four SQUID parameters is needed to com-
plete1y specify the potentia1's shape and energy scale. In
addition, one needs to know the junction capacitance C
in order to determine the smal1 oscillation frequencies
(cos ). The first four SQUID parameters mentioned above
can be chosen as PD {orI,D), 5P (or I,z

—I„},y, and I. (or
1). The dissipation is specified by R, the shunt resistance
in the RSCJ model. In Table I we list the techniques
used to measure the minimum set of parameters needed
to calculate the potential and the associated cps. A11 the
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TABLE I. The techniques used to determine the variable I,
SQUID parameters. I V-and SQUID resonance step measure-
ments were made on a coprocessed sample without the rf
SQUID loop. Zero-field step measurements were made on junc-
tions fabricated with the same process.

1.8

1.4

Techniques

4 vs 4„at 4„g,=40/2
dc SQUID resonance step
Zero-field step
Calculated from sample geometry
dc I-V curve

Parameters

f30, ~P r
IC
C
L, I
R~ 0.6

0.00 0.25 0.50 0.75 1.00

methods except the first one in Table I are commonly
used in measuring Josephson junction and SQUID pa-
rameters' ' and will not be described extensively. The
first method listed in Table I is rather unique to the vari-
able I, SQUID parameter determination and is discussed
in detail below.

One must notice that the 2D potential U(4, 4d, ) is
periodic in both 4 and 4&, provided the external fluxes
are changed by integral 40, i.e.,

U(@+n@p,4~, +2m@p, 4„+n@p,@„d,+2m@p)

= U(4, 4d„@p,@„d,),
where n and m are integers. This property of the poten-
tial makes the experimental calibration of 4, 4d„4„,
and 4„d, straightforward and very accurate. In particu-
lar, at 4„d, =4p/2 (corresponding to the minimum Ir ),
for a SQUID such as ours having Pc&6, y) Pp/4, and
5pipp & 10% a change in 4„by one fiux quantum results
in a precise change of one flux quantum in 4. These con-
straints on the SQUID parameters ensure that the 4 vs
4„curve is not hysteretic. The shape of the equilibrium
4 vs 4„curve and thus d 4/d 4„vs 4„at the minimum

I, is comPletely determined by Pp, 5P, and y. d4/d4„
as a function of 4„can be numerically calculated from
the potential U(4, @d, ) using the steepest descent ap-
proximation by simultaneously solving BU/8@=0 and
BU/84„, =0. This approximation is very good for the
situation considered here. The values of pp, 5p, and y
used to calculate the theoretical curve were adjusted until
a satisfactory fitting to the measured d4/d4„vs 4„
curve was obtained. These fitting parameters were then
used in all other calculations of the potentials and cps.
The d4/d4„vs 4„data, with noise reduced by signal
averaging, is shown in Fig. 2 compared to the best fit.
The SQUID parameters obtained from the fit are
y = 19.5+1 PH, Pp=4. 10+0 05, and. 5P/Pp= (I,2

I„)/I,p&4. 5%. The fi—tting quality characterized by
the p is very sensitive to the values of the parameters. '

Typically, a change of 1% in Pp, 4% in y, or 8% in 5P
would significantly increase the g, showing that this
technique provides an accurate estimate of these three
SQUID parameters.

To measure the therma1 escape rate in a 2D potential,
we have fabricated variable I, SQUID's. The junctions
were 1X1 pm Nb/A1203/Nb tunnel junctions of very
low subgap leakage typically having a quality factor

FIG. 2. d4!d4„vs 4„at 4„q, =40/2. The dashed line is
calculated with Pp=4. 1, 5PIPp=4. 5%, and y =19 5 T.h.e solid
line is the experimental data.

V =70 mV at 4.2 K. The I-V curve of a current biased
dc SQUID (without loop L} cofabricated with the vari-
able I, SQUID sample is shown in the inset of Fig. 1(a).
The dc SQUID loop inductance 2/ =11.8 pH is calculat-
ed from the sample geometry. The capacitance of our 1

pm Nb/A1203/Nb tunnel junctions was found to be
46+6 fF (including the parasitic capacitance of =5 fF)
from the resonance step in the I-V curve of the unshunted
dc SQUID using I =5.9 pH. This value of specific capac-
itance agrees well with both the previously reported value
of 40 fF/pm and our zero field step measurement of
40X1.5 pm2 junctions (where the effect of the parasitic
capacitance is negligible). ' The rf SQUID loop induc-
tance L =233+12 pH determined from the measured
values of y and I is also in good agreement with that cal-
culated from the sample geometry and that determined
from the previous measurements of the thermal
escape/MQT rate in a heavily damped single junction
SQUID with similar geometry. By measuring the value
of 4„at which the system escapes from the metastable
state as a function of 4„&„taking into account the effect
of thermally induced escape or of quantum tunneling, the
SQUID Parameter Pp was found to be 4. 1+0.04 which is
consistent with the value obtained through the d4/d4„
measurement.

With the essential SQUID parameters (except JI) in-
dependently determined, we can calculate the potential
barrier height 5U and all the cos at any external fluxes 4„
and 4„d, . This enables us to study the effect of higher
dimensionality on the thermally induced escape over a
potential barrier from a metastable (bistable) 2D potential
well ~ The necessity and importance of determining the
barrier height 8 U and the ~s other than from measured
temperature dependence of the thermal activation rate
cannot be overemphasized in this study. Without this ac-
curate independent knowledge of 6U and the sos our con-
clusions would be very limited.

III. MEASUREMENT OF THERMAL ESCAPE RATE

The measurements of thermal escape rates from the 2D
potential well were made in a highly shielded He cryo-
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stat and in a dilution refrigerator. All signals (4, 4„,and
4'„d, ) were inductively coupled to the sample SQUID.
The leads to the room-temperature instruments were all
filtered by cooled (-0.7 K) low pass filters. The sample
SQUID was enclosed in a NbTi can. Mu metal shields
and a Helmholtz coil were employed to reduce the am-
bient field to -2X 10 T. The electronics were housed
in a screen room to minimize the interference on the sam-
ple. The electrical and magnetic shielding were tested
during each cooldown and were found effective. The
shape and characteristics of the 2D potential, such as
AU, coI, co, , col„and co„, were adjusted by varying 4„
and 4„d, to get the desired value. The amount of applied
fluxes 4„and 4 d, can be controlled with high accuracy
( ~ 10 4o). Thus the barrier height of the potential and
all the characteristic frequencies can be determined from
Eq. (4) using the independently measured values of L, C,
&o fi»andy.

As mentioned in the last section, for an applied flux
4„=(n+—,')4o, where n is an integer, the potential is

symmetric about 4=
—,
' 4o and has two minima at

&o/2+4 separated by a barrier b, U [cf. Fig. 1(b)]. The
barrier height b, U/ks can be continuously modulated in
situ from —143 K for @xdc=0 to 0 for 4xdc —0'405+0
for the sample studied in this work. The thermal fluctua-
tions cause the SQUID to jump between these two ener-
getically degenerated minima corresponding to the flux

particle moving back and forth through the saddle be-
tween the left and the right potential wells. The flux 4
through the sample SQUID was monitored by a dc
SQUID magnetometer which was weakly coupled to the
sample. The output of the magnetometer was sent to an
electronic counter or a spectrum analyzer to measure the
transition rate between the two wells. At temperatures
where the measurements were done (T& 1.4 K), quan-
tum corrections to thermal activation were negligible
since the crossover temperature T„between thermal ac-
tivation and macroscopic tunneling is about 0.3 K for
4 d, in the range of 0.314 to 0.32940, used for the mea-

surements presented here.
The thermally induced transition rate given by Eq. (2)

can be rewritten as

used to monitor 4. The value of hU/k~T was changed
either by modulating hU in situ via changing 4 d, at
constant temperature or by varying temperature while
keeping hU constant. In all the measurements the tem-
perature was regulated to within 1 mK of the set point.
Typical results of these rate measurements are shown in
Fig. 3 where the logarithm of I is plotted as a function of
b, U/ks T. For each set of data, all the points apparently
fall on a straight line which confirms that the transition
rate obeys the Arrhenius law. Linear least-square fitting
was then performed for each set of data to get the values
of A and 8 [Eq. (9)]. The results are listed in Table II.
The values of 8 obtained from our data are all within 2%
equal to unity, within experimental uncertainty of about
6% as predicted by the 2D thermal activation model. '

The values of a„obtained from a best fit of ln(I /s ')

vs I/ks T and the calculated In(Qo/2n) using indepen-
dently determined potential parameters, fall between 0.37
and 5.5 due to the relatively large uncertainties associated
with the fitting parameter A. Noting that, the upper lim-
it of a, in the thermal activation model is unity. This
range of a, is consistent with both the low damping and
intermediate damping regime and corresponds to values
of R from 51 0 to 30 kQ. At this point we cannot identi-
fy which damping regime the sample was actually in.
However, our data show that the damping was not
caused by the BCS subgap quasiparticle conductance, be-
cause, if this were the case, the sample would be in the
low damping regime and the prefactor would be

b, U/ks T
e "= exp( —ANb/ks T),

N

where ENb is the energy gap in niobium and is essentially
temperature independent through the range of our data.
This would result in an apparent increase in the activa-
tion energy by an amount of b, Nb, which is about 50% of
the potential barrier 5U, resulting in an escape rate about

1000

T=1.554 K

T=1.679 K

ln(I /sec )= A 8—hU
k~T

(9)

2'7T'ct) fr=
~, ~I RC k&T

with A =In[a, (Ao/2n )/sec '] and 8 =1. The damping
factor a, is given by a, =+I+k —k with

A, = 1/(2RCcoI, ) for intermediate and heavy damping, and

100
1

VS 4
3

C

10

4
3
2
19 20 21 22

~U/k, r

QU=33.0 K

23 24

for weakly coupled degrees of freedom (such as our sam-

ple) and low damping (i.e., RC+co& co, »b U/ksT).
We have directly measured the transition rate I as a
function of hU/k~T over the range 1(I & 10 . This
corresponds to hU/k& T varying from about 19.5 to 23.5,
assuming intermediate damping. The relatively small ac-
cessible range of 6U/k~ T in our measurements is due to
the limited bandwidth of the magnetometer (several kHz)

FIG. 3. Measured thermal activation rates in 2D SQUID po-

tentials. The solid circles (RH1) and the solid triangles (RJ2}:
modulating hU at constant temperature; the solid squares

(RJ1): varying temperature at constant 4U. For clarity, the

transition rates represented by the solid triangles and the solid

circles are multiplied by factors 2 and 4, respectively. The solid

lines are the best fit to the data. The results of the fit are listed

in Table II.
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TABLE II. The values of A and B obtained from the least-

square fit of the measured escape rate I to
ln(I /s ')=A —B(hU/k&T) (cf. Fig. 3) and the values of
ln(a, ) determined from A and 1n[(QO/s ')/2m ] which is
24.6+0. 1 calculated using the independently determined poten-
tial parameters Po, y, L, 5P, and C.

Data set

RH1
RJ1
RJ2

25.0+1.2
24.3+0.5
24.8+1.1

1.01+0.07
0.99+0.06
1.02+0.07

ln(a, )

0.4+1.3
—0.3+0.6

0.2+1.2

four orders of magnitude lower than the observed rate.
Using only the data on I'( T) for hU =const, one might

argue that our sample was in the low damping regime
with a temperature dependent resistance of
R-R~exp(b N/bk aT) and has a suppressed activation
energy E0 =6U —ENb, i.e., B & 1. However, our data for
the variation of I with 6U at constant T unambiguously
show that B = 1. This implies the damping cannot be due
to the BCS subgap conductance, and more generally, ex-
clude any sort of simple difference between E0 and hU
(i.e., some combination of BA1 plus a constant offset).

IV. NUMERICAL SIMULATION

To see whether the low barrier hU, the large trans-
verse frequency co„or the large TLFR co, /coi could cause
barrier renormalization in 2D thermal activation, we
have performed numerical simulations on the system of
equations (8). The algorithm adopted for our numerical
simulations is a generalization to the two-dimensional po-
tential from the one used by Buttiker, Harris, and Lan-
dauer in their study of thermal activation in 1D poten-
tial. By integrating over a small time interval 5~ and
dropping the terms beyond the order of 5r, Eqs. (8) are
reduced to the following finite difference equations:

cp +1=2q' tp —1 G (cp q' —1)5r

%dc„+ —cos sing„+ eq„5r, (10a)
0 2

d, + =2qd, —
tpd,

—G(cpd~ ) cpdc )5r

4m~ed, „+ " —2 sin cosy„+4ep„5r
0 2

(lob)

where r„=n 5r, —cp„=cp(r„), —cpd,„=cpd, (r„), —
e=")/24Gk~ T/EJ5r, and q„, p„are two independent
stochastic processes defined by

00=ln a,
27Tcop

hU
k, T

(12)

In Fig. 4 we have plotted ln(I /co ) vs EU/k Ta. The
solid lines were obtained by a least-square fit of the data
to ln( 1 /co& ) = A

' Bb,U/k~ T. Fr—om Eq. (2) one expects
that 2 '=In(a, Qo/2m co& ) and B = 1. The value of 2 ' and
B deduced from the simulations are listed in Table III. It
is clear that these results are in good agreement with the
2D thermal activation model. All the data fall on a
straight line with a slope of unity (within uncertainty)

TABLE III. Numerical simulation results of the thermally
activated escape from a 2D symmetric double-well po-
tential (4„=—'C&0) with Po=4.0, L =220 pH, G =0.5. A' and

B are obtained from fitting the escape rate I to
ln(I /co~) = A' —BhU/k& T (cf. Fig. 4). The values of co, /coI
and ln(a, QO/2m'~) are calculated from the potential parame-
ters. The uncertainty is +0.06 on A ' and +0.05 on B.

&p„p &
=

—,', 5„,where 5„ is the Kronecker delta. We

approximate q„and p„by two statistically independent
random numbers uniformly distributed in the interval
(
—0.5, 0.5) and (

—0.25, 0.25), respectively. The simula-
tion was started by injecting the particle into the bottom
of the 2D potential well and following its trajectory until
it escaped through the saddle region and moved a certain
distance away from the saddle into the other potential
well. The time taken for the escape event was recorded
and the particle was reinjected into the initial well to
start a new process. A large number, usually 10, of es-
cape events was collected for a given potential
configuration and temperature. The mean escape rate for
a given value of EU/ks T is then obtained by averaging
over all the escape events.

The range of x =EU/ka T covered in the simulations
is 2 &x & 6. A range of different values of Po, y, c0, /co„
tp, and y d, were used. The results of the numerical
simulation are summarized in Table III and presented in
Fig. 4. The parameters associated with each set of data
points are also listed. In all cases, each data point is a re-
sult of averaging over N&10 escape events. Note that
the computing time needed for this simulation algorithm
is proportional to 1/5r and exp(EU/ka T), respectively.
The value of 5r was chosen such that further decreasing
it does not affect the resulting average escape rate. The
effect of different seeds for the random number generator
was also tested. For instance, 10 sets of simulation each
with a different seed and consisting of 500 escape events
for a specified potential configuration gave an average
lifetime with variance of less than 4%. According to Eq.
(2) there should be a nearly linear relationship between
ln( I /co ) and b U/ka T:

~n

q„= i„f (r)dr,
n

T

p„— I &d, (r)dr,
@5~

q„and p„have
&q„&= &p„&= &q„p„&=0,

the properties
& q„q &

=
—,', 5„,

(1 la)

(1 lb)

of
and

Data set

nl
m1
rl
p1

4.5
6.2
8.7

12.3

Qo/a)p
ln a, 2'

—2.09
—2.58
—2.58
—2.57

A'

—2.07
—2.57
—2.57
—2.56

1.00
1.00
1.00
1.00
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6.2
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12.3
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hU/ksT
5.5 6.5

FIG. 4. Thermal activation rates in a 2D potential from our
numerical simulations plotted as in{I /su~) vs hU!k&T. The
solid lines are the best fit of the data points to Eq. (11). For
clarity, the transition rates represented by the open squares
{m1), the solid triangles (r1), and the open triangles (p1) are mul-

tiplied by factors 2, 4, and 8, respectively. The values of the pa-
rameters associated with the data and the fit are listed in Table
III.

which indicates that the activation energy Eo is equal to
the potential barrier hU. The damping dependent preex-
ponential factor a, Qo/2m@~ obtained from the simulation
also agrees quite well with the theory. We have not done
simulations for b, U/k~ r& 6 because of the exponential
increase in the required computing time. However, we
feel that the range of AU/k~T covered in our study is
wide enough for us to claim that in a 2D potential with
intermediate damping the theory gives the correct results
for the escape rate via thermal activation. The study of
thermal escape rates for a system having two degrees
of freedom with low damping and heavy damping
(1/RC »co&, co, ) is underway.

V. DISCUSSIONS AND SUMMARY

We have designed and fabricated variable I, rf
SQUID's, which have two degrees of freedom, to investi-
gate the thermally activated escape from a 2D potential
well. We have introduced the equations of motion and
the corresponding 2D potential of the variable I, rf
SQUID. The thermal activation rate in a 2D potential
with TLFR =7 and Ace, &&kz T was measured. The
SQUID's parameters that determine the shape and the
energy scale of the potential have been independently
determined. The measured thermal escape rates are in
good agreement with the theoretical prediction of Eq. (2).
The activation energies Eo obtained from our measure-
ments are the same, within the uncertainty of the data, as
the barrier height b, U of the bare potential (without
enhancement or suppression). The observed dissipation
modified attempt frequencies a, Q/2n are consistent with
the value calculated from the 2D TA model using the in-
dependently determined SQUID's parameters. We also
performed numerical simulations of thermal activation
from the 2D potential wells in the region of

-2 & TLFR & —12 and 2 & b, U/ks T & 6. The good
agreement between the simulation results and those cal-
culated from Eq. (2) in this low to moderate barrier re-
gime indicates that the condition 6U » k& T required by
the 2D TA model might not be necessary.

These results demonstrate that there is no barrier
enhancement/reduction for thermal activation in the 2D
potentials having large transverse frequencies (about 15
K for the sample measured) and large value of TLFR
(co, /co& -7). The incomplete knowledge on the damping
mechanism (i.e., R) does not affect the conclusion made
above. In addition, the pre-exponential factors e" deter-
mined from our data are consistent with the values calcu-
lated from 2D TA model with either low or intermediate
damping using the measured SQUID's parameters. The
good quantitative agreement between the measured
thermal activation rates and those calculated from Eq.
(2) confirms that when the conditions b, U »k~T and
4U »Ace~ are satisfied and the damping is low or inter-
mediate, the effect of barrier renormalization (if any) is
negligible and Eq. (2) can be safely applied.

The nature of the dissipation observed in the experi-
ment is still not yet clear (we can only say it was not due
to the BCS subgap quasiparticle conductance). It is obvi-
ously impossible to directly measure the normal resis-
tance Rz and the subgap resistance R of the junctions
in our SQUID. However, a fairly good estimate on R~
can be obtained from the junctions made using the same
process and having similar critical current densities. The
measured value of I,R& of our current biased junctions
was about 2.15 mV (the effect of thermal activation on
critical current was taken into account) which gives
R&=371 0 for two junctions in parallel in the sample
SQUID. This is within the range of 51 0 to 30 kQ deter-
mined from the measured thermal activation rate vs
b U/k~T. This observed dissipation was much stronger
than that expected from the subgap quasiparticle tunnel-

ing, which would correspond to R —10 0 at 1.6 K. The
dissipation is unlikely due to the normal resistance of the
junctions but could arise from the effect of the surround-
ing electromagnetic environment on the sample, similar
in nature to those observed by Johnson et al. and Tink-
ham

In summary, the thermal escape rate from a 2D poten-
tial of a particle having two degrees of freedom has been
investigated experimentally and numerically. In the ex-
periment, the potential has values of hU/k&T between
about 19 to 24 and values of hU/%co& between about 9
to 16. The conditions required for the validity of the
thermal activation model were satisfied very well in the
experiments. The measured thermal escape rate in the
2D potential agrees very well with the theory, i.e., for a
two-dimensiona1 potential the thermal activation energy
Eo is equal to the bare potential barrier AU and the main

effect of the 2D potential is to renormalize the attempt
frequency. All sample parameters (except damping) were
independently determined to high accuracy so that all
relevant potential parameters needed to make quantita-
tive comparison with the theory are well known. The re-
sults of our numerical simulation support the validity of
the 2D thermal activation model and suggest that Eq. (2)
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may also be applicable to the low barrier regime. We
conclude that multiple dimensionality of the potential
and the large value of TLFR alone should not cause a
significant deviation of the measured thermal escape rate
from that calculated from the 2D thermal activation
model. More theoretical and experimental studies are

needed to see what the effect of strong level quantization
hU/th'cot —l on the escape rate from a 2D potential well

1s.
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