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We study the single-band Hubbard model via high-temperature expansions to order (St)° for the stan-
dard two- and three-dimensional lattices. Series are derived for the grand potential and for the fer-
romagnetic susceptibility, for general values of the Coulomb repulsion parameter U and electron density
n. The series are difficult to analyze with any degree of precision, but estimates are obtained for the fer-

romagnetic critical temperature.

I. INTRODUCTION

The single-band Hubbard model’ is probably the sim-
plest model system for describing the essential physics of
strongly correlated electrons on a lattice. As such, it has
many areas of application, from its initial use to describe
magnetism in transition metals,? through metal-insulator
transitions, to, most recently, theories of high-
temperature superconductivity.® While it seems likely
that, for this latter phenomenon, more complex multi-
band models are needed, a necessary prerequisite is to un-
derstand the single-band case. Unfortunately, despite
enormous effort, our understanding of even this simple
case is meager. In one dimension some rigorous results
are known,* but in higher dimensions only approximate
results are available, notably from quantum Monte Carlo
and finite lattice calculations.

An approach which has proven powerful in studying
other strongly interacting lattice systems, both classical
and quantum, is the method of high-temperature series
expansions.’ Variations of this approach have been used
previously to study the Hubbard model, though with fair-
ly limited success. Hone and co-workers® developed
low-order expansions, which were subsequently extended
by Brauneck’ to fourth order for finite U and sixth order
in the ‘strong-correlation” limit U =c. Kubo and
Tada® extended the strong-correlation series to ninth or-
der for close-packed lattices. Unfortunately, many of the
early results contain errors, as summarized in a recent
paper by Pan and Wang,9 an indication of the difficulty of
the calculation. At the present time, to the best of our
knowledge, correct series exist to sixth order for general
U (Ref. 9) and to ninth order for U= «.?® In the present
paper we report high-temperature series for general U to
ninth order, a substantial extension of previous work.

Z=Tr{e P*)

For completeness, we mention two other recent develop-
ments. Thompson et al.'® have derived series to order 10
for U= o and the special case of infinite spatial dimen-
sion. Metzner!! has presented a general formulation of a
linked-cluster expansion, but this approach has not yet
been used to derive series expansions.

A brief outline of the paper is as follows. In Sec. IT we
present the method of derivation of the series, with some
of the technical details given in an appendix, and give an
outline of the results obtained. In Sec. III we present the
result of an analysis of the susceptibility series and give
the resulting phase diagrams showing the boundaries be-
tween ferromagnetic and paramagnetic regions. An in-
vestigation of antiferromagnetism is deferred to a future
paper. Finally, in Sec. IV, we discuss our results, draw
comparisons with previous work where appropriate, and
present our conclusions.

II. DERIVATION OF THE SERIES

We start from the usual Hubbard Hamiltonian

H=H,tV, (1)
with
ﬂ0=U2niTnil-p2(niT+n”)—hz(n”—nu) (2)
and
V=t 3 (ce,tcle,) - 3)
(ij),o

Here p is the chemical potential, 4 an external magnetic
field, and the remaining notation is standard.

The grand canonical partition function Z can then be
expanded in a perturbation series in the usual way:

=7, 1+§(_1)nfoﬁdT1foTlde"‘fof”_ldTn<i7(Tl)I7(7'2)"'V(T,,)) , (@)
n=1
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with

—BH,

Z,=Tr{e }, B=1/kT ,

(4)=Trle ™ 4}/2z,,

simple form

Z,=zY,
with
2o=1+2eP4coshBh +e?Pre PV . (5

and From (4) we obtain the free energy (grand potential) as
Plr)=e"ope 0 —BF=N lnz,—BAF , (6)
The unperturbed partition function for N sites has the with
|
- = S -1 [* U LA % 7
BAF= (~1) Jlar [T dn (Pl P, )y -

In (7) the subscript N signifies that only the part propor-
tional to N is to be included. There has been some con-
fusion regarding this point. The contribution of any con-
nected diagram (to be discussed below) is automatically
proportional to N, while disconnected diagrams contain
contributions linear in N, which must be retained in our
method, as well as higher powers which cancel upon tak-
ing the logarithm.

Any nonvanishing contribution to (7) comes from a
particular group of sites or a diagram. Each application
of V results in the transfer of an electron between neigh-
boring sites, and we represent this by a line in the dia-
gram. In Fig. 1 we show the low-order diagrams through
order 6. We have generated by computer all of the 305
diagrams which contribute to the expansion through
tenth order. Many of these do not contribute for all
lattices—in particular, for loose-packed lattices, all dia-
grams involving odd-order loops vanish. Thus, for exam-
ple, only 104 diagrams contribute for the body-centered-
cubic lattice to tenth order.

Any particular diagram contributes to some minimum
order in the expansion, but also contributes to higher-
order terms through multiple usage of one or more
bonds. The contribution of a particular diagram G to or-
der r in the expansion can be expressed as a sum of terms
of the general form

r
X,(G)= ('j’,) a6 3 Cox "y (BU) ™ (8)
0 k

where x =ef#, y=eP" w=e PV, C, is a numerical
coefficient, and n,n,,n;,n, are integers. The quantity
ag is the usual “weak lattice constant” or embedding
constant of diagram G in the lattice. Thus, for example,
the contribution of the only second-order diagram is

2
X,/ =B (1 Ng)[(x +x3w)ly +y )
2o

+4(BU) " x¥(1—w)],

a result which has been given by many previous workers.
Some of the technical details of the calculation are given
in Appendix A. The expressions rapidly become too
lengthy to include here, but our results agree with the
previous results.’

The procedure then is to collect all of the contribu-
tions, weighted by the appropriate lattice constants, re-
sulting in an expansion of the form

—BF/N=Inzy+ 3 (B1)z5 'F,(BU,x,y) , )
r=2
with
F(BUx,0)=3 fromW)BUY "x™w' . (10)
mlp

In Appendix B we display the values of f°s for A =0 for
the sc and fcc lattices to sixth order. Coefficients for
nonzero h, to ninth order, for all lattices studied, are
available on request.

The ferromagnetic susceptibility is then given by

2
x=}11nl yg; (—BF/N)
=Xo+ 3 (BtYzo " TVX (BU,x) , (11)
r=2

where Y, is the susceptibility in the atomic limit ¢t =0,

Order 2:/
Order 3:A
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FIG. 1. Diagrams which contribute to the high-temperature
free-energy expansion through order (Bt)%.
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Xo=2x/(1+2x +x’w) , (12)

and X, is a polynomial in the fugacity x.

Equation (11) is then the form of the high-temperature
expansion for the susceptibility in the variable (8t) with
the coefficients being closed expressions in (BU) and x.
For most purposes it is more convenient to express the
series in terms of the average number of electrons per site
n, which can be obtained from the free energy (10) as

n=x—a—(—BF/N)
dx

=2x(1+xw)/(1+2x +x*w)

+ i (Bt)zy VY (BU;x) , (13)
r=2

with Y,(BU;x) being a polynomial in x whose coefficients
are closed expressions in (BU). The task then is to elimi-
nate the fugacity x from the expansion (11) in favor of the
electron density n. While in the strong-correlation limit®
or when e AU << 1 (Ref. 9) the reversion of the series can
be done analytically, this is not possible for the general
case, because the quantity z is then a quadratic in x. In-
stead, we proceed as follows. We choose fixed values for
n and BU and recursively solve Eq. (13) to obtain an ex-
pansion for x in powers of (Bt). This is then substituted
in (11) to obtain an expansion for Y,

x=3 C,(nBUNBLY , (14)
r=0

in the single high-temperature variable (Bf). The series
for 1 <n <2 can be obtained from the one for 0=n =1 by
n—2—n and t— —t. Since the series for loose-packed
lattices involve only even powers of ¢, there will be a sym-
metry in our results about the half-filling value n =1. We
have computed series to eighth order for the standard
loose-packed lattices—square, simple cubic, and body-
centred cubic—and to ninth order for the triangular and
face-centred-cubic lattices.

It is, of course, impossible to present all of the results
here, but in Table I we quote a number of series to illus-
trate the way in which the coefficients change as » and
(BU) are varied. We have checked that our series reduce
to those of the Kubo and Tada® in the strong-correlation
limit. In doing so we found a small discrepancy at ninth
order for the fcc lattice, which we have identified as aris-
ing from minor errors in a few of the lattice constants
used in Ref. 8.

Note that for the fcc series the coefficients appear to
occur in pairs; i.e., C,,, and C,,, _; are nearly always of
the same order of magnitude. This is true for other
values of (n,BU) and for the triangular lattice. For this
reason we feel it would be premature to draw any con-
clusions from our ninth-order results without the tenth-
order ones. In the next section we present an analysis of
the series to eighth order.

III. ANALYSIS OF SERIES

The phase diagram of the Hubbard model in three di-
mensions is expected to contain thermodynamically

TABLE I. Coefficients C,(n,BU) for fixed values of (n,BU) in the expansion of the magnetic susceptibility [see Eq. (14)]: (top) simple cubic lattice and (bottom) face-centred-cubic

lattice.

C,(0.85,20) C,(0.99,20) C,(0.7,40) C,(0.85,40) C,(0.99,40) C,(0.7,) C,(0.85,0) C,(0.99, )

C,(0.7,20)

r

0.990 000 00
0.000 000 00
0.01416244
—0.024 675 60

0.850 000 00

0.000 000 00

0.073 153 12
—0.156 54509

0.700 000 00
0.000 00000

—0.02205000

0.990 000 00

—0.14701500

0.85000000

—0.108 37500

0.700 000 00

—0.073 50000
—0.058 046 62

0.990 000 00

—0.29403047

0.850 000 00

—0.216 75002

0.700 000 00
—0.147 00000

—0.07305900

0
2

0.027 228 04
—0.025794 73

0.056 83591
—0.11927208

0.072 694 26
—0.03461700

0.067 35505
—0.088 227 54

0.107 10543
—0.378 92209

0.196 156 94
—0.55728321

0.283069 31
—0.739 505 59

6
8

0.041588 45

0.307 636 52

0.040 809 12

0.234 395 83

0.043 535 81

0.17095222

0.990 000 00
0.000 000 00
0.078 408 00
0.155786 90
—0.073 81917

0.850 000 00
0.000 000 00
0.867 000 00
0.804 684 38
—3.788248 12
—5.564 03290
18.384 085 12
36.488 12593
—92.667 84709

0.700 000 00
0.000 000 00
1.176 000 00

—0.242 55000
—7.014 84000

0.990 000 00

—0.294 03000

0.85000000

—0.216 75000

0.700 000 00
—0.147 000 00

0.990 000 00

—0.588 06095

0.850 000 00

—0.433 50003

0.700 000 00
—0.294 000 00

0
2
3

0.089 87517
0.23393933
—0.160515 32
—0.796 960 64
—0.21834513

0.993798 75
0.79338628
—4.658 92902
—5.23861283
22.618758 65
33.91721162
—115.898 34332

1.34799000
—0.395163 56
—17.97276134

0.100 754 29
0.488013 74
—0.262 14504
—1.05636170

1.114095 00
0.920293 36
—5.675964 10
—5.022814 34

1.511 16000
—0.439 38300
—9.11857280

—0.67237940
—0.43528570

3.869 695 37
44.207 854 57
—39.313694 14

—284.697 818 70

5.92548198
47.766 429 62
—56.378293 14
—293.280475 41

8.012 54127
52.53190301
—75.51491643
—307.156 77072

6
7

0.078 59047

27.83254370
31.312 88170

—144.162 640 25

2.174 960 06
391431170

274913873
3.529358 51

3.528 904 08
2.996 186 52

8
9
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stable regions of both ferromagnetic and antiferromag-
netic order, as well as a high-temperature disordered
phase. Nagaoka'? has shown, in the strongly correlated
limit, that for one electron more or less than the number
of lattice sites, the ground state is ferromagnetically
stable for sc and bec lattices. This phase is also stable for
the fcc lattice with one electron less than the number of
sites (¢ >0). Kanamori'® proposed that in the low-density
limit even with infinitely strong correlations the electrons
would not necessarily show ferromagnetism. For the
two-dimensional case, a Mermin-Wagner!* type theorem
precludes the ferromagnetic phase from being stable at
nonzero temperature, although not at T =0. More exotic
phases have also been proposed. '

Our series for the ferromagnetic susceptibility should,
in principle, indicate the existence of a paramagnetic-
ferromagnetic transition and yield a quantitative estimate
of the transition temperature. The standard method uses
Padé approximants to the series for (d/dK)Iny(K),
where K is an appropriate expansion variable; here,
K =pt. If the susceptibility diverges at the transition
with a simple power law

X(K)~(K,—K)™7,

then the logarithmic derivative will have a simple pole at
K., which should be well represented by the Padé ap-
proximants. Unfortunately, the series for the loose-
packed lattices are too short for this method to be usable.
Previous workers have looked for zeros of the series for
x !, as indicative of a divergence in y and hence a phase
transition. This method is likely to be unreliable, but in
the absence of any better method, we have used this ap-
proach also. For the fcc lattice, where more nonzero
coefficients are available, we have used Padé approxi-

8th Order

08} BU-=

0.8 - 4th Order

To/t

04

0.2

1)) O T R R SR
0.75 0.8 0.85 0.9

FIG. 2. Variation of T, with n for fixed (BU) for the simple
cubic lattice, obtained from y ~!=0.
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TABLE II. Maximum critical temperature T, and the corre-
sponding density n for the standard lattices in the strong-
correlation limit U = . The values are approximate only.

Fourth order Eighth order

Lattice (T, )max n (T )max n
Square 0.4 0.85 0.6 0.90
Triangular (n <1) 0.7 0.77 1.0 0.80

(n>1) 0.4 1.05 0.8 1.05

sc 0.5 0.85 0.8 0.85
bee 0.8 0.85 1.1 0.85
fcc (n <1) 1.2 0.80 1.8 0.76
(n>1) 0.8 1.10 1.5 1.10

mants as well as the Y ! =0 method.

Figure 2 shows the critical temperature kT, /t (hereaf-
ter denoted simply by T.) for the simple cubic lattice, as a
function of electron density n, for fixed values of BU, as
obtained from the equation y '=0. Both the eighth-
and fourth-order results, which are shown for compar-
ison, indicate an increase in T, with increasing U. This is
as expected since increasing electron correlations will in-
crease the stability of the ferromagnetic phase. The
higher-order results, which are presumably more indica-
tive of the true picture, give a substantially higher T..
The sixth-order series do not give a consistent real posi-
tive zero. The trend of T, increasing on going from
fourth to eighth order is also seen for the other lattices.
Table II gives the maximum T, and the value of n at
which this occurs, for U = w, for the standard lattices.
Two other points should be noted. The observed T,
values for the two-dimensional lattices are lower than for
the three-dimensional ones, indicating a lower stability
for ferromagnetic order in the former case. (Of course, in
reality, T, should be zero here.) Second, for the fcc lat-
tice, where the phase diagram is not symmetric about
n =1, the critical temperature is higher in the region
n <1, indicating greater stability for ferromagnetism
below half-filling than above.

The equation ¥ ~!=0 has a real positive solution for
only a range of electron densities and we take this to
define, at least approximately, the range of n for which a
ferromagnetic phase is stable. Table III gives the range of
stability, for several values of BU, for the standard lat-
tices, as obtained from the eighth-order series. Increas-
ing U leads to a larger range of stability, as one would in-
tuitively expect.

TABLE III. Range of electron densities defining the region
of ferromagnetic stability, obtained from eighth order, for the
standard lattices and for several values of BU. The values are
approximate only.

Lattice BU =10 BU =30 BU =
Square 0.90-1.10 0.90-1.10 0.85-1.15
Triangular 0.65-1.20 0.65-1.20 0.65-1.25
sc 0.85-1.15 0.80-1.20 0.75-1.25
bee 0.85-1.15 0.80-1.20 0.80-1.20
fcc 0.70-1.20 0.68-1.25 0.66—-1.25
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A~ Im(K) Im(K')
L L 0.15
H
0.5 K'=K/(1+5K) .
X
o
1 2 0.25 0.5
L 1 N so—oI 1
° Re(K) Re(K')
K
« [3,5 .
[3.:5] o [3,5] X
o [4,4] . o [4.4] *
x [5,3] x [5,3]

FIG. 3. Poles of Padé approximants to the series (d /dK)Iny(K) for the fcc lattice, for n =0.8 and BU =30: (a) direct series and
(b) Euler-transformed series. The code indicates different Padé approximants.

For the fcc lattice we have also attempted to analyze
the series using Padé approximants. In principle, this
should provide a more reliable means of estimating the
critical temperature. We discuss results for the case
n =0.8, BU=30. In Fig. 3(a) we show the positions of
poles for the [3,5], [4,4], and [5,3] Padé approximants to
the logarithmic derivative (d/dK)Iny(K) (K =pt).
There is a very consistent pair of poles on the imaginary
axis at +0.36/, and these determine the radius of conver-
gence of the series. There is no consistent pole on the
positive real axis, which according to the y ' analysis
might be expected to occur near K =1.5. Presumably,
this is completely masked by the closer complex singular-
ities. In such situations transformations can sometimes
be effectively used to move the physical singularity closer
to the origin. In Fig. 3(b) we show the corresponding

L S S S S S S S S SR B S S |
0.7

0.1 - -
=]
>

0.05 - —

0 PR ST U 14 S S ST VAN N VT SR SR S N VR SRR W S S VN '
0.75 0.8 0.85 0.9 0.95 1

n

FIG. 4. Phase diagram for sc lattice from eighth-order x !

series. The curves are contour lines of constant T, at the values
shown.

pole distribution for Padé approximants to the logarith-
mic derivative, after the Euler transformation
K'=K /(1+5K). There is now a consistent pole at
K'=0.14, which gives K =0.47. However, the nearby
complex poles will have a marked effect on the accuracy
of this estimate. In general, the Padé analysis supports
the results obtained from the Y~ ! analysis, but is not
sufficiently precise to add substantially to that approach.

The Yy~ ! analysis, as shown in Fig. 2, yields estimates
of T, for fixed n and BU. These can be expressed in other
ways, in particular as plots of T, versus n for fixed /U
or as contours of fixed 7T, in the plane (n,t/U). We have
chosen this latter representation to present the most com-
plete overall picture of the results from eighth-order
series for both the sc and fcc lattices. These are shown in
Figs. 4 and 5.

0.08

0.08

2 0.04
S

0.02

FIG. 5. Phase diagram for fcc lattice from eighth-order x !

series. The curves are contour lines of constant T, at the values
shown. Note the asymmetry about n = 1.
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IV. DISCUSSION AND CONCLUSIONS

We have developed high-temperature expansions for
the free energy and ferromagnetic susceptibility of the
single-band Hubbard model for general values of the elec-
tron density n and correlation energy U. Series have been
obtained to ninth order in (Bt ) for all of the standard lat-
tices. This extends previous work of many authors.

As has been remarked previously,“o the series are
quite erratic and difficult to analyze with any degree of
precision. In common with previous workers, we have
used the condition ¥y ~!'=0 to estimate the transition tem-
perature, reflecting an instability to a ferromagnetic
phase. We believe that this is qualitatively reasonable, al-
though clearly not quantitatively accurate. The new
higher-order series (eighth order) give in general higher
estimates of T, than previous (fourth order) analysis.
This suggests that ferromagnetism at finite temperatures
exists over a substantial region of the (U /t,n) phase dia-
gram of the three-dimensional Hubbard model.

We have made substantial progress toward obtaining
the tenth-order term for loose-packed lattices, and it
would certainly be feasible with our method to also ex-
tend the close-packed series to tenth order. For the
strongly correlated case (U =), the computational
effort is much less and these series could be carried to
12th order at least. The expansion for the antiferromag-
netic susceptibility could also be extended beyond the
known sixth-order result.” The same technique could
also be used for more complex Hamiltonians, such as the
extended Hubbard model. Some of these directions are
being pursued.

When this paper had been essentially completed, we re-
ceived a report which addresses, to a considerable degree,
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the same problem as we have studied. ten Haaf and van
Leeuwen'® have obtained series for the free energy to
eighth order for the general case by a method very simi-
lar to ours. We have compared our results with their
Table 4a and find complete agreement. They have con-
sidered only the square and simple cubic lattices and have
not obtained the susceptibility series as such, and so in
this sense our results are more extensive. Instead, they
have looked at the nearest-neighbor spin-correlation
function and have used the sign of this as an indicator of
a tendency toward ferromagnetic or antiferromagnetic
order. Our overall conclusions are consistent with theirs.

Note added in proof. We have completed the calcula-
tion of the tenth-order coefficients for the loose-packed
lattices. Analysis of the extended series, together with
that for close-packed lattices, which we hope to complete
soon, will be reported elsewhere.
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APPENDIX A

We describe here some of the technical details in ob-
taining the contribution of any particular diagram G to
the free-energy expansion (7). To be specific consider the
contribution of the diagram /\ to order 4:

1 B T 2 73 —BH o - - -
X4(A>=Zfodrlfo dr [ Cdry [ CdriTr(e V() V)V (n)Vin,)]

Now the trace can be written as a sum over states

Tr( }= zeiBE,.e‘rl(Ei—Ej)e T)(E;—Ey)

ijkl

(E, —E)) 7,E,—E,
e

)
Xe ViiVicViaVii »

where the E;’s are unperturbed energies. Note that, since
the hopping term conserves electron number and electron
spin, the energy differences which appear in the exponen-
tials are always 0, U.

The computation then proceeds in the following steps.

(i) The states and unperturbed energies are enumerat-
ed. There are 4’ states (v = number of vertices in the di-
agram), and these are conveniently represented as 2v-bit
binary integers.

(ii) The matrix elements V;; are computed and stored.
This is done by keeping, for each initial state, a list of all

[

possible final states together with the matrix element (£1)
and the bond of the diagram which corresponds to the
particular electron transfer.

(iii) The multiple sum is then evaluated with the con-
straint that the system return to the initial state and that
all bonds of the diagram be used. The terms are grouped
according to the powers of 7,7,, . . . .

(iv) The multiple integrals are evaluated using an
efficient computer routine.

(v) Finally, the terms are grouped according to powers
of the variables x, y, w, and (BU) ™! to give a contribution
of the form

(Bt )orderzo~u2ckx"ly”Z(BU)‘"Sw'H ,
k

where the variables are as defined in the text.
Various tricks are used to speed up the program, but
the essential steps are as described above.
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APPENDIX B

Coeflicients f,,,, in the expansion of the free energy for the sc lattice to order r =6 with
y =1 [see Eq. (10)].

p om 1 fopmiM) ] [P m 1 fopmi())] [p m 1 fopmu() ] [p m 1 fepmi(l)
1 2 0 12 1 2 0 912 2 6 0 4608 | |4 8 3 9200
12 1 12 1 2 1 -912 2 6 3 5280 4 9 3 522
2 1.0 6 1 3 0 662 9 8 4 5952 | |4 9 4  -1240
2 3 1 6 1 3 1 -6624 2 2 1 1008 4 10 4  -1088
1 4 0 35664 2 10 5 1008 5 2 0 422
1 4 1 37728 | |3 2 0 1896 5 3 0 -3214
‘1) r; é f4pgg(1) 1 4 2 2064 3 3 0 -4784 ||5 3 1 210
L5 2 e 1 5 0 48000 3 3 1 2072 5 4 0 3426
Ls 1 60 1 5 1 -6624 3 4 0 -456 5 4 1 -2338
L i 2 1w 1 5 2 41376 | |3 4 1 -13112 | |5 5 0  -422
L4 1 120 1 6 0 13920 3 5 0 2224 5 5 1 3214
L6 3 o 1 6 1 78912 3 5 1 4784 5 6 1 436
5 9 0 -1a 1 6 2 76608 | {3 5 2 4206 ||5 7 1  -422
5 4 1 144 1 6 3 16224 | |3 6 1 9232 5 7 2 3214
5 40 1 7 1 48000 3 6 2 14112 ||5 8 2 3426
5 6 9 i 1 7 2 662 3 7 1 2224 5 8 3 -2338
5 5 1 s 1 7 3 41376 | |3 7 2 4784 5 9 3 3214
5 1 9 o6 1 8 2 35664 3 7 3 4296 | |5 9 4 210
2 6 3 84 1 8 3 -37728 3 8 2 -456 5 10 4 422
3 5 0 L4 1 8 4 2064 3 8 3 13112 | |5 6 2  -3456
5 3 0 108 1 9 3 6624 3 9 3 4784 ||5 5 2 212
5 3 1 108 1 9 4 -6624 3 9 4 2072 5 7 3 212
5 41 o8 110 4 912 3 10 4 1896 6 1 0 155/30
5 s 9 108 110 5 -912 3 6 0 192 6 2 0 -3374/15
s 1 108 2 2 0 -1920 3 6 3 3004 ||6 3 0 14512/15
s 6 o 1w 2 3 0  -600 3 4 2 2288 6 4 0 -10118/15
41 0 152 2 3 1 6024 3 8 4 2288 6 5 0 143/3
4 2 0 o 2 4 0 1353 | |3 2 1  -432 6 7 1  143/3
s 31 33 9 4 1 -14112 | |3 10 5  -432 6 8 2 -10118/15
s a0 o 2 5 0 21648 | |4 2 0 -1088 ||6 9 3 14512/15
s 41 ss 205 1 5204 | |4 3 0 522 6 10 4 -3374/15
t 5 2w 9 5 2 15624 | |4 3 1 -1240 ||6 11 5 155/30
W s 1 o 9 6 1 64320 | |4 4 0 2312 |6 4 1 -9092/15
W6 2 9 6 2 59328 | |4 4 1 9200 |[6 5 1 32918/15
115 15 2 7 1 21648 | |4 5 0  -828 6 6 1 -16704/15
2 7 2 52104 | |4 5 1 2364 ||6 7 2 32918/15
2 7 3 15624 | |4 5 2 412 6 8 3 -9092/15
2 8 2 13536 | |4 6 1 5824 6 3 1 485/30
2 8 3 14112 | |4 6 2 -1502 ||6 5 2 79/3
2 9 3 -600 4 7 1 -828 6 6 2 -12008/15
2 9 4 -6024 4 7 2 2364 ||6 7 3 793
2 10 4 -1920 4 7 3 412 6 9 4 48530
2 4 2 -5952 4 8 2 2312
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Coefficients f,,,, in the expansion of the free energy for the fcc lattice to order » =6 with

y =1 [see Eq. (10)].

4320

p m | f2pml(1) p m | fgpml(l) p m | f5pml(1)
1 2 0 24| [3 3 1 576 [2 8 4 ~2880
1 2 1 24| |3 4 1 13200 |3 2 o 5760
2 1 0 12013 5 2 561 13 3 0 7776
2 3 1 2] 3 5 1 576 |3 4 1 -28272
3 6 2 660 | |3 4 0 1872
— 7 IR KRR 45|13 6 2 28272
T 3””‘1_(96 4 20 272 |3 6 1 1872
1 2 1 o6l |4 3 1 601 |3 7 2 7776
L 41 6| |4 3 0 14| [3 8 3 -5760
1 4 9 0| |4 41 368 |3 3 1 3216
2 92 0 6| |4 5 2 69 |38 7 3 -3216
9 1 1 0| |4 5 1 14| {4 2 0 -2400
4 6 2 272 |4 3 0 7168
3 1 0 16
3 2 0 16l L4 7 3 45| |4 4 1 4432
3 4 1 16 4 4 0 -2352
3 5 2 6] [p m T fopm(D) |4 6 2 4132
1 2 0 s60| |4 6 1 2352
L 3 o a0 | |47 2 -7168
1 2 0 696 |1 4 o aso| |4 31 1712
1 3 0 44| 1] 6 o 1mes0l |4 7 3 1712
1 4 0 44| || o 0| |5 10 72
1 5 1 4| [y 3 a0l |5 2 0 1152
1 6 2 696 | |, 4 o 17760 |5 3 1 -88
1 2 1 696 | |1 6 3 17760 |5 3 O -1524
1 3 1 S U I IO ol |5 41 844
1 4 2 1248 | || 7 o ol |3 40 204
1 4 1 1392 | [ g 3 s160| |5 6 2 -844
1 5 2 SCE I aso| |5 61 -204
1 g 3 696 | || g 4 seo | 15 T 2 1523
2 0 1008 [ |5 o g sea0| |5 8 3 1152
g 2 0 1413 2 3 0 as0 | [® 7 3 58
. (1) Tl |2 ¢ 1 20064 5 9 4 2
> s 1 Sz 40 7968
2119 6 2 220064
2 6 2 -1008
2 2 1 2880
2 2 1 312 _
5 3 1 Sl ]2 31 -4320
5 4 g ol |21 2 -9792
5 5 5 ol ]2 63 9792
‘ elle g -7968
2 6 3 312
2 7 2 -4800
3 2 0 660 X
‘112 8 3 8640
3 3 0 576 |5 5
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p m | feomi()] [P m 1 fepmi(l) | |P m 1 fepmi(1)

1 2 0 54624| [2 O 4 -108408 | |5 4 1 ~42508
1 3 0 45216 |2 10 5 30336 | |5 4 O 63278
1 4 1 -510432] (3 2 0 60592 | |5 5 1 66970
1 4 0 2841123 3 0 -127152| |5 6 2 -42116
1 5 1 -74400 | |3 4 1 -412136| |5 5 0 -7306
1 6 2 328608 | |3 4 0 4360 | |5 6 1 -8916
1 5 0 386304| |3 5 1 139952 | (5 7 2 66970
1 6 1 642816 | |3 6 2 659376 | |5 8 3 -42598
1 7 2 74400 | |3 5 0 23120] |5 3 1 42922
1 8 3 -510432| |3 6 1 103632| |5 5 2 2028
1 6 0 101664 | |3 7 2 139952| |5 7 3 2028
1 7 1 38304 (3 8 3 -412136| |5 9 4 4222
1 8 2 92841123 6 0 152 | |5 7 1 -7306
1 9 3 45216 | |3 7 1 23120 | |5 8 2 63278
1 10 4 54624 | |3 8 2 4360 | |5 9 3 -61946
1 2 1 54624 | |3 9 3 -127152] |5 10 4 8804
1 3 1 45216 | |3 10 4 60592| |6 1 0 352/3
1 4 2 226320/ (3 2 1 2044 | |6 2 0 -68348/15
1 5 2 311904 | (3 3 1 41352 | |6 3 1 3319/15
1 6 3 -415872| |3 4 2 20448| |6 3 0 249974/15
1 7 3 311904 | |3 5 2 52696 | |6 4 1  -32852/5
1 8 4 226320| (3 6 3 35004 [6 5 2 1194/5
1 9 4 45216 | |3 7 3 -52696| |6 4 0 -149018/15
1 10 5 54624 | |3 8 4 20448 | |6 5 1 315988/15
2 2 0 84960 | |3 9 4 41352 | |6 6 2 -85636/15
2 3 0 63192] |3 10 5 2044 | |6 7T 3 1194/5
2 4 1 95520 | |4 2 0 27216 | |6 5 O 9509/15
2 4 0 6240 | |4 3 0 108884 | [6 6 1 -150656/15
2 5 1 -495096 | |4 4 1 165296 | |6 7 2 315988/15
2 6 2 -729216| |4 4 0 73464 | |6 8 3  -32852/5
9 5 0 -175344 | |4 5 1 -122876| |6 9 4 3319/15
2 6 1 -739392 |14 6 2 282736 | |6 7 1 9509/15
2 7 2 495096 | |4 5 0 3420 | |6 8 2 -149018/15
2 8 3 95520 | |4 6 1 148288 | |6 9 3 249974/15
2 6 0 -32256| |4 7 2 -122876| |6 10 4 -G8348/15
2 7 1 -175344 | |4 8§ 3 165296 | |6 11 5 352/3
2 8§ 2 6240 | |4 3 1 -20864

2 9 3  63192| |4 5 2 28828

2 10 4 -84960 | |4 7 3 28828

2 2 1 30336 | |4 9 4 -20864

2 3 1 -108408| |4 7 1 3420

2 4 2 -147072 | |4 8 2 -73464

2 5 2 27768 | |4 9 3 108884

2 6 3 238848 | |4 10 4  -27216

2 7 3 21763 ||5 2 0 8804

2 8 4 -147072| |5 3 0  -61946
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