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High-temperature expansion for the single-band Hubbard model
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We study the single-band Hubbard model via high-temperature expansions to order (Pt) for the stan-

dard two- and three-dimensional lattices. Series are derived for the grand potential and for the fer-

romagnetic susceptibility, for general values of the Coulomb repulsion parameter U and electron density
n. The series are difficult to analyze with any degree of precision, but estimates are obtained for the fer-

romagnetic critical temperature.

I. INTRODUCTION

The single-band Hubbard model' is probably the sim-
plest model system for describing the essential physics of
strongly correlated electrons on a lattice. As such, it has
many areas of application, from its initial use to describe
magnetism in transition metals, through metal-insulator
transitions, to, most recently, theories of high-
temperature superconductivity. While it seems likely
that, for this latter phenomenon, more complex multi-
band models are needed, a necessary prerequisite is to un-
derstand the single-band case. Unfortunately, despite
enormous effort, our understanding of even this simple
case is meager. In one dimension some rigorous results
are known, but in higher dimensions only approximate
results are available, notably from quantum Monte Carlo
and finite lattice calculations.

An approach which has proven powerful in studyipg
other strongly interacting lattice systems, both classical
and quantum, is the method of high-temperature series
expansions. ' Variations of this approach have been used
previously to study the Hubbard model, though with fair-
ly limited success. Hone and co-workers developed
low-order expansions, which were subsequently extended
by Brauneck to fourth order for finite U and sixth order
in the "strong-correlation" limit U = ~. Kubo and
Tada extended the strong-correlation series to ninth or-
der for close-packed lattices. Unfortunately, many of the
early results contain errors, as summarized in a recent
paper by Pan and Wang, an indication of the difficulty of
the calculation. At the present time, to the best of our
knowledge, correct series exist to sixth order for general
U (Ref. 9) and to ninth order for U = ao. In the present
paper we report high-temperature series for general U to
ninth order, a substantial extension of previous work.

II. DERIVATION OF THE SERIES

We start from the usual Hubbard Hamiltonian

&=Ho+ V,

with

&o= Ugn;tn;t —pg(n;t+n;&) —hg(n;t n;&)—

and

V=t g (c; cj +c~. c; ) .
(ij },o

(3)

Here p is the chemical potential, h an external magnetic
field, and the remaining notation is standard.

The grand canonical partition function Z can then be
expanded in a perturbation series in the usual way:

For completeness, we mention two other recent develop-
ments. Thompson et al. ' have derived series to order 10
for U= 00 and the special case of infinite spatial dimen-
sion. Metzner" has presented a general formulation of a
linked-cluster expansion, but this approach has not yet
been used to derive series expansions.

A brief outline of the paper is as follows. In Sec. II we
present the method of derivation of the series, with some
of the technical details given in an appendix, and give an
outline of the results obtained. In Sec. III we present the
result of an analysis of the susceptibility series and give
the resulting phase diagrams showing the boundaries be-
tween ferromagnetic and paramagnetic regions. An in-
vestigation of antiferromagnetism is deferred to a future
paper. Finally, in Sec. IV, we discuss our results, draw
comparisons with previous work where appropriate, and
present our conclusions.

Z =Tr Ie ~~}

=Z, . I+ y( —I) f'dr, f d72 '' f dry(V(7, )V(72)''' V(r )) . , n
0 0 0

(4)
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with

and

Zo =TrI e 'J, P= 1 /kT,

( 3 ) =Trte '3 I/Zo,

The unperturbed partition function for N sites has the

simple form

Z zN

with

zo =1+2e~"coshPh +e ~"e

From (4}we obtain the free energy (grand potential} as

PF =—N lnzo Pb.—F,
with

(5)

In (7) the subscript N signifies that only the part propor-
tional to N is to be included. There has been some con-
fusion regarding this point. The contribution of any con-
nected diagram (to be discussed below) is automatically
proportional to N, while disconnected diagrams contain
contributions linear in X, which must be retained in our
method, as well as higher powers which cancel upon tak-
ing the logarithm.

Any nonvanishing contribution to (7) comes from a
particular group of sites or a diagram. Each application
of V results in the transfer of an electron between neigh-
boring sites, and we represent this by a line in the dia-
gram. In Fig. 1 we show the low-order diagrams through
order 6. We have generated by computer all of the 305
diagrams which contribute to the expansion through
tenth order. Many of these do not contribute for all
lattices —in particular, for loose-packed lattices, all dia-
grams involving odd-order loops vanish. Thus, for exam-
ple, only 104 diagrams contribute for the body-centered-
cubic lattice to tenth order.

Any particular diagram contributes to some minimum
order in the expansion, but also contributes to higher-
order terms through multiple usage of one or more
bonds. The contribution of a particular diagram 6 to or-
der r in the expansion can be expressed as a sum of terms
of the general form

The procedure then is to collect all of the contribu-
tions, weighted by the appropriate lattice constants, re-
sulting in an expansion of the form

PF/N=—1 nz+og(Pt}"zo "F„(PU,x,y),
1' =2

with

F„(PU,x,y)=gf p ((y)(PU}
mlp

(10)

=X + g (pt)'z '+"X„(pU,x),
1' =2

where yo is the susceptibility in the atomic limit t =0,

Order 2:

In Appendix 8 we display the values of f's for h =0 for
the sc and fcc lattices to sixth order. CoeScients for
nonzero h, to ninth order, for all lattices studied, are
available on request.

The ferromagnetic susceptibility is then given by
2

X=lim y ( PF/N)—
y 1 Bg

X„(G)= aG+Ckx 'y '(PU) 'to ',
Zp fc

where x =e~", y =e~", m =e ~, Ck is a numerical
coef6cient, and n&, n2, n3, n& are integers. The quantity
aG is the usual "weak lattice constant" or embedding
constant of diagram 6 in the lattice. Thus, for example,
the contribution of the only second-order diagram is

Xz(/ )= ( —,'Nq)[(x+x w)(y+y ')( t)

ZO

+4(PU) 'x (1—to)],
a result which has been given by many previous workers.
Some of the technical details of the calculation are given
in Appendix A. The expressions rapidly become too
lengthy to include here, but our results agree with the
previous results.

Order 3:

ad sA, A

Order 6:

FKJ. 1. Diagrams which contribute to the high-temperature
free-energy expansion through order (Pt} .
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(12)yo=2x/(1+2x+x w),
8

O
and X„is a polynomial in the fugacity x.

Equation (11) is then the form of the high-temperature
expansion for the susceptibility in the variable (pt) with
the coefficients being closed expressions in (PU) and x.
For most purposes it is more convenient to express the
series in terms of the average number of electrons per site
n, which can be obtained from the free energy (10) as

'a
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+ y (Pt)"z, '"+"-Y„(PU;x),
T=2

(13)
8

O
with Y„(pU;x)being a polynomial in x whose coefficients
are closed expressions in (pU). The task then is to elimi-
nate the fugacity x from the expansion (11) in favor of the
electron density n. While in the strong-correlation limit
or when e ~ &&1 (Ref. 9) the reversion of the series can
be done analytically, this is not possible for the general
case, because the quantity zo is then a quadratic in x. In-
stead, we proceed as follows. We choose fixed values for
n and pU and recursively solve Eq. (13) to obtain an ex-
pansion for x in powers of (pt). This is then substituted
in (11) to obtain an expansion for y,
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in the single high-temperature variable (pt) The se. ries
for 1 ~ n + 2 can be obtained from the one for 0 ~ n ~ 1 by
n~2 —n and t~ —t. Since the series for loose-packed
lattices involve only even powers of t, there will be a sym-
metry in our results about the half-filling value n =1. We
have computed series to eighth order for the standard
loose-packed lattices —square, simple cubic, and body-
centred cubic —and to ninth order for the triangular and
face-centred-cubic lattices.

It is, of course, impossible to present all of the results
here, but in Table I we quote a number of series to illus-
trate the way in which the coefficients change as n and
(pU) are varied. We have checked that our series reduce
to those of the Kubo and Tada in the strong-correlation
limit. In doing so we found a small discrepancy at ninth
order for the fcc lattice, which we have identified as aris-
ing from minor errors in a few of the lattice constants
used in Ref. 8.

Note that for the fcc series the coefficients appear to
occur in pairs; i.e., C2 and C2 &

are nearly always of
the same order of magnitude. This is true for other
values of (n, PU) and for the triangular lattice. For this
reason we feel it would be premature to draw any con-
clusions from our ninth-order results without the tenth-
order ones. In the next section we present an analysis of
the series to eighth order.
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IIII. ANALYSIS OF SERIES

The phase diagram of the Hubbard model in three di-
mensions is expected to contain thermodynamically
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stable regions of both ferromagnetic and antiferromag-
netic order, as well as a high-temperature disordered
phase. Nagaoka' has shown, in the strongly correlated
limit, that for one electron more or less than the number
of lattice sites, the ground state is ferromagnetically
stable for sc and bcc lattices. This phase is also stable for
the fcc lattice with one electron less than the number of
sites (r )0}. Kanamori' proposed that in the low-density
limit even with infinitely strong correlations the electrons
would not necessarily show ferromagnetism. For the
two-dimensional case, a Mermin-Wagner' type theorem
precludes the ferromagnetic phase from being stable at
nonzero temperature, although not at T =0. More exotic
phases have also been proposed. '

Our series for the ferromagnetic susceptibility should,
in principle, indicate the existence of a paramagnetic-
ferromagnetic transition and yield a quantitative estimate
of the transition temperature. The standard method uses
Pade approximants to the series for (d/dE)in'(K),
where K is an appropriate expansion variable; here,
K =Pt. If the susceptibility diverges at the transition
with a simple power law

y(E)-(K, —K)

then the logarithmic derivative will have a simple pole at
E„which should be well represented by the Pade ap-
proximants. Unfortunately, the series for the loose-
packed lattices are too short for this method to be usable.
Previous workers have looked for zeros of the series for

', as indicative of a divergence in y and hence a phase
transition. This method is likely to be unreliable, but in
the absence of any better method, we have used this ap-
proach also. For the fcc lattice, where more nonzero
coefficients are available, we have used Pade approxi-

~ ~ I I
I

I I I I
I

I ~ I I
I

I I I I
I

~ ~ I I1

8th Order

0.8 — PU = oo

0.6—
PU=30
PU= oo

0.4—

TABLE II. Maximum critical temperature T, and the corre-
sponding density n for the standard lattices in the strong-
correlation limit U = ~. The values are approximate only.

Lattice
Fourth order

(T,),„n Eighth order
(T,),„n

Square
Triangular (n & 1)

(n )1)
sc
bcc
fcc (n &1)

(n )1)

0.4
0.7
0.4
0.5
0.8
1.2
0.8

0.85
0.77
1.05
0.85
0.85
0.80
1.10

0.6
1.0
0.8
0.8
1.1
1.8
1.5

0.90
0.80
1.05
0.85
0.85
0.76
1.10

mants as well as the y '=0 method.
Figure 2 shows the critical temperature kT, /t (hereaf-

ter denoted simply by T, ) for the simple cubic lattice, as a
function of electron density n, for fixed values of PU, as
obtained from the equation g '=0. Both the eighth-
and fourth-order results, which are shown for compar-
ison, indicate an increase in T, with increasing U. This is
as expected since increasing electron correlations will in-
crease the stability of the ferromagnetic phase. The
higher-order results, which are presumably more indica-
tive of the true picture, give a substantially higher T, .
The sixth-order series do not give a consistent real posi-
tive zero. The trend of T, increasing on going from
fourth to eighth order is also seen for the other lattices.
Table II gives the maximum T, and the value of n at
which this occurs, for U = 00, for the standard lattices.
Two other points should be noted. The observed T,
values for the two-dimensional lattices are lower than for
the three-dimensional ones, indicating a lower stability
for ferromagnetic order in the former case. (Of course, in
reality, T, should be zero here. } Second, for the fcc lat-
tice, where the phase diagram is not symmetric about
n =1, the critical temperature is higher in the region
n &1, indicating greater stability for ferromagnetism
below half-filling than above.

The equation y '=0 has a real positive solution for
only a range of electron densities and we take this to
define, at least approximately, the range of n for which a
ferromagnetic phase is stable. Table III gives the range of
stability, for several values of PU, for the standard lat-
tices, as obtained from the eighth-order series. Increas-
ing U leads to a larger range of stability, as one would in-
tuitively expect.

0.2—
PU=30

TABLE III. Range of electron densities defining the region
of ferromagnetic stability, obtained from eighth order, for the
standard lattices and for several values of PU. The values are
approximate only.

0 a I i ~ I y i g s I i g s s I ~ ~ i g I ~ ~ i s

0.75 0.8 0.85 0.9 0.95

FIT&. 2. Variation of T, with n for fixed {pU) for the simple
cubic lattice, obtained from y ' =0.

Lattice

Square
Triangular
sc
bcc
fcc

PU =10

0.90—1.10
0.65—1.20
0.85-1.15
0.85—1.15
0.70—1.20

PU =30

0.90—1.10
0.65—1.20
0.80—1.20
0.80—1.20
0.68—1.25

0.85—1.15
0.65-1.25
0.75—1.25
0.80—1.20
0.66—1.25
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IV. DISCUSSION AND CONCLUSIONS

We have developed high-temperature expansions for
the free energy and ferromagnetic susceptibility of the
single-band Hubbard model for general values of the elec-
tron density n and correlation energy U. Series have been
obtained to ninth order in (pt ) for all of the standard lat-
tices. This extends previous work of many authors.

As has been remarked previously, ' the series are
quite erratic and difficult to analyze with any degree of
precision. In common with previous workers, we have
used the condition y =0 to estimate the transition tem-
perature, rejecting an instability to a ferromagnetic
phase. We believe that this is qualitatively reasonable, al-
though clearly not quantitatively accurate. The new
higher-order series (eighth order) give in general higher
estimates of T, than previous (fourth order) analysis.
This suggests that ferromagnetism at finite temperatures
exists over a substantial region of the (Ult, n) phase dia-
gram of the three-dimensional Hubbard model.

We have made substantial progress toward obtaining
the tenth-order term for loose-packed lattices, and it
would certainly be feasible with our method to also ex-
tend the close-packed series to tenth order. For the
strongly correlated case ( U = 00 ), the computational
effort is much less and these series could be carried to
12th order at least. The expansion for the antiferromag-
netic susceptibility could also be extended beyond the
known sixth-order result. The same technique could
also be used for more complex Hamiltonians, such as the
extended Hubbard model. Some of these directions are
being pursued.

When this paper had been essentially completed, we re-
ceived a report which addresses, to a considerable degree,

the same problem as we have studied. ten Haaf and van
Leeuwen' have obtained series for the free energy to
eighth order for the general case by a method very simi-
lar to ours. We have compared our results with their
Table 4a and find complete agreement. They have con-
sidered only the square and simple cubic lattices and have
not obtained the susceptibility series as such, and so in
this sense our results are more extensive. Instead, they
have looked at the nearest-neighbor spin-correlation
function and have used the sign of this as an indicator of
a tendency toward ferromagnetic or antiferromagnetic
order. Our overall conclusions are consistent with theirs.

Note added in proof. We have completed the calcula-
tion of the tenth-order coefficients for the loose-packed
lattices. Analysis of the extended series, together with
that for close-packed lattices, which we hope to complete
soon, will be reported elsewhere.
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APPENDIX A

We describe here some of the technical details in ob-
taining the contribution of any particular diagram G to
the free-energy expansion (7). To be specific consider the
contribution of the diagram P to order 4:

1 T2 r3
X (P, )= f dr, f dr2f dr3f drqTrIe 'V(r))V(r2)V(r3)V(r4)I .

Z0 0 0

Now the trace can be written as a sum over states

&~Ei ~~ Ei E ) ~2(E —Ek)Tr = e 'e' ' 'e'
ij kl

T3(Ek El T4( El —EiXe

where the E,-'s are unperturbed energies. Note that, since
the hopping term conserves electron number and electron
spin, the energy differences which appear in the exponen-
tials are always 0, +U.

The computation then proceeds in the following steps.
(i) The states and unperturbed energies are enumerat-

ed. There are 4" states (v = number of vertices in the di-
agram), and these are conveniently represented as 2v-bit
binary integers.

(ii) The matrix elements V;. are computed and stored.
This is done by keeping, for each initial state, a list of all

possible final states together with the matrix element (+1)
and the bond of the diagram which corresponds to the
particular electron transfer.

(iii) The multiple sum is then evaluated with the con-
straint that the system return to the initial state and that
all bonds of the diagram be used. The terms are grouped
according to the powers of ~&, v.2, . . . .

(iv) The multiple integrals are evaluated using an
efficient computer routine.

(v) Finally, the terms are grouped according to powers
of the variables x, y, co, and (pU) to give a contribution
of the form

(Pt)"d"zo "QCkx 'y '(PU) 'w ',
k

where the variables are as defined in the text.
Various tricks are used to speed up the program, but

the essential steps are as described above.
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APPENDIX B

Coefficients f„~I in the expansion of the free energy for the sc lattice to order r =6 with

y = 1 [see Eq. (10)j.
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14512/15
-101l8/15

143/3
143/3

-10118/15
14512/15
-3374/15
155/30

-9092/15
32918/15
-16704/15
32918/15
-9092/15
485/30

79/3
-12008/15

79/3
485/30
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Coefficients f I in the expansion of the free energy for the fcc lattice to order r =6 with
y = 1 [see Eq. (10)].

P
1

1

1

1

2
2

3
3
3
3

m

2
2
1

3

m

2
2
4
4
2
4
1

2

5

m

2
3
4
5
6
2
3
4
4

5
6
2

3
4

4

5
6

2

3
4

5
6
2

3

f2pml(1)
24

-24
12
12

f3pml(l )
-96
96
96

-96
96

-96
16

-16
16

-16

4pml( )
696
144
144
144
696

-696
-144
1248

-1392
-144
-696

-1008
-72

1440
144
-72

-1008
312
-72

-480
-72
312
660

-576

m

3
4
5
5
6
1

2

3
3
4
5
5
6
7

m

2
3
4

6
2
3
4

6
6
7

8
7

8
2

3
4
4.

6
2

3

6
6
7

8
7

f4pml(1)
576

-1320
576

-576
660

45
-272

69
114

-368
69

114
-272

45

&5pml(1)
5760
-480

-17280
-480

17280
-5760

480
17760

-17760
480
480

-5760
-480
5760

-8640
4800

20064
7968

-20064
2880

-4320
-97!)2
9792

-7968
-4800
8640
4320

P
2
3
3
3
3
3
3
3
3
3
3
4
4

4
4
4

4

4
4
4
4
5
5
5
5
5

5
5
5
5
5
5

5

8
2
3
4

4
6
6
7

8

7

2
3
4

4

6
6
7

8
3
7

1

2

3
3
4

4

6

7

8
7

9

f5pmi(1)
-28SO

5760
-7776

-28272
1872

28272
-1872
7776

-5760
3216

-3216
-2400
7168
4432

-2352
-4432
2352

-7168
2400

-1712
1712

-72
1152

-88
-1524

844
2Q4

-844
-204
1524

-1152
SS
72
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p m 1

1 2 0
1 3 0
1 4 1

1 4 0
1 5
1 6 2
1 5 0
1 6
1 7 2
1 8
1 6 0
1 7 1

1 8 2
1 9 3
1 10 4
1 2 1

1 3 1

1 4 2
1 5 2
1 6 3
1 7 3
1 8 4

1 9 4

1 10 5
2 2 0
2 3 0
2 4 1

2 4 0
2 5 1

2 6 2

2 5 0
2 6 1

2 7 2

2 8 3
2 6 0
2 7 1

2 8 2

2 9 3
2 10 4

2 2 1

2 3 1

4 2

2 5 2

2 6 3
2 7 3
2 8 4

f6pml(1)
54624
45216

-510432
284112
-74400

-328608
386304
642816
-74400

-510432
101664
386304
284112
45216
54624

-54624
-45216
226320

-311904
-415872
-311904
226320
-4521 G

-54624
-84960
63192
95520
-6240

-495096
-7292&G

-175344
-739392
-495096

95520
-32256

-175344
-6240
63192

-84960
30336

-108408
-147072

-27768
238848
-27768

-147072

m

9
10
2

3
4

5
6
5
6
7

8
6
7

8
9
10
2

3
4
5
6
7

8
9
10
2

3
4

4
5
6
5
6
7

8
3
5
7

9
7

8

10
2

3

f6pm1(l)
-108408

5 30336
0 60592
0 -127152
1 -412136

-4360
139952
659376

23120
103632
139952

3 -412136
-1152
23120
-43GO

3 -127152
60592
-2944
41352
20448

-52696
-35904
-52696
20448
41352
-2944

-27216
108884

1 165296
0 -73464
1 -122876
2 -282736
0 3420
1 148288
2 -122876

165296
-20864
28828
28828

-20864
3420

-73464
108884
-27216

8804
-61946

P
5
5
5
5

5
5
5
5
5
5
5
5
5

5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

,

6

m 1 f6pmi(1)
4 1 -42598
4 0 63278
5 1 66970
6 2 -42116
5 0 -7306
6 & -8916
7 2 66970
8 3 -42598
3 1 4222
5 2 2028
7 3 2028
9 4 4222
7 1 -7306
8 2 63278
9 3 -61946
10 4 8804
1 0 352/3
2 0 -68348/15
3 1 3319/15
3 0 249974/15
4 1 -32852/5
5 2 1194/5
4 0 -149018/15
5 1 315988/15
6 2 -85636/15
7 3 1194/5
5 0 9509/15
6 1 -150656/15
7 2 315988/15
8 3 -328M/5
9 4 3319/15
7 1 9509/15
8 2 -149018/15
9 3 249974/15
10 4 -68348/15
11 5 352/3

J. Hubbard, Proc. R. Soc. London A 276 238 (1963); 277, 137
(1964); 281, 401 (1964); 285, 542 (1965). See also M. Cyrot,
Physica 91B, 141 (1977).

Electron Correlation and Magnetism in Narrow-Band Systems,
edited by T. Mariya (Springer-Verlag, Berlin, 1981).

For recent reviews, see, for example, V. J. Emery, IBM J. Res.
Dev. 33, 246 (1989); H. Fukuyama, Asia-Pacific Phys. News
4, 3 (1989);R. J. Birgeneau, Am. J. Phys. 58, 28 (1990).

4E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968); E.

H. Lieb, ibid. 62, 1201 (1989); K. Kubo and T. Kishi, Phys.
Rev. B 41, 4866 (1990).

Phase Transitions and Critical Phenomena, edited by C. Domb
and M. S. Green (Academic Press, New York, 1974), Vol. 3.

~D. W. Hone and P. Pincus, Phys. Rev. B 7, 4889 (1973); G.
Beni, P. Pincus, and D. Hone, ibid. 8, 3389 (1973)~

~W. Brauneck, Z. Phys. B 28, 291 (1977).
K. Kubo, Frog. Theor. Phys. 64, 758 (1980); K. Kubo and M.

Tada, ibid. 69, 1345 (1983);71, 479 (1984).



HIGH-TEMPERATURE EXPANSION FOR THE SINGLE-BAND. . . 6337

~K. K. Pan and Y. L. %ang, Phys. Rev. B 43, 3706 (1991);J.
Appl. Phys. 69, 4656 (1991).
C. J. Thompson, Y. S. Yang, A. J. Guttman, and M. F. Sykes,
J. Phys. A 24, 1261 (1991).
W. Metzner, Phys. Rev. B 43, 8549 (1991).
Y. Nagaoka, Phys. Rev. 147, 392 (1966).

' J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).
D. K. Ghosh, Phys. Rev. Lett. 27, 1584 (1971).
J. A. Verges, E. Louis, P. S. Lomdahl, F. Guinea, and A. R.
Bishop, Phys. Rev. B 43, 6099 (1991).
D. F. B. ten Haaf and J. M. J. van Leeuwen, Phys. Rev. B 46,
6313 (1992).


