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Surface magnetism in iron, cobalt, and nickel
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We have calculated magnetic moments, work functions, and surface energies for several of the
most c1osely packed surfaces of iron, cobalt, and nickel by means of a spin-polarized Green's-function
technique based on the linear muffin-tin orbitals method within the tight-binding and atomic sphere
approximations. We find enhanced spin moments at all the surfaces considered except for Ni fcc(111),
where the moment at the surface reverts to its bulk value. This is in close agreement with earlier
slab calculations. In addition, we 6nd that the calculated work functions and surface energies
agree with experimental values to within 10', which may be considered most satisfactory in view

of the computational efficiency of the Green's function technique. Exchange and correlation have
been treated within the local spin-density approximation and we have considered three diferent
parametrizations of the original many-body data. We 6nd that the calculated work functions depend
as much on the choice of this parametrization as on the effect of spin polarization.

I. INTRODUCTION

It is now well established from first-principles self-
consistent local spin-density calculations that the mag-
netic moment in the topmost layer(s) of magnetic 3d-
transition metals is generally enhanced with respect to
the bulk magnetic moment. i s This is commonly ex-
plained as due to the reduction in coordination number
and symmetry at the surface, which causes the d bands
to narrow and hence, in general, enhances the paramag-
netic state density at the Fermi level Ep. The moment
enhancement at the surface is particularly pronounced
for Fe bcc(001), where the majority spin band is not al-

ready saturated in the bulk. This is in contrast to Co and
Ni, where the majority band is close to being saturated,
thereby reducing the moment enhancement. 4

The instability towards magnetic-moment formation in
bulk systems is well accounted for by the Stoner theory of
itinerant magnetism. Although the surface paramagnetic
state density may be used to form a Stoner product
and subsequently within a rigid-band models used to ex-
plain the magnitude of the moment enhancement at a
surface, no theory in terms of, e.g. , the coordination num-
ber has been developed as yet. However, early findings
of either enhanced or depressed magnetism at the sur-
face and magnetically alive monolayers on top of bulk
systems lead to discussions in terms of d-band narrowing
and enhancement of the state density at Ez. Antiferro-
magnetic chromium is now known, by angle-resolved pho-
toelectron spectroscopy~ and by full potential electronic-
structure calculations, to exhibit ferromagnetic order at

its bcc(001) surface. The surface magnetism of nickel
was initially controversial until it was established that
the surface magnetic moment is comparable to that of
the bulk. s

The majority of the calculations of surface magnetism
in the 3d metals have been performed within a geometry
consisting of either a single slab2'i2 is or of separated
slabs in a three-dimensional supercell. While these slab
methods have well-known deficiencies, the effect of which
is not completely controlled, they will render accurate
results when carried to convergence. s s

By construction the Green's-function approach takes
proper account of the broken symmetry at the surface,
and hence does not suffer from the deficiencies of the slab
methods. In addition, the Green's function approach is
efficient in terms of computer time, and it may be carried
to the same level of sophistication as the slab methods
in terms of full potential and all-electron calculations, if
needed. Several surface Green's function techniques have
been presented in the near past. is so Feibelmani" and
ScheRer et al. have treated an impurity on a film and
a surface, respectively, while results for perfect crystal
surfaces have been reported by Inglesfield and Skriver
and Rosengaard. Finally, Crampin et al. reported cal-
culations of stacking faults energies by the related layer
Korringa-Kohn-Rostoker (KKR) method.

In this paper we report on the implementation
of a spin-polarized version of our Green's-function
technique, and present calculations of work functions,
surface energies, and magnetic moments for several close-
packed surfaces of ferromagnetic iron, cobalt, and nickel.
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Recently, Zeller et al. s have used a related KKR Green's-
function method to calculate the magnetic properties of
single layers of iron, cobalt, and nickel on a copper sur-
face.

In the test of our Green's-function method on the
alkali metals we found that the calculated surface prop-
erties were quite sensitive to the choice of exchange-
correlation functional. In the present case, we therefore
compare results obtained by the functional devised by
von Barth and Hedin, 2 which in the past has been ex-
tensively used in calculations for bulk magnetic systems,
and the more recent one by Ceperley and Alder. ~s For the
latter we tested both the parametrization by Perdew and
Zunger2" in conjunction with the spin scaling of the cor-
relation energy and potential as given by von Barth and
Hedin~4 and that by Vosko, Wilk, and Nusair. ~s The sen-
sitivity to the spin interpolation was investigated for bulk
iron by McLaren, Clougherty, and Albers, 2s who found

that only the Vosko-Wilk-Nusair functional yielded a bcc
ferromagnetic ground state.

II. COMPUTATIONAL METHOD

The tight-binding (TB) linear-muffin-tin-orbitals
(LMTO) Green's-function technique as implemented by
Skriver and Rosengaard s is based on the work by An-
dersen and co-workers. s ss An essential aspect is the
ability, within the atomic sphere approximation (ASA)
and in the tight-binding representation, to generate the
Green's-function matrices for a real, two-dimensional in-
terface by a simple and efficient procedure. Since the
details of the technique may be found in Ref. 19 we shall
here restrict ourselves to an outline of the major steps
with special emphasis on the spin dependence.

In a layer representation the Green's-function matrix
may be expressed as

2~/d~
dk Le

" GR L) RL )r(k, z),

where d~ is a layer distance, k = (k~~, k~) is the decom-
posed reciprocal-space vector and R = (R~~, R~) denotes
sites in the three-dimensional (3D) primitive cell. The
Green's-function matrix for the perfect crystal which en-
ters (1) is obtained from

.uR, L, , a(k) [uRL.a(k))'
CsR'L', RL;cr(k) Z) =

Z —
6g ~

2

where u~(k) are the eigenvectors and e~(k) the eigen-
values of the TB-LMTO Hamiltonian in the orthogonal

(p) representation, s2 s4 L refers to the combined angular-
momentum quantum numbers (l, m), and cr labels spin.
To calculate the energy moments of the state density the
Green's-function matrices are evaluated for complex en-

ergies z on a semicircular contour, which encloses all the
occupied states and cuts the real axis at EF

The Green's-function matrices for the two semi-
infinite crystals are obtained by a Lowdin downfolding
technique, ss which hinges on the fact that the LMTO
structure constants in the most localized representation
denoted by P are short ranged, i.e. ,

)Sba (gbb) J kgba;rr gbb;)r ) (0ab 4b) (6)

The effect of relaxing the potentials close to the surface
is found from the finite Dyson equation,

ga = g)r + grrDPag~)

where the surface Green's-function matrix g' is expressed
in terms of the unrelaxed Green's-function matrix and
the diagonal potential-function matrix APs, which de-
scribes the relaxation of the potentials.

The atom-centered, spherically symmetric ASA poten-
tials VR, . are obtained by solving the radial Poisson
equation within the atomic spheres. To this we add the
electrostatic monopole and dipole contributions from the
neighboring spheres by the multipole expansion

-Y Y Y Y —1 Y
gBB gBB gBa(gaa) gaB)

where the spin label has been omitted for the vacuum
Green's function. The surface Green's-function matrices

g for the unrelaxed, combined system is found from the
definition of the KKR-ASA Green's function written in
the block form

Sz~B ——0 for (AB) P (ab). (3) 1 sL L'
VR;cr(&R) = VRs;rr(i R)Ys + ) MRR, QR))

R'L'
Here, AB refers to the two half spaces separated by the
surface and (ab) is the small subset of layers where the
hopping is nonzero. After the transformation of
the layer Green's-function matrix (1) into the form de-
fined by the KKR-ASA equations in the P representation
the Lowdin downfolded ideal Green s-function matrices
for the bulk (X) and the vacuum (Y) are given by

-X X X ( X i —1 X
~AA;cr 9AA;cr ~Ab;cr (~bb;a) ~bA;o &

L'
where the Madelung matrices MRR, are given by Skriver

I

and Rosengaardis and the multipole moments QR, are
obtained by contour integration of the surface Green's
function g'.

The total energy in the ASA may be expressed as the
sum of the Madelung energy, the kinetic energy, the elec-
trostatic energy, and the exchange-correlation energy in

the form
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RL,R'I '
QR RR'R' + ) R ~

R;n

2Z„ 1 . , „ r1 „) dsr n~z, (.r) + ) d r nR, .~(r) l -&R; (r)+IRs;~(r) I

R;n )

) d r nR, ~(r)s„,[nR, ,l(r), nR8 J(r~ )] — ) d r nRB &&xc[nR8(r)]
RR~ R R;cr

(9)

where the atomic-sphere projected kinetic energy may be
obtained from the sum of the one-electron energies and
the effective potential as

v 1
TR ~ —— . dz zGRL, RL„(z)

d r nR8;~(r)V~, ~(r).
4vr

(10)

In Eqs. (9) and (10) the charges and the electrostatic po-
tentials are separated into valence and core contributions,
indicated by the superscripts v and c, respectively, terms
pertaining to the (frozen) core are neglected, and e„, is
the parametrized exchange-correlation energy density in
the local-spin-density approximation. Finally, the ASA
surface energy is evaluated as the difference between (9)
for the surface layers and the corresponding expression
for the perfect crystal.

In the present calculations we used 16 (Fe,Co) and 24
(Ni) z points logarithmically spaced on a semicircular
contour in the lower half of the complex energy plane.
The larger number for Ni was chosen to give an adquate
representation of its sharp d state density close to the
Fermi level. In a related study Inglesfield and Benesh, ~s

used 63 sampling points for Ni.
The number of k~~ points were taken to be 36, 36,

45, 45, and 64 special pointssr in the irreducible part
of the 2D Brillouin zone for bcc(001), fcc(001), fcc(111),
hcp(001), and bcc(110), respectively, in addition to the
50 k~ points used to calculate the layer Green's-function
matrix (1). The same choices of k points were used in the
underlying bulk calculations thus leading to an effective
cancellation of errors in the total-energy differences.

In the calculations we used s, p, and d muffin-tin or-
bitals and included 3—5 metal surface layers and 2 vac-
uum layers depending on convergence tests. The frozen-
core contributions for Fe, Co, and Ni were calculated for
the free atoms with the valence configurations 3d 4s,
3d74sz, and 3ds4sz, respectively. A 3ds4s2 atomic con-
figuration for Fe was tested for Fe(001) and was found to
affect the calculated surface magnetic moment and work
function by less than 1% and the surface energy by less
than 2%.
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are those obtained by means of the Vosko-Wilk-Nusairzs
parametrization of the Ceperley-Alder (CA) exchange-
correlation functional. zs In the tables we also quote re-
sults from earlier work and list the value of the Wigner-
Seitz radius and the number of layers used in the calcu-
lations. Finally, the calculated work functions and sur-
face energies are shown in Figs. 1 and 2 as functions of
atomic number, surface facet, and exchange-correlation
potential.

It follows from Fig. 1 that the calculated work function
is sensitive to the choice of exchange-correlation poten-
tial, and that the effect is as large as 0.4 eV, i.e. , com-
parable to the effect of the spin polarization itself. This
shift in the work function obtained by the von Barth-
Hedinz4 parametrization on the one hand and by the
two CA parametrizations on the other is a direct re-

III. RESULTS

Our results for layer- and orbital-decomposed total
charges and magnetic moments together with calculated
work functions and surface energies for seven Sd sur-
faces are presented in Tables I—VII. The values listed

Ni

FIG. 1. Calculated vrork functions for all the surfaces
considered. The results are obtained by means of di6erent
parametrizations of the exchange-correlation potential as ex-
plained in the text, and include spin-polarized (F) as vrell as
paramagnetic (P) calculations.
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FIG. 2. Calculated surface energies obtained within the
ASA for various exchange-correlation potentials (symbols as
in text). The paramagnetic and spin-polarized calculation
are denoted by P and F, respectively. Values derived from
surface tensions (Refs. 40 and 41) are labeled as Miedema.

suit of the systematic difFerence between the exchange-
correlation potentials themselves, as may be seen from
Fig. 3. We note that the Ceperley-Alder —type poten-
tials give the best agreement with the experimental work
functions compiled by Michaelson. ss

The calculated surface energies presented in Fig. 2
are found to be less affected by the choice of exchange-
correlation potential than the work functions, while the
effect of spin polarization is found to be appreciable for
Fe and Co. In the comparison with the surface ener-
gies recommended by de Boer et aL4c one should note
that their values are derived from surface tensions at the
melting temperature and hence reflect average values in-

dependent of surface facets. We find that also for the
surface energy the Ceperley-Alder —type potential gives
the best agreement with values derived from experiment.

A. Iron; bcc(110) and bcc(001)

In the calculations for the bcc(110) surface of iron we
have treated three metal layers and two vacuum layers
(3+2) self-consistently. As may be seen from Table I,
we find no Friedel-type oscillations in the magnetic mo-
ments, and we find a surface magnetic moment of 2.57
p,~, which is an increase of 0.3@~, or 14', over the bulk
value. This increase is somewhat lower than the 20FO

FIG. 3. The difFerence in the magnitude of the three
exchange-correlation potentials used in the calculations. Sym-
bols are as in text.

found in the full-potential linearized augmented plane
wave (FLAPW) calculation by Fu and Freeman42 and the
30Fo found in a recent spin-polarized low-energy electron
diffraction experiment. Our calculated work function is
5.21 eV, a value slightly larger than those reported from
various experiments on Fe, although no measurements of
the work function for the (110) facet has been reported to
our knowledge. The surface energy is calculated within
the ASA to be 2.66 J/m2, which is within 10% of the
value estimated by de Boer et aL4e

Table II shows the magnetic moment and charge den-
sity of the more open bcc(001) surface, for which we have
treated (5+2) layers. This surface is the most loosely
packed of the surfaces considered here, and the electronic
structure difFers somewhat from the other systems. A
noticeably large amount of charge is lost from the metal
surface layer (8), i.e. , 0.50 electrons, out of which 0.46
electrons, originally of mainly p character, are transferred
into the (8+ 1) layer forming surface s and p states.
The calculated surface energy for the paramagnetic case
is equal to that of the paramagnetic bcc(110) facet, 3.1
J/m2. When allowing for spin polarization, the large
gain in exchange energy at the (001) surface lowers the
surface energy by as much as 0 46 eV/atom, . becoming
only 2.18 J/m2. Our calculated work function is 4.50
eV lying well within the scatter of the experimental re-
sults (4.4—4.8 eV). We find a surface magnetic moment
of 2.97p,~, which is in very good agreement with ear-
lier FLAPW and full-potential linear muffin-tin orbital
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TABLE I. Fe bcc(110).

6307

rws=2. 662 (a.u. )
(3+2) layers

TB LMTO (ASA)
p d Total in layer

Other calc. , expt.
Total in layer

S+1
S

S —1
S —2

0.13
0.65
0.66
0.67

Charges
0.09
0.57
0.79
0.80

0.03
6.54
6.54
6.53

0.26
7.75
7.99
8.00

S+1
S

S —1
S —2

0.00
0.00

—0.01
—0.01

Magnetic moments
0.01 0.01
0.01 2.57

—0.05 2.41
—0.06 2.32

0.01
2.57
2.35
2.25

2.65
237
2.25'

Work function (eV)

Surface energy (J/m )

5.21

2.66 2.48b

FLAPW, seven-layer slab (Ref. 42).
Experiment (surface independent) (Ref. 40).

(FLMTO) calculations. 4s However, in contrast to the
results of the latter calculations, our layer-decomposed
magnetic moments converge towards the bulk value away
from the surface, as a result of the (correct) boundary
condition fulfilled by the Green's function. This is illus-
trated in Fig. 4, showing also the small Friedel oscilla-
tions appearing in the layer-decomposed magnetic mo-

ments. It is interesting to note that these oscillations
are of exactly the same character and size as those found
in the FLAPW calculation by Oshnishi and Freeman. s

They are, however, not apparent in the recent work by
Eriksson et aL,4 where spin-orbit coupling was included
in the FLMTO Hamiltonian together with so-called or-
bital polarization.

TABLE II. Fe bcc(001).

rws=2 662 (a.u. )
(5+2) layers

TB LMTO (ASA)
p d Total in layer

Other calc. , expt.
Total in layer

S+1
S

S —1
S —2
S —3
S —4

0.27
0.60
0.67
0.67
0.67
0.67

Charges
0.14
0.46
0.78
0.80
0.80
0.80

0.06
6.43
6.57
6.52
6.53
6.53

0.46
7.49
8.02
7.99
8.00
8.00

6.78
7.05
7 05'
7 05'

S+1
S

S —1
S —2
S —3
S —4

0.00
0.01

—0.01
0.00

—0.01
—0.01

Magnetic moments
0.03 0.02
0.02 2.94

—0.04 2.35
—0.05 2.43
—0.06 2.31
—0.06 2.31

0.04
2.97
2.30
2.37
2.25
2.24

2.98,~ 2.87b
235+ 234b
2.39, 2.33b
2.25, 2.18b

Work function (eV)
Surface energy (J/m )

4.50

2.18

4.29, 4 4'

2.48'

'FLAPW, seven-layer slab (quoted charges are inside touching MT spheres) (Ref. 6).
~FLMTO spin-orbit, seven-layer slab (spin moments) (Ref. 4).
'Experiment (Ref. 38).

Experiment (surface independent) (Ref. 40).
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res=2. 617 (a.u.
(4+2) layers

B LMTO (ASA)
Total in layer

Other calc. , exp .ex t.
Total in layer

S+1
S

S —1
S —2
S —3

0.18
0.64
0.68
0.68
0.68

Charges
0.11
0.52
0.80
0.81
0.81

0.04
7.50
7.53
7.51
7.51

0.33
8.66
9.01
9.00
9.00

8.04
8.27
8.27
8.27

S+1
S

S —1
S —2
S —3

—0.02
0.00

—0.01
—0.01
—0.01

Magnetic momments
0.00 0.00

—0.01 1.85
—0.05 1.69
—0.06 1.73
—0.06 1.71

—0.01
1.84
1.63
1.66
1.64

1.86
1.64
1.65
1.64

k function (eV)Wor

Surface energy (J/ni

5.52

2.78

5.17, 5.0
2.55'

Ref. 22).hin MT spheres) (Re .t inside touchingand moments insla er slab (charges anFLAPW, nine-layer s a
x ' Ref. 39).

surface in epen'Experiment s
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TABLE IV. Co fcc(111).

rws=2 617 (a.u.)
(3+2) layers

TB LMTO (ASA)
p Total in layer

Other calc. , expt.
Total in layer

8+1
S

S —1
S —2

0.12
0.66
0.68
0.68

Charges
0.08
0.61
0.80
0.80

0.03
7.51
7.52
7.51

0.24
8.77
8.99
9.00

S+1
S

S —1
S —2

—0.01
—0.01
—0.01
—0.01

Magnetic
0.00

—0.04
—0.06
—0.06

moments
0.00
1.77
1.74
1.70

—0.01
1.72
1.67
1.63

Work function (eV)
Surface energy (J/m )

5.55

2.70

5.0
2.55

Experiment (Ref. 39).
Experiment (surface independent) (Ref. 40).

not magnetically dead but carries a magnetic moment
comparable to that of the bulk. At the fec(001) sur-
face the calculated moment is 0.69'~, which is a slight
increase over our bulk value of 0.64@~ (Table VI). Simi-
larly to the case of Co fcc(001), the orbital composition
of the subsurfaces appears very bulklike with only a mi-
nor Friedel oscillation in the magnetic moment. In earlier
full-potential slab calculations for this surface these de-
tails difFer somewhat as regards the layer behavior. The
FLMTO spin-orbit calculations gave an enhancement
similar to ours, but the magnetic moment was found to

increase more smoothly through the layers. The FLAPW
studys yielded a slightly larger enhancement (20%), and
the variation in the magnetic moment with layers was
found to be intermediate between our results and those
of the FLMTO calculation. In the case of the fce(ill)
surface we found, see Table VII, that the moment in-
creased continuously through the inner layers similarly
to the case of Co fcc(111),but reverted to its bulk value
at the surface layer. This type of halted increase of the
surface magnetic moment was also found in a FLAPW
study on the Ni(ill) surface by Fu and Freeman. 44

TABLE V. Co hcp(001).

rws=2. 621 (a.u.)
(4+2) layers

TB LMTO (ASA)
u d Total in layer

Other calc. , expt.
Total in layer

8+1
S

S —1
S —2
S —3

0.12
0.66
0.68
0.68
0.68

Charges
0.08
0.60
0.79
0.80
0.80

0.03
7.51
7.52
7.52
7.52

0.24
8.77
8.99
9.00
9.00

8+1
S

S —1
S —2
S —3

—0.01
—0.01
—0.01
—0.01
—0.01

Magnetic moments
0.00 0.00

—0.05 1.76
—0.06 1.72
—0.07 1.68
—0.07 1.69

—0.01
1.70
1.65
1.60
1.61

1.75
1.67
1.58

Work function (eV)
Surface energy (J/m )

5.53

2.74 2.55'

'FLMTO spin-orbit, five-layer slab (spin moments) (Ref. 4).
Experiment (Ref. 39).

'Experiment (surface independent) (Ref. 40).
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TABLE VI. Ni fcc(001).

46

rws=2 598 (a.u.)
(4+2) layers

TB LMTO (ASA)
p d Total in layer

Other calc. , expt.
Total in layer

S+1
S

S —1
S —2
S —3

S+1
S

S —1
S —2
S —3

0.16
0.64
0.68
0.69
0.69

—0.01
0.00
0.00
0.00
0.00

Charges
0.11 0.04
0.51 8.55
0.77 8.55
0.78 8.53
0.77 8.54

Magnetic moments
0.00 0.00

—0.02 0.71
—0.03 0.67
—0.03 0.69
—0.03 0.67

0.31
9.69

10.00
10.00
10.00

—0.01
0.69
0.64
0.66
0.64

0.14
9.86

10.00
10.00'
10.00

—0.005
0.68, 0.59
060 058
059 057
0.56, 0.55'

Work function (eV)
Surface energy (J/m )

5.75

2.77

5 22 5 37 5 7]
2.45'

'FLAPW, seven-layer slab (Ref. 3).
bFLMTO spin-orbit, seven-layer slab (spin-moments) (Ref. 4).
'Experiment (Ref. 39).

Full-potential Green's-function method (paramagnetic) (Ref. 18).
'Experiment (surface independent) (Ref. 40).

Our calculated surface energies are 2.77 J/ms and 2.69
J/m2 for the fcc(001) and fcc(111) surfaces, respectively,
and our calculated work functions are 5.75 eV and 5.70
eV, respectively. The trends found here are analogous
to those exhibited by cobalt. First, the increased to-
tal charge redistribution when going from fcc(111) to
fcc(001) increases the surface energy. Secondly, our cal-

culated work functions are slightly larger than both the
experimental results (5.22 eV and 5.35 eV, respectively)
and the 5.37 eV obtained in the FLAPW calcultion for
the Ni(001) surface. On the other hand our calculated
work functions are close to the value of 5.71 eV reported
in a recent full-potential Green's-function calculation for
paramagnetic fcc(001) Ni. ~s

TABLE VII. Ni fcc(111).

rws=2 598 (a.u. )
(4+2) layers

TB LMTO (ASA)
p d Total in layer

Other calc. , expt.
Total in layer

S+1
S

S —1
S —2
S —3

0.11
0.66
0.68
0.69
0.69

Charges
0.08
0.58
0.77
0.77
0.78

0.03
8,54
8.54
8.54
8.54

0.22
9.79
9 99

10.00
10.00

8+1
S

S —1
S —2
S —3

—0.01
0.00
0.00
0.00
0.00

Magnetic moments
0.00 0.00

—0.03 0.65
—0.03 0.71
—0.03 0.68
—0.03 0.66

—0.01
0.62
0.67
0.65
0.63

0.63
064
0.58
0.58

Work function (eV)
Surface energy (J/m )

5.70

2.69

5.35

2.45'

FLAPW, seven-layer slab (Ref. 44).
Experiment (Ref. 39).

'Experiment (surface independent) (Ref. 40).
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In Fig. 1 it may be seen that the spin-polarization has
little effect on the calculated work function, in contrast
to, e.g. , the case of iron. This was also found experi-
mentally by Saito, s who estimated the magnetic effect
on the work function of Ni(001) to be less than 3 meV.
Also, the surface energy of the Ni surfaces is very little
affected by the spin-polarization (Fig. 2), indicating that
the surface magnetism here is less stable than that of Fe
and Co.

IV. SUMMARY

We have implemented a spin-polarized version of our
TB-LMTO Green's-function technique for surfaces and
interfaces. The technique makes use of the frozen-core
and atomic-sphere approximations, employs a minimal
basis set, and uses the Green's-function approach to
properly account for the breakdown of translational sym-
metry that occurs at the surface. We have applied this
calculational scheme in a systematic study of magnetic
moments, orbital compositions, work functions, and sur-
face energies for the most closely packed ferromagnetic
surfaces of iron, cobalt, and nickel. It is gratifying to see
that in those cases where full-potential results exist we
do find quantitative agreement with the moments and
work functions obtained in these more accurate calcu-
lations. As to the magnetic surface energies, they are
presented here and found to be within 1070 of the values
recommended by de Boer et at.4o

In agreement with our earlier surface calculations for
the alkali metals, we find that the calculated work
function depends strongly on the choice of exchange-
correlation potential. The effect in Fe, Co, and Ni is close
to 0.4 eV and of the same size as the lowering of the work
function brought about by the spin-polarization. This
result does not seem to be appreciated in the literature
and should be kept in mind when comparing with other
calculations.

In comparison with experiment, we find that the
calculations that employ the Vosko-Wilk-Nusair spin-
polarized parametrization of the Ceperley-Alder many-
body data systematically overestimate the work func-
tions by 10%, and that the von Barth —Hedin potential

gives even higher work functions. We note that some
discrepancy with experimental results is to be expected,
since the work function of a rough surface is generally
lower than that of a fiat surface. Thus, the measured
values tend to be lower bounds on the work function of
the perfect surface. In this light we find the agreement
with experiments highly satisfactory.

Our calculated work functions are also somewhat
larger than those obtained by the FLAPW slab calcula-
tions. However, a recent full-potential Green's-function
calculation for Ni(001) gave a work function similar to
ours. We are therefore tempted to conclude that in-
terslab interactions prevent the Fermi level from reach-
ing the bulk value in the center of the slab, and hence
might be responsible for the low work functions found in
FLAPW calculations when compared to results obtained
by Green's-function methods, which obey correct bound-
ary conditions on both sides of the interface.

It is clear that the full-potential all-electron slab meth-
ods do carry high accuracy in representing the charge
density, enabling proper studies of, e.g. , the magnetic
hyperfine field and valence electron properties of loosely
packed surfaces, but we believe that the work function is
less well represented. However, these earlier slab studies
have enabled us to show that for the close-packed sur-
faces, the ASA, and the frozen-core approximation work
well as regards the valence charge density and the spin
density. In facing the general case of more open surface
structures we expect that the ASA might be less appro-
priate and the extension to the full potential will then be
necessary.
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