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Magnetic instabilities in PtFes and in the fcc Ni-Fe system
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The self-consistent linear muffin-tin orbitals electronic structure calculations have been carried
out for nonmagnetic and ferromagnetic phases of PtFe3 and for a few ordered phases of the Ni-Fe

alloy. The fixed-spin-moment scheme has been employed. The results reveal the existence of high-

spin (HS) and low-spin (LS) branches of the magnetization curve for both systems and allow for a
direct calculation of the energy difFerences between the HS, LS, and nonmagnetic phases. For the
Ni-Fe alloy, the total energy and the state equations are calculated for a number of concentrations.
It is shown that a vanishing energy difFerence between the HS and the LS states and the magnetic
instability close to equilibrium are correlated. For PtFe3 the pressure dependence of the total energy
is discussed. It is shown that this information in conjunction with experimental values of the critical
pressures at which the HS-LS transitions are observed allows for an independent estimation of the

energy differences between these phases and that the estimate does not agree well with the results

of local-density calculations. It is pointed out that this disagreement and the previously reported
inability of the local-density approximation to account for observed high-field susceptibilities may

be of common origin.

I. INTRODUCTION

PtFes and NizFeq z (0.30 ( 2: ( 0.40) alloys are the
best known examples of Invar materials. 1 The Ni-Fe sys-
tem is chemically disordered and displays INVAR anoma-
lies, among them a very small thermal expansion coeffi-
cient is the most typical one, in a relatively broad range
of concentrations. It has been shown2 s that in this range
the system undergoes a transition from strong to weak
ferromagnetism and that the other well-known anoma-
lies as deviation of the lattice constant from the Vegard
law and deviation of the average magnetic moment from
the Slater-Pauling curve, often referred to in the INVAR
context, are consequencess of the strong-to-weak ferro-
magnetism transition.

PtFes displays INVAR anomalies in both ordered
and disordered phases. It is believed to be a strong
ferromagnet4 and the detailed band-structure studys es-
sentially confirms this assessment. The Pt-Fe system
shows no deviations of the sort mentioned above for the
Ni-Fe system. 4 This fact can also be easily explaineds
on the basis of the one-electron theory of itinerant
magnetism. The electronic-structure calculations led
Williams et aLs to the hypothesis that INVAR behavior
is intimately connected with the existence of two ener-
getically nearly degenerate states: a high-spin state at a
large volume and a low-spin or nonmagnetic state at a
smaller one. The energy difference between these states
is supposed to be so small that the nonmagnetic (or, more
general, low-spin) state should be attainable by thermal
fluctuations.

It seems that the recent popularity of this concept
~as greatly stimulated by a series of papers~ in which
the total energy calculations have been carried out for
many transition metals. These studies employed the so-

called "fixed-spin-moment" (FSM) method. s In contrast
to the conventional spin-polarized band-structure calcu-
lations where the magnetic moment is one of the output
parameters, in the FSM scheme it is an input parameter
treated on the same footing as the atomic volume. As a
result, one obtains a binding surface E(V, M), i.e. , total
energy as a function of both atomic volume and magnetic
moment. Taking the moment derivative of E(V, M) one
obtains a magnetic state equation H(V, M) and a path in
the M-V plane along which H(V, M) vanishes is equiv-
alent to the M(V) curve. Using this technique, Moruzzi
et aL~ have shown that the M(V) curve for fcc Fe is dis-
continuous and that at certain atomic volumes there are
different (meta) stable magnetic states.

Until now, the FSM studies covered almost all bcc and
fcc transition metals~ and recently have been extended
to hexagonal phases. The results for fcc Fe seem to be
of special significance for the INVAR problem. It has
been tacitly assumedM'~~ that the HS and LS phases
predicted theoretically for fcc Fe will be practically re-
alized in INVAR materials. Kisker et aL1c tried to prove
existence of these phases using photoemission measure-
ments for PtFes below and above the Curie tempera-
ture. Recently, Abd-Elmeguid, Schlede, and Micklitz
carried out a Mossbauer study of magnetic behavior of
Ni~Feq ~(0.65 ( x ( 0.685)'z and PtFes (Ref. 11) under
pressure and demonstrated that the moment instabilities
indeed occur in these systems

The hitherto reported FSM studiesr s for transition
metals brought an abundance of new information on their
metamagnetic behavior and, in particular, on the total
energies of diverse magnetic phases. It has been recently
shovrn by %'agner that the energy difference between
the ferro- and nonmagnetic phases and the difFerence of
the respective atomic volumes specify, in a simplest ap-
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proximation, the mechanism of coupled density and mo-
ment fluctuations. A proper description of such a mech-
anism is essential for any discussion of the INVAR be-
havior for T g 0. 4 The energy difFerences calculated
within the FSM method are not directly measurable and
their values have not yet been verified in any way. The
well-known difficulties of the local density approxima-
tion (LDA) in a correct description of cohesive energies
make such a verification even more desirable. We will
show in the following how the results of the pressure
experimentsii'i~ in connection with our bulk modulus
calculations give an independent estimate of this energy
difference.

In this paper we report on the results of the self-
consistent, spin-polarized, FSM electronic structure cal-
culations carried out for Pt-Fe and Ni-Fe alloys. A spe-
cial significance has been attached to the calculations for
the ferromagnetic (FM) PtFes phase. As mentioned be-
fore, the ordered phase of PtFes exists and a body of
experimental data is available for a direct comparison.
As we have argued in Ref. 3, the disorder effects seem
to inHuence significantly the properties of the Ni-Fe alloy
and we suspect that the results of FSM calculations for
the ordered phases of this system are of limited appli-
cability. Besides, the FSM calculations for NiFes have
been very recently reported by Moruzziis and by Mohn,
Schwarz, and Wagner. is Therefore, we restrict our dis-
cussion of the FSM results for the Ni-Fe system to two
problems: first, we investigate the nature of the magne-
tovolume instabilities and the existence of the high- and
low-spin phases as a function of alloy composition, and,
second, we calculate the total energy for a few supercells.
We shall show that there are no coexistent HS and LS
phases for the considered ordered phases of the Ni-Fe sys-
tem and that the total energy difFerence between the HS
and LS phases in the Invar region is relatively large.

For PtFes we present the first complete, ab initio cal-
culation of the metamagnetic properties, magnetoelas-
tic constants, magnetic and mechanical state equations,
and total energy surface. We show how these results,
together with the recent pressure experiments of Abd-
Elmeguid and Micklitz, ii can be used to estimate the
error in the magnetic energy calculated within LDA. In
this context, a mutual relationship between the magnetic
energy, high-field susceptibility, and electron correlation
effects is discussed. We argue that the calculated values
of the spin susceptibility are probably not as much in er-
ror as commonly suspected and that the opposite holds
for the experimental high-field susceptibility.

() 10 mRy/atom) the use of CCT is unimportant, but
it becomes critical for the materials having small FM-
NM energy separation. For PtFe3, neglect of the CCT
increases the calculated 6E by more than factor of 2. A
similar trend has been found for all Ni-Fe phases. Conse-
quently, all the results presented in this paper has been
obtained with CCT included.

(b) For alloys one has to examine anew applicabil-
ity of the canonical scaling principle. The differential
hybridization, neglected within this procedure, is much
more important for alloys than for simple metals. For
alloys, the neglect of different degrees of hybridization
between the 3d orbitals of different atoms for varying
magnetic moment amounts to the neglect of the induced
magnetic moments. It is clear therefore that the scal-
ing procedure will work well for simple metals and for
compounds consisting of a single magnetic element and
other hardly polarizable atoms (e.g. , FezP or magnetic
semiconductors). For PtFes the scaling procedure works
fairly well but for the Ni-Fe alloy it must be used with
great caution. In the present calculations we have as-
sumed the following computational strategy: the fully
self-consistent calculations have been carried out not only
for the NM phase on a dense mesh along the V axis but
also on a coarse mesh in the M-V plane. The results on
the fine mesh in the M-V plane around the coarse mesh
points have been obtained using the scaling procedure.
The parameters of the two meshes have been chosen so
as to maintain a predefined accuracy of the calculations.
This trade-off between the requested accuracy and an
acceptable computation time made it possible to obtain
the FSM results for three difFerent phases of the Ni-Fe
systems and for PtFes using very modest computational
capability.

For all considered compounds the basis set included
s, p, and d orbitals only. A relatively large number
of k points was used (& 286) for all symmetries (cubic
and tetragonal), so that the k-space integration was fully
converged. Self-consistency has been assumed when the
maximum relative error in the spin densities was smaller
than 10 5. The amplitude of the numerical noise in the
calculated total energies was smaller than 0.1 mRy. This
does not, of course, imply a comparable accuracy in ab-
solute values of the total energy. In fact, use of the frozen
core and muffin-tin approximations as well as neglect of
the f orbitals prevent us from making any reliable esti-
mate of its absolute value. Hence, all the total energy
values are given with respect to the energy of the non-
magnetic state.

II. METHOD OF CALCULATIONS III. RESULTS AND DISCUSSION

The method of calculations has been essentially the
same as that described in Ref. 9. Still, two comments
are in order here.

(a) We have found that the combined correction terms
(CCT) of the LMTO method r' s must be used if one
wants to obtain credible results for the total energy dif-
ference between the FM and NM states of the Invar al-
loys. For the cases where this energy di6erence is large

A. Magnetic instabilities in the Ni-Fe system

The results of calculations are presented in Figs. 1
and 2. Figure 1 shows the combined magnetic field and
pressure contour plots for the series of ordered phases of
the ¹iFealloy: NiFe3, Ni3Fe5, and NiqFe~. From the
three phases considered, only NiFes displays a magnetic
instability close to the equilibrium. We observe a larger
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FIG. 1. Magnetic 6eld and pressure contours for ordered phases of the ¹i-Fesystem in the M-V plane. From left to right

the plots for NiFes, NisFes, and Ni2Fez are displayed. Heavy lines indicate the H = 0 [M(V)] and p = 0 contours. Contour
distances are given on the plots.

sensitivity of the magnetic moment to volume changes
for Ni3Fes as compared to Ni2Fes but we do not observe
a magnetic instability for either phase in the considered
volume range. For NiFes we were not able to decide
within the accuracy of computations whether the M(V)
curve is actually discontinuous. Anyhow, it displays two
regions, separated by a shoulder, that could be called
LS and HS phases. It is remarkable that the LS phase
extends down to a volume of 64 a.u. (r, = 2.48 a.u. ).
The onset of magnetism is of the second order and the
I-st type, i.e. , there are no coexistent magnetic phases.

Our results are in a reasonable agreement with the
results reported by Moruzzi, 3 although the calculated
equilibrium magnetic moments and volumes differ a lit-
tle. NiFes seems to be a diKcult cas" the inclusion of
CCT has changed the equilibrium moment value by al-
most 1070. Normally, the use of CCT has almost no effect
on calculated ground-state properties. In a recent pa-
per Moroni and Jarlborg~s report the value of equilibrium
magnetic moments and equilibrium lattice constants that
agree well with our FSM results. On the other hand, our
Hoating moment calculations without CCT3 and the cal-

culations of Moruzzi~s give almost identical results that
are however slightly different from our FSM and Moroni-
Jarlborg results. The only conclusion from this obser-
vation is that for NiFes a balance between volume and
magnetism is particularly subtle and very small technical
changes in calculations scheme may inHuence the results
appreciably. For NizFe2 such a sensitivity has not been
observed.

Figure 1 shows that the pressure necessary to force
NiFes from the HS to the LS phase is roughly 120 kbar
(Ref. 20). The experimental value of the pressure at
which the HS component of the hyperHne Held disap-
pears for Nio 3$5Feo.sss is 58 kbar. ~ A possible source of
this discrepancy will be discussed in the next subsection.

Figure 2 shows the total energy surfaces for all three
phases. They illustrate the evolution of the magnetic
properties of the ¹Fesystem with concentration. All
surfaces have an FM minimum and an NM saddle point.
The energy difference b.E = ENM —EFM grows with Ni
concentration and is equal to 0.8, 3.7, and 7.5 mRy for
NiFes, NisFes, and Ni2Fe2, respectively. Moruzzi 3 found
b,E = 1 mRy for NiFes and Moroni and Jarlborg s re-
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FIG. 2. Binding surfaces for ordered phases of the ¹iFesystem in the M-V plane. From left to right the plots for NiFes,
Ni3Fes, and NigFep are displayed. Energy contours are plotted every 0.5 mRy.
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ported AE = 0.5 mRy for NiFes and AE = 7 mRy for
NizFe2. There is, therefore, a close, encouraging cor-
respondence of the results obtained independently with
use of difFerent calculational schemes. We note, however,
that for ordered phases of the Ni-Fe alloy in the Invar re-
gion AE is not as small as expected. t A quadratic inter-
polation gives for the Invar region of the Niq Fe alloy
(0.62 ( x ( 0.68) the values of EE in the range of 3.7—
2.2 mRy (or 580—370 K). Since the calculated AE's are
somewhat larger than expected, the FSM results for the
ordered phases of the Ni-Fe system seem not to exactly
correspond to the picture of Invar set by Wassermann'
and by Moruzzi. Yet, the differences are quantitative
rather than qualitative. The magnetovolume instabili-
ties are predicted at too high Fe concentrations. Despite
this quantitative disagreement, the FSM calculations for
the ¹iFesystem allow for two general conclusions. First,
the HS and LS phases exist for some alloy concentrations
but a metamagnetic behavior has not been found. Hence,
metamagnetism is probably not an essential ingredient of
Invar phenomenon although it may be an associated fea-
ture, as we shall see in the next section. Second, Figs. 1
and 2 illustrate a direct correspondence between a small
b,E and a moment-volume instability close to equilib-
rium. Quantitatively we observe that the calculated LDA
value of DE must not be larger than approximately 1.5
mRy to invoke a magnetic instability at experimentally
relevant pressures.

There are two conceivable reasons for the quantitative
discrepancy found for the Ni-Fe system: first, the LDA
calculations are believed to overestimate a tendency to-
ward the magnetic state. This point will be discussed
in the next section. Second, disorder efFects, neglected
in the present calculations, may exert a non-negligible
inHuence on magnetic instability of the Ni-Fe alloy. In-
deed, the very recent results of the self-consistent KKR-
CPA total energy study for N135Fes5 (Ref. 21) have shown
that the AE calculated for chemically disordered rnate-
rial amounts to less than 1 mRy, i.e. , to one-third of our
value. We tend to believe right now that the hypothet-
ical ordered Ni-Fe alloy would display only weak Invar
anomalies in the concentration region of 62—68% Fe and
that the chemical disorder enhances the Invar anomalies
for concentrations close to the martensitic transformation
for this particular material.

B. Metamagnetic and magnetoelastic
properties of Ptpeq

Figure 3 shows the H(M) curves for PtFes at a few
atomic volumes ' in the relevant range. The Fermi
level for the NM phase of PtFe3 is positioned at a lo-
cal DOS maximum. 5 This is important not only for the
existence of magnetic instability5'7 but also for its char-
acter. With Fermi level positioned at a local DOS maxi-
mum, one expects the second-order magnetization onset
for PtFes. r The slope of the H(M) curves at M = 0
(Fig. 3) indicates ferromagnetic instability for all vol-
umes shown. Curves 1, 2, and 3 indicate clearly an LS
phase with M & 0.4pB, and curves 2—6 an HS phase with
M & lpB. Figure 4, where the contour of H(r „M)
and p(r „M) are plotted, illustrates better this compli-
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cated behavior and allows for a detailed analysis of the
magnetic instability of PtFes. As expected, the onset of
magnetism is of the second order. The NM phase is sta-
ble for r~, & 2.61 a.u. [the Stoner criterion for PtFes
is fulfilled for r, & 2.62 a.u. (Ref. 5)]. The LS phase
appears at this volume and the magnetic moment slowly
increases up to M = 0.37pn, where the LS phase ends
abruptly at r, = 2.69 a.u. The HS phase appears atr, slightly below 2.65 a.u. with the magnetic moment
of 1pB. In the range 2.65 ( r, ( 2.69 a.u. PtFes is
metumagnetic, with two coexisting phases of a nonzero
magnetic moment.

The overall magnetic transition is of the mixed second
and first order and the III-rd type. s4 The M(V) curve
(the parts of the H = 0 contour plotted as a solid line)
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FIG. 4. Contour plot of the magnetic Beld in the r, -

M plane for PtFes. Contours are plotted every 1 mRy/ps.
Dashed line indicates the unphysical region of the M(V)
curve. Superimposed are the pressure contours for —50, 0,
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FIG. 3. Magnetic Beld as a function of the net magnetic
moment for PtFe3 at several lattice constants.



46 MAGNETIC INSTABILITIES IN PtFe3 AND IN THE fcc. . . 6297

2.0 0.6

0.4

E 1.0

E

e 0.5
C
Ql
0

0.2

0.0 77 81 85
' 77

Atomic volume (bohr )
78 79 80

FIG. 5. Total energy surface for PtFe3 in the V-M plane. Left panel shows the overall V-M area. Right panel shows the
blow-up of the LS region.

is discontinuous. This reminds one of the complicated
transition found for fcc Fe (Refs. 7 and 22) and is in con-
trast to the situation found for the ordered Ni-Fe phases.
The case of PtFes looks even more interesting when the
pressure contours are superimposed onto the H contours
(Fig. 4). The diagram indicates ttso local stability points
H = p = 0: one on the HS branch of the M(V) curve
at r e = 2.723 a.u. and M = 1.92pg and second on the
LS branch at r e = 2.657 a.u. and M = 0.21y~, and
two saddle points: one corresponding to the NM phase
energy minimum at r e = 2.655 a.u. and second at the
crossing point of the p = 0 contour with the unphysical
part (dashed line) of the H = 0 contour at M = 0.6ps.
PtFes is the first material for which such an exceptional
situation has been theoretically found.

The total energy surface is plotted in Fig. 5. The
energy contours, plotted every 0.5 mRy [Fig. 5(a)j, indi-
cate the global minimum for the HS solution and a saddle
point for the NM solution, with the energy difference of
less than 1.5 mRy. It is therefore a ferromagnetic bind-
ing surface with a very small magnetic binding energy.
Since the structure around the LS phase is not resolved
in the scale of Fig. 5(a), Fig. 5(b) shows a blow-up of the
relevant part of the V-M plane. The energy contours are
plotted every 0.02 mRy with respect to the LS energy
minimum. The LS minimum as well as both saddle points
at M = 0 and M = 0.6p are now clearly visible. The to-
tal energy calculated along the M(V) branches is shown
in Fig. 6. As expected, the global minimum is found
along the HS branch. The NM and LS total energies dif-
fer very little as one could expect from the low-magnetic
moment of the LS phase. The difference does not exceed
0.05 mRy, but it should be noted that the NM and LS
phases are (meta)stable in the nonoverlapping V regions,
so that the one or the other can be realized. From Fig.
6 we find that actual LE = ENM —EHS = 1.32 mRy.
We see therefore that the calculated energy difFerence
between the NM and HS states of PtFes is of the order
of 200 K. The LS minimum is positioned at M = 0.21pB
and r, = 2.656 a.u. and its energy is 0.03 mRy lower
than that of the NM saddle point (these and other nu-
merical data are collected in Table I).
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FIG. 6. Total energy calculated along the HS and LS
branches of the M(V) curve and for the nonmagnetic phase.

The FSM approach is the most general method of
calculation of the magnetoelastic constants. To exploit
these virtues we have calculated all magnetoelastic func-
tions of PtFes. The following quantities have been cal-
culated: magnetic spin susceptibility at constant vol-
ume y~ = ( &M ), bulk modulus at constant mag-
netic moment BM = V&v, magnetovolume coupling

g =
&&

———
&M, magnetovolume enhancement factor

r/ = (1 —V9 Zv/BM), magnetic spin susceptibility
at constant pressure yp = rlyv, bulk modulus at con-
stant magnetic field B~ = BM/rl, forced volume mag-
netostriction h = v ( &H )z —— rlgv/BM—, and log-
arithmic pressure derivative of the magnetic moment

Mh.
The numerical results for the HS, LS, and NM phases

and the available experimental data are collected in Ta-
ble I. We note that the results of the approximate FSM
procedure are in good agreement with the conventional
fioating-moment calculations (Ref. 5, Table VI), the dif-
ferences resulting mostly from the fitting procedure used
to find the analytic description of the binding surface.
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TABLE I. Ground-state properties of PtFe3 calculated from the FSM procedure. For description
of symbols see text. The experimental data marked with an asterisk have been calculated using
the reported values of the measurable parameters.

~ws

M (y.s)
E (mRy)
rl

g (10 Oe mol/cm)
BM (Mbar)
BH (Mbar)
y p (10 emu/mol)

gv (10 emu/mol)
h (10 Oe ')
d (10 kbar ')

HS phase

2.723
1.92
0.0
1.21

—2.34
2.47
2.04
1.22
1.01
1.2

—8.3

Expt.

2.75
2.16b

1.07'
—0.52'

2.11'
1.95 p .05'

8.0

1.8b
—7.0',—12.0

LS phase

2.656
0.21
1.20
1.02

—0.36
3.21
3.16
4.88
4.81
0.6

—36.0

NM phase

2.655
0.0
1.32
1.0
0.0
3.20
3.20

—8.18
—8.18

0.0
0.0

'Reference 36.
Reference 26.

'Reference 37.
~Orbital susceptibility of 1 x 10 emu/mol reported by Takahashi and Shimizu (Ref. 38) for Fe
has been subtracted.
'Reference 25.

This proves convincingly a suitability of the approximate
approach.

A comparison of the calculated and experimental val-
ues is somewhat difficult because the experimental data
quoted in the table seem inconsistent. First, the exper-
imental d values are controversial: the values reported
by Hayashi and Morizs and by Shimizu2s are —7 and
—12 x 10 4 kbar, respectively, while Abd-Elmeguid
and Micklitz~~ report almost complete insensitivity of
the Fe magnetic moment on pressure (d = 0) close to
equilibrium. Next, we note that the h and d values are
related by the simple formula d(V, M) = —

M h(V, M).
The reported value of h (Ref. 26) is only consistent with
the value of d = —12 x 10 4 kbar ~. From the mag-
netoelastic constants listed in the table, gp, BH, h, and
d are measurable quantities. Using their values one can
calculate the magnetovolume enhancement factor rl and
the magnetovolume coupling g

rl = (1 —Vh B~/yp) (1)

g = rlhB~/yp, — (2)
and, subsequently, BM and yv. The calculated values,
marked by an asterisk, are also listed in Table I. We see
that the estimated value of g is surprisingly small. For
Invar alloys one expects in general a large g. The g cal-
culated with use of the FSM value of yp (1.22 x 10
emu/mol) would be 1.65. This estimate represents the
upper limit for q in PtFe3. The value estimated from
other experimental parameters according to Eq. (1) is
smaller than the calculated one and even smaller than
the value reported by Takahashi and Shimizu for bcc
Fe. This results from a very large experimental value of
the high-field susceptibility g~. However, as noted by
Wassermann, the g~ is a notoriously ill-defined experi-
mental quantity. The calculated value is too small, and
we shall try to estimate its error below when discussing

credibility of the calculated total energies. The agree-
ment of the calculated and experimental bulk modulus
is very good, and h and d are some 30Fo too small. As
it is clear from the relations between the magnetoelastic
constants, this disagreement must be attributed to the
same source as the disagreement of the calculated and
experimental susceptibility.

Despite the discussed uncertainties, it is useful to dis-
cuss briefiy a general behavior of the magnetoelastic con-
stants for a material with such complicated metamag-
netic properties as PtFes. Figure 7 shows the magne-
toelastic functions calculated along the M(V) branches.
We note singularity of the gNM at the onset of the LS
phase and singularities of the ferromagnetic susceptibili-
ties at the terminating points of the LS and HS phases.
The magnetovolume enhancement factor g is also singu-
lar close to these points. This is a direct consequence of
the singular behavior of yv. while g and BM behave reg-
ularly at the terminating points, increase of yv causes the
denominator of the expression for g [Eq. (1)j to vanish at
some point close to the terminating point. Singularity of
g causes the (measurable) bulk modulus BH to vanish,
and the high-field spin susceptibility yp to attain very
high values. In contrast, the bulk moduli at constant
magnetization BM increase almost linearly with decreas-
ing lattice constant and are insensitive to the singular
behavior of the M(V) curve. It is also interesting to ob-
serve a mutual relationship of the difFerent bulk moduli:
we note, for instance, that for a given lattice constant
BM )B )BP. Finally, we note the correlated be-
havior of h and d. These functions also become singular
at the M(V) singular points.

The total energy surface for PtFes has been used in
connection with the spin-fluctuation theory for calcula-
tion of the thermal evolution of the magnetoelastic prop-
erties of this alloy. The results of these calculations have
been presented elsewhere.
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IV. DISCUSSION

In Ref. 5 we have suggested that one can use the value
of the critical pressure for the HS-LS transition and the
calculated non- and magnetic state equations to find the
energy difFerence hE = ENM —EFM for PtFea. In the
present study we have calculated directly the value of
6E. Figure 8 shows the total energies, calculated for
the NM, LS, and HS phases, plotted as functions of the
external pressure. We hoped to obtain in this way a
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FIG. 8. The total energies for the NM LS and HS h

o tFes calculated as functions of the external pressure. Solid
lines —LDA calculated energies, dashed lin- the ferromag-
netic energy shifted downward so as to provide the correct
value of the critical pressure.

theoretical value of the critical pressure p, for the HS-
LS transition. Although in the figure the relevant total
energies do not cross, an extrapolation gives a value of
p, = 10 GPa = 100 kbar. While this value does not
seem to differ dramatically from the measured p = 60

11
C

kbar, the consequences for the total energy difference
are dramatic. To obtain the p, value that agrees with
experiment it would be necessary to shift the LS curve
downward so that the value of b,E would be equal to

0.2 mRy, in agreement with the value we have re-
ported already in Ref. 5. Very similar results have been
obtained for the ¹Fesystem. Therefore, the results of
the high-pressure Mossbauer experiment carried out b

bd-Elmeguid and Micklitz~~ give us a unique oppor-
tunity to test an important aspect of the LDA scheme,
namely, its ability to calculate the energy difFerence EE
between a magnetic and a nonmagnetic state of a mate-
rial.

This energy has been by now calculated for many met-
als. The well-known difficulties the LDA method has
had with a correct description of the ground state of Fe
show that it is a complex and sensitive problem. It is
intimately connected with a basic question of how large
and important are LDA errors due to neglect of the elec-
tron and spin correlations and how these errors depend
on the magnetic state of a material. This is a large field
in itself and we cannot, and intend not to go into more
detail here. On general grounds one expects that LDA
overestimates a tendency toward magnetism. A basic
physics is readily understood: LDA, in contrast to the
Hartree-Fock approximation, accounts for some electron
correlations, but by far not for all. Correlations keep
the electrons apart whereby the exchange interactions,
responsible for the first Hund rule, are reduced. Thus
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neglect of any electron correlations enhances magnetism.
Stollhoff, Oles, and Heine (SOH)so have shown recently
using a model Hamiltonian that inclusion of electron cor-
relations decreases the magnetic energy (i.e., the energy
gain due to magnetization). They proposed that the LDA
magnetic energy for Fe may be reduced by even a factor
of 2—3 by correlations. The total energy difference AE
can be formally written as

~E = EFM ENM = +Ep + +EH~ (3)

where EE„ is the energy necessary to expand the lattice
from VNM to VFM and b, EH is the magnetic energy re-
sulting from magnetization of a material at VFM. The
latter energy can be in turn written as a sum of the ki-
netic and exchange-correlation energies:

DEIL = L3,EH'"+ AEH'. (4)

b,E& is always positive whereas AEH may be of any sign.
To our understanding, the energy difference considered
by SOH is the magnetic energy AE~. In the case of
PtFes, the calculated LDA values of AE~ and EE~ are
equal to 5 and —6.3 mRy, respectively. It is important
to note that, at least for Invar materials, AE is alge-
braically much sma11er than both terms AE„and b,EH.
These terms are almost equal but of opposite sign. It
implies that even a very large relative change of b,E re-
quires only a moderate change of hEH. In the particular
case of PtFes, to change AE from the LDA value of —1.3
mRy to the (presumably) correlated value of —0.2 mRy
(Fig. 8), AE~ should change from —6.3 to —5.2 mRy,
i.e. , by some 18%. We see therefore that the estimated
change of the magnetic energy is much smaller than that
proposed by SOH. We note that for Invar alloys a change
of the magnetic energy AEH of the proposed magnitude
would render the alloys nonmagnetic. It seems that, un-
less the b,E~ term can be shown to be also strongly af-
fected by volume-dependent electronic correlations, the
quantitative prediction of SOH cannot apply to Invar
materials. As it is clear from our analysis, the character
of the magnetic state equation H(M) and the value of
Elf depend critically on volume. We suspect that the
rigid-band model used in Ref. 30 to generate LDA state
densities might not be accurate enough to cope with this
complexity. We think that it would be very useful to
repeat the calculations discussed by SOH for realistic,
volume dependent, hybridized DOS functions for simple
metals, and to carry out such a calculation for PtFes. A
marginal stability of Invar materials should help in esti-
mating the relative importance of the correlation effects
for the total energy calculations of a magnetic state.

Although we have reason to believe that the relative
weight of the correlation efFects is overestimated by SOH,
their qualitative conclusions are doubtlessly correct. The
total energy difference h,E as given by LDA seems to be
too large. This shortcoming must be added to the list of
the LDA drawbacks, including already overestimation of
the cohesive energies, underestimation of the equilibrium
lattice constants, and inability to calculate a correct en-

ergy gap for insulators and semiconductors. Whereas it
is clear by now that any repair of the last deficiency is
impossible within strictly one-electron theory, attempts
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FIG. 9. Thermal expansion coefBecient a as a function of
temperature for the ordered phase of Pt2e Feq2 (from Ref. 34).

to improve the description of the ground-state properties
are legitimate. New, nonlocal exchange-correlation func-
tionals have been proposed recently by Langreth, Mehl,
and Hu (LMH)s and by Perdew and Wang (PW).sz

Very recently, Bagno, Jepsen, and Gunnarssonss applied
them for calculation of the lattice constants and total
and cohesive energies of a few third-row elements. The
results for the equilibrium lattice constants and cohesive
energies were encouraging. For most considered elements
a discrepancy between the experimental and theoretical
values was substantially reduced. ss However, both LMH
and PW functionals increased the calculated value of
AE = ENM —EF~ by ca. 70 and 100%, respectively
This is in an obvious disagreement with arguments of
SOH and with our suggestions. The LMH and PW non-
local XC functionals give results closer to the Hartree-
Fock results than to correlated ones. This failure has not
been discussed by Bagno, Jepsen, and Gunnarsson. ss If
their results are correct, the LMH and PW XC energy
functionals cannot be recommended for studies of the
magnetic state of solids.

The total energy considerations may be used to esti-
mate the LDA error in the calculated spin susceptibility.
As we have argued above, a change of b,E~ [Eq. (4)]
by some 20% would bring the calculated and experimen-
tally estimated values of bE [Eq. (3)] into agreement.
Since AEH may be expressed as J H(M')dM', it is ob-
vious that it is proportional to the amplitude of H(M)
and thereby to the inverse susceptibility &M. This esti-
mate assumes that the electron correlation effects do not
depend strongly on magnetization. Indeed, this depen-
dence, as estimated by SOH, does not cause more than a
25% difFerence of the Stoner parameters I(0) and I(MII).
It is therefore justified to expect that the LDA error of
the calculated yp is not larger than 50%. This very rough
and rather conservative estimate sets the upper limit for

y~(VFM) to 2 x 10 4 emu/mol, as compared to the ex-
perirnental value of 8 x 10 4 emu/mol. This argument,
together with the previously discussed inconsistencies of
the experimental data, make us suspect that the exper-
imental value of the spin susceptibility is much more in
error than the theoretical one.
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It remains a question whether the estimated value of
b,E = 0.2 mRy (~32 K) for PtFes makes sense. In ab-
sence of a rigorous thermodynamical theory of Invar be-
havior at T ) 0 the question is difficult to answer. It
is known that Invar anomalies are observed for temper-
atures up to Tg ( 500 K), so the "as calculated" b,E
value of ca. 200 K seems to fit better into an intuitive
picture. Yet, an even cursory inspection of the recent,
very precise measurements of the thermal expansion co-
efficient n (Ref. 34) and the specific heatss reveals very
distinct anomalies of both observables at just 30 K (Figs.
9 and 10). These new data, the pressure experiment of
Abd-Elmeguid and Micklitz, ~1 and our analysis make a
picture that is too consistent to be accidental. Yet, this
notion adds to the complexity of the Invar problem rather
than explaining anything. At once questions arise con-
cerning the high value of the critical temperature Tg or
the nature of the high-temperature Invar anomalies. We
recently attempted to address this problem carrying out
the FSM calculations for the antiferromagnetic INVAR
alloy MnFe. ss In this paper we have shown that the total
energy change correlated with spin Hip may be an order
of magnitude larger than the energy change necessary to
quench the magnetic moment. This observation offers a
clue how to reconcile the apparently contradictory obser-
vations. Still, much more work is necessary to achieve a
thorough understanding of microscopic mechanisms lead-
ing to INVAR behavior.

In this paper we reported on the FSM study of the
moment-volume instabilities in the ¹iFeand Pt-Fe sys-
tems. The calculations for a sequence of ordered phases
of the Ni-Fe alloy have shown that a small energy differ-
ence AE between the HS and LS phases and a moment-
volume instability near equilibrium are closely correlated.
This supports the recently emerging picture of Invar as
a phenomenon having its origin in moment-volume in-
stabilities. The quantitative results for the ¹iFealloy
suggest that the inHuence of the chemical disorder and
resulting magnetic inhomogeneity may be non-negligible,
as proposed already in Ref. 3. For PtFes, the first ab ini-
tio calculation of the binding surface and magnetoelastic
constants has been presented. PtFes has been shown
to have a small b,E and to display complicated meta-
magnetic properties with NM, LS, and HS phases. The
magnetoelastic properties have been calculated and their
comparison with experimental data discussed. The anal-
ysis of the experimental and theoretical data led us to
the conclusion that the actual hE in PtFes may be as
small as 0.2 mRy/atom, the difference of the calculated
and estimated value having its origin in electron corre-
lations. We have proposed that the calculated and mea-
sured properties of PtFes may be used to estimate the
relative importance of the electron correlation effects in
magnetic solids. Furthermore, we have suggested that
the well-known discrepancy between the calculated and
measured spin susceptibility is caused not as much by
inaccurate calculations as by unsuitable measurements.
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