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Third-order spin-wave theory for the Heisenberg antiferromagnet
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Spin-wave perturbation theory for the anisotropic Heisenberg antiferromagnet at zero temperature
is carried to third order, using both the Dyson-Maleev and Holstein-Primako8' formalisms. Physical
quantities calculated include the ground-state energy, staggered magnetization, staggered parallel
susceptibility, transverse susceptibility, and energy gap. For the Holstein-Primakoff formalism, some
terms diverge in the isotropic limit, but these divergences eventually cancel one another, and the
final results are the same as for the Dyson-Maleev formalism. Applying these results to the square-
lattice case, we find that the convergence of the spin-wave theory towards our recent series estimates
is further improved if we promote the spin-wave theory to third order.

I. INTRODUCTION

There have been a large number of studies made re-
cently of the Heisenberg antiferromagnet on a square lat-
tice, motivated by the possible relevance of this model
to high-T, superconductors: for a review, see Barnes. ~

The general conclusion has been that at zero temper-
ature the isotropic Heisenberg antiferromagnet is in an
ordered state, with a nonzero staggered magnetization,
corresponding to a spontaneously broken symmetry.

One fruitful method of numerical analysis has been
to consider the anisotropic model first, and to perform
a series expansion about the Ising limit. The series
can then be extrapolated to the isotropic limit, using
various means, with remarkable accuracy. In a recent
paper, s we extended these series by several terms, and
showed that the results were in excellent agreement both
with Monte Carlo (MC) simulations~ and with the pre-
dictions of spin-wave theory. For each quantity calcu-
lated, second-order spin-wave theory provided a much
more accurate representation than the first-order theory.
It was natural, then, to ask whether the spin-wave cal-
culations could be pushed to even higher order, and con-
verge even closer to the exact results. This is the object
of the present work.

Spin-wave theory for the Heisenberg antiferromagnet
was Grst developed long ago. The original theory of
Andersons was extended to second order by Kubo~c and
Oguchi, ~~ while the singular behavior of the anisotropic
model was further discussed by Stinchcombe. ~2 A fairly
comprehensive treatment of the anisotropic model up to
second order was presented by us in Refs. 8 and 13.

The spin-wave theory relies on a transformation from
the original spin degrees of freedom to boson degrees
of freedom. There are two diferent, but closely re-
lated, ways of doing this. The first, due to Holstein and
Primakoff, involves the square root of an operator

where S is the spin per site, and nt is the boson number
operator, measuring the "spin deviation" at site /. The
only way of dealing with this square root has been to
perform a power-series expansion of f~(S), leading to an
expansion in powers of 1/S. The nature of this expansion
has been discussed by Kubo:~s it is thought to be an
asymptotic series only.

The second transformation, due to Dyson~7 and
Maleev, ~s avoids the use of a square-root operator at
the expense of a formalism in which the Hamiltonian
is no longer manifestly Hermitian. The Dyson-Maleev
formalism is easier to use in practice than the Holstein-
PrimakofF one in that the Hamiltonian takes a simple
form, and matrix elements are less singular than in the
latter case. If calculations are performed consistently to
a given order in 1/S, however, it appears that both trans-
formations will eventually give the same final results —at
least up to the order calculated so far.

Higher-order spin-wave calculations for the Heisenberg
antiferromagnet have hitherto been carried out by Har-
ris et aL~s and Kopietz, ze who studied magnon damp-

ing at low temperature, by Castilla and Chakravarty, z~

who calculated the staggered magnetization at zero tem-
perature, and also by Igarashi and Watabe zz who cal-
culated the spin-wave velocity, the staggered magne-
tization, the transverse susceptibility, and the spin-
stiEness constant at zero temperature. References 19—21
relied primarily on the Dyson-Maleev transformation,
and Ref. 22 used the Holstein-Primakoff transformation.
The result for the staggered magnetization of Castilla
and Chakravarty disagrees with that of Igarashi and
Watabe. ~~

In the present work, we calculate the ground-state en-

ergy, staggered magnetization, energy gap, parallel stag-
gered susceptibility, and transverse susceptibility to third
order in the 1/S expansion, using both the Dyson-Maleev
and Holstein-Primakoff transformations. The calculation
involves some six-dimensional and four-dimensional inte-

grations, which are carried out using two different meth-

ods: a series expansion via MATHEMATICA, and a Monte
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Carlo integration. Although individual diagrams tend to
be more divergent in the Holstein-Primakoff case, these
divergences cancel exactly in the final results, which is the
same for both transformations. We find that in general
the third-order corrections are small, and show further
convergence towards the "exact" results estimated from
series expansions and Monte Carlo simulations.

The arrangement of the paper is as follows: In Sec. II
we give the third-order spin wave theory for the Dyson-
Maleev formalism and its application to the square lat-
tice. In Sec. III we discuss the third-order spin-wave
theory for the Holstein-Primakoff formalism, and make a
careful comparison with the results of the Dyson-Maleev
formalism. In Sec. IV our conclusions are summarized.

II. DYSON-MALEEV FORMALISM

The anisotropic Heisenberg antiferromagnet with mag-
netic field on a bipartite lattice can be described by the

following Hamiltonian:

H = ) [Sf8' + x(SP8 + Sf'Ss )]
(im)

+hy) Sf +hs) 8~)
m

(2.1)

where we have divided the lattice sites into even and odd
sublattices, denoted by l and m respectively, and x = 1
corresponds to the isotropic Heisenberg model. The in-
troduction of magnetic fields hi and hs is for convenience
in the calculation of the magnetization and parallel sus-
ceptibility.

We firstly introduce boson operators ai and b~ via the
Dyson-Maleev transformation on the l and m sublattices,
respectively:

8&' ——S—
amytal, 8&+ ——(28) ai —(2S) i a ala~, 81 ——(2S) i a&t,

(2.2)

S' = b b~ S, 8—+ = (2S) ~ b~ —(2S) ~ b~b~b~, S~ = (28) i b~.

Note that this transformation is not Hermitian. In terms of the boson operators, the Hamiltonian can be expressed
as:

H = SN(Sz ——hi+ hs)/2+ (zS —hi) ) a& a~+ (zS+ hs) ) b~~b~+ xS ) (a~b + a& bt )
m (rm)

—) al a)b b ——) (a(atatb +a)b b b ) .
(rm) (t )

Then, as in Ref. 8, we can introduce the Bloch-type boson operators al„bl, by a Fourier transformation:

ai, =i —
~ ) e' ar, bI, =I —

~ ) e ™b
iN) . ' iNy

(2.4)

where N is the total number of lattice sites. The quadratic part of H can be diagonalized by a Bogoliubov transfor-
mation:

ay = ai, cosh 8g —
PA, sinh 8A, , bg = —al, sinh 8A, + Pg cosh 8k, (2.5)

where tanh 28' = zpI, /D, D = 1 —(hi —hs)/(2zS), z is the coordination number of the lattice (i.e., 4 for the square
lattice), and pA, is the structure factor:

ikpa= —) e'P.
z

P

The Hamiltonian now can be expressed as

(2.6)

H = &h+) (&gnk+Agni, )+ ) 8' (nyns+n', ns)+8 nuns
k k1,kg

+).V. (.P. + .P.)-,N) b.+...[V, (P, P,P.P.+. . .) 2V, (,P. . .+-,P, P, P.)(o) tt tt oo t ttt
k k.

—2Vs (asa4asp, +alps psp4)

+2V4 (asayps p4+ a4aspi ps)t t t t

+Vs (asa4APs + aiasPsP4)],tttt
(2.7)
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where we have adopted the convention of writing 1 instead of ki, and g sums over the purely oK-diagonal momentum
space. The definitions of nk, n'k, Ek, Ak, and 8(') are as follows:

&k = o'k~k &k = PkPk

~~ = —Sz (D 1)— zDSC1
2 [(1—D)C i+DCi] +D (C i —Ci)

z (1— )

(2.8)

~k) 2zS( ) N (D2 x2~2)1/2 + ~ (D2 x2~2)1/2
kg

xz(1 xz)~2 2

(//2 ~2~2)1/2 / (//2 ~2~2)1/2 I
'

A;2
2

(2.9)

(1) z D —2x D'fz + x "/1 "/2"/1 2-
2// (g)2 ~2~2)1/2(// ~ ~2~2)1/2

where C„ is defined by

(2) z D —2x Dps + x pipzpi
(Q2 22'~)1/2(g)2 ~2p~)l/2 (2.10)

C„=—&- (1-x'»'D-')-/'-1. (2.11)

The two-particle vertex factor Vo (k) and four-particle vertex factors V, (1,2, 3, 4) (i = 1, . . . , 5) are the Dyson-(o) (o)

Maleev vertices, their symmetrized form being (where 8; and c, denote sinh8k, . and cosh 8k, , respectively)

z= —[C 1(D —2x +x D )+Ci(x —D)]yk(1 —x PkD )

1 P3 ZC18QS3C4 + f3 1Sicz$3C4 + f4 QC18QC3$4 + f4 1$1C2C3$4(o)

X( $381SQC3$4 + f4$1$383C4 + Q4cicgc3$4 + $3cic383C4),

Vz = "/4 zci SQC3C4 + /4 1$1C2C3C4—+ $3 QC1$3$3$4 + f3 1$1CQS384(o)

—X( /3818QCSC4 + Q48183$384 + '$4cicgcsc4 + /scic&$384),

(2.12)

Vs = '/4 ici c2c3$4 + $3 iciczssc4 + '/3 2$1sgssc4 + '/4 2$1$3c3$4-(o)

X(Q3ciSQC3$4 + $4C183$3C4 + Q481CQC384 + f3$1C3$3C4),

V4 = p4 —zcic2csc4 + fs zcic3$3$4 + f4 1$1$2csc4 + fs 1$1$3$384-(o)

X(Q3$1C2C3C4 + $4$1C2S3S4 + f4ciSQC3C4 + y3C183$3S4),

Vs = 'f4 zsiczc3$4 + f4 iciszc3$4 + Q4 —isicgssc4 + Q3—ic18383c4(o)

X( /381$383C4 + Q4$1S2CSS4 + Q4cic3$3C4 + Q3ciCQSSC4).

For convenience in later calculations, we also define that, in zero magnetic field,

V,. = V, (hi ——hz ——0) (i = 0, , 5), C„=C„(hi ——hz = 0). (2.13)

Asymptotic expansions for C„near x = 1 can be found in
Ref. 8 for the square lattice and Ref. 13 for other lattices.

y (0)
0

y(0)
5

A. Ground-state energy

Using Rayleigh-Schrodinger perturbation theory, we

can treat the terms containing V~ ) in the Hamiltonian
Eq. (2.7) as perturbation terms, which are purely off-
diagonal. Up to O(1/S), there are only two extra terms
contributing to the ground-state energy Eo from these
perturbations. They may be represented diagrammati-
cally as in Fig. 1. The contribution from Fig. 1(a) is

(0)
0

(0)
5

FIG. 1. The perturbation diagrams that contribute to the
ground-state energy Eo/N The crosses repres. ent the inter-
action vertices as indicated; the lines represent boson excita-
tions in the intermediate states. To save space, we have not
differentiated between o, and P bosons.
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(o) 2

z 2 2 ii2
=

4 [~-i( * +z )+(.i(z D)l (~-s —(-'-i)j
2—zSD(1 —zzp~~D 2 i~2 16z4

the contribution from Fig. 1(b) is

( i) zN f 2 l V( )(1,2, 3, 4)V( )(3,4, 1,2)

(2.14)

(2.15)

Therefore, the ground-state energy per site to/N for the Heisenberg antiferromagnet with external magnetic field is

80/N = —S z(D —1/2) + zDSCi/2

([(1 D)~—1 + D~l]' + D'(& i —&i)'(1 —z )/z ) + 48~ )/N + 68~ /N .

In zero external magnetic field (i.e. hi = hs = 0), the ground-state energy Eo is

zS 1 f'
z 1 —z2

Eo/N = — S Ci+
I

Ci +
& (C i —Ci)

(1 —z ) (C i —Ci) (C s —C i)+ Eq /N,

(2.16)

(2.17)

where

AE(, = bSq )(hi = hz =0). (2.18)

hE& is a six-dimensional integral over the first Brillouin zone of the sublattice t, the integrand being singular at
z = l. It has been calculated using two difFerent methods. The first one is a series expansion in z: via MATHEMATK:A,

we can expand b,E& into a power series about z = 0, where the expansion coefficients are of the form

i j k l m n+,q,I,t, , '7i —3'7q 3'Yz'72'73 '74

i jklmn
which is integrable analytically (where a;,~,g, ~ „ is a constant). The second method is a Monte Carlo integration.
For the square lattice, the results of the series expansion are

AEi, —— [ 0.00128173828125z + 0.000324249267578125z + 0.000012166798114777z
2

(2.19)

(2.22)

(2.24)

-0.000082444283179939x —0.00010488787211216x —0.00010292760305219x

P 000093275871366177x&6 0 00008].998597367727x&8 Q 0000712620].].849609x20

-0.000061745507075153x —0.000053558412862410x —0.000046602384643213x
-0.000040716885275295z —0.000035736530468971z + 0(z )]. (2.20)

For the spin-z model, the series for Eo/N in z from second-order and third-order spin-wave theory, and the exact
seriess for Ec/N are, respectively,

N 2 32 256
—0.00234985z —0.00062704lz —0.000165582z + O(z ),

—0.000202179z + 0.000185855z + 0.000137933z + O(z ),N 2 128 16384
(2.21)

E'""' 1 x x
N 2 6 1080

—0 0015815.7z —0.000825213z —0.00031185z + O(z ).

Clearly, the series for third-order spin-wave theory is closer to the exact series than that for second-order spin-wave
theory.

Extrapolating the series b,E& using integrated Dlog Pade approximants2s in 6 = 1 —(1 —z~)i~2, one can obtain
an estimate at the isotropic limit x = 1:

( i) 0.000432(12)
2S

The extrapolation of the full series for Eo/N [that is, Eq. (2.17)] in 6 gives

0.669989(16)t S =
2 j (2.23)—2.328153(10), S = 1 .

Extracting the integrable part, we get

~E(—i) /N
0.000433(16), S = z,
0.000216(10), S = 1 .
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The above series estimates are consistent with the results of a numerical integration:

( 1) 0.00045(2)
b 2S

z= 1

Therefore, we conclude that for the square lattice

Ep/N = —2S —0.315895S—0.012474 + 0.000216(6)/S + O(S ) ~

(2.25)

(2.26)

B. Staggered magnetization and parallel staggered susceptibility

Let h1 = —h2 = h, and differentiate Eq. (2.16) with respect to h, then one finds the staggered magnetization M+
and parallel staggered susceptibility y//.

1—x2
(2.27)

where

(C 3 C 1) + 2 2 (C 1
—C1)(C 1+3C 3 —4C 3) + (C 3 —C 1)

+&i(&-s —&-i)) + &x'. "+ &xI

( 2) 1M'~
N Bh 1=o

1= -,6 4S2 (1 —z')(C-1 —C1)

x((1 —z )[3C s(C 1 —C1) +4C 1
—9C 1C 3+ 2C 3

—3C 3C1]+2C1(C 3 —C—1))

(2.28)

(2.29)

( 2) 1 Mifb
N Bh 1=o'

( 3) 1BbS~
N Bh a=0

1
4[2C 3C, —2C 1C,16 33z4

+(1 —z ) (2C 3+ 18C sC 3C 1
—34C 3C 1+ 15C 7C 1

—48C sC 1+61C 3C 1

—14C, —18C sC 3C1+24C 3C1 —30C 7C 1C1+66C sC 1C1
—48C 3C 1C1 + 6C,C1 + 15C r C, —18C 3C, + 3C 3C1 )

+(1 —z )(4C 3C1+12C sC 1C1 —24C 3C 1C1+8C 1C1 —12C sC1 +12C 3C1)])

( 3) 1 B26E'b(

N Bh2
(2.30)

6=0

Although these expressions are quite complicated, the above derivatives can be easily carried out via MATHEMATK, 'A.

Via MATHEMATICA, ere also can prove that

3 4

AMb ———
2 ~

—
~ ) 61~2 sp4 2[Vs ] )(2) 1

z2~2 1/2 ) (1 2 2)1/2

i=1

- —2

+71

(2.31)

In the limit x = 1, the above formula for the staggered magnetization agrees vrith that of Castilla and Chakravarty

(note that there is a sign difFerence in the definition of some vertices V, ).
The series results for AMt, and Ly& are
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6M = [ 0.00640869140625x + 0.0046501159667969x + 0.0029826834797859x-2 1
8S'

g~(—s)

+0.0018767764559016x + 0.0011732400171240x + 0.00072314925716910x

+0.00043070786120816x 6+ 0.00023760905449608xa8+ 0.00010833363513788x 0

+0.000020892898846470x —0.000038605089915444x —0.000079121460409459x
—0.00010655268617341x~s 0.00012485066948381x —0.00013670867820712x
—0.00014398999285620x + O(x )],

s[ —0.01531982421875x —0.0193939208984375z —0.0195425525307655x

—0.018459238344803x —0.017114416566994x —0.015738031119135x
—0.014474118591607z —0.013386613963396z —0.012440583026018x + O(z )].

(2.32)

(2.33)

For the spin-s model, the series for M+ in x from second-order and third-order spin-wave theory, and the exact
seriess for M+ are

+
M2nd

+M3,d

ax+'" exact

—0.0149841x —0.009Q0531z —Q.QQ6Q5425z + O(x ),2 32 1024

—0.011587lz —0.00638643z —0.00413427z + O(x ),
4x4 —0.00947129z —0.00744292x —0.00437691x + O(z ).

2 9 225

(2.34)

Again, the series for third-order spin-wave theory is closer to the exact series than that for second-order spin-wave
theory.

Analyzing the series 6Mb and b,gb, we get at x = 1

( s) 0.00696(8)
b

(2.35)

( s) 0.052(3)
16Ss

Note that at the limit of x -+ 1,

so

(1 —x')'/'b, )((-') = O.OO6O975S-', (2.36)

(1 —x )'/ (A)(~( )+A)(b( )) =0.0028(2)S

The analysis of the full series M+ and )(s gives at x = 1:
//

0.3069(2), S = 2,
0.80428(4), S = 1,

2yl/2 S 0 239(3)&
0.098(2), S = 1,

which means that,

M(-2) 0.00088(6)S
0.00088(4)S 2,

(1 — ) / (b, ( 3) 6 (—3)) 0.0022(4)S
"b o.oo3(2)s-',

S= —.1
2 )S=1,

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

The above estimate for b, Mb( at z = 1 is consistent with the results of numerical integration, although the numerical

integrations are not very accurate. We have not carried out the numerical integration for Ly& ~ because it is too
complicated, and also divergent. We conclude that for a square lattice

M+ = S —0.1966019+0.00087(1)s '+ O(S '),

(1 —x ) /
g//

——0.07957747S + 0.0156451S + 0.0026(4)S + O(S ) .
(2.42)
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C. Energy gap

Here we only consider the case without external magnetic field (i.e. , hi = h2 = 0). According to the Rayleigh-
Schrodinger perturbation theory, up to order O(1/S), there are five diagrams in Fig. 2 contributing to the energy gap
m. We denote the contribution from Fig. 2(a) as b,m etc, as before:

hm, ' = — (1 —z )' (C 1
—Ci),

and

2S N + ' ps (1 z2~2)I/2+ (1 —z2)1/2'

2S N ' ps (1 z2~2) 1/2 (1 x2) 1/2 '

z(1 —z )(C 1
—Ci) 2 ~.pgV2 (k, 0, 0, k)

d 4xS N - (1 —x2p2) '/2

z(1 —z )(C 1 —Ci) 2 &. pA, Vs (k, 0, 0, k)
e 4xS (1 —z2&2) 1/2

z
„' "+a,' '& = —,(1 — ) / (C —C)(C —C ).4x2

(2.43)

(2.44)

Therefore, the energy gap m is

m = m~ +m~ ~+m~

where

(2.45)

mII} = sS(1 —x')'/',
m('} = —.C, (1 —z2)'/2/2, (2.46)

m( & = — (1—z ) / (C 1
—CI)[C 1

—Ci+2(1—x )(C s —C I)]+AmI, +6m, '
8z S

Note that EmI, and Am, are each finite at the isotropic limit x ~ 1, but using MATHEMATICA, we can prove
that

b,mt, +b,m, ' = — (1—z )'/26mI, „
where

4~1~3 Q1/2 f3 2X
2 ~1

q1q3

221 1 1
+X +

q1q2 2q2q3

2 1 1 q1—& P1P2P3 —+ +
q1q2

2~mt„= — ) 61+2,s (qi+ q2+ qs) —(1 —z )
A:,

1 1 q2 + q3 q1 + q3 q1 + q2

qlq2
'

q2q3 2q1
'

2q2 2q3

'Y2 '72 q2 + q3+
q1q2 q1q3 2q1

3 q3

2q1q3 2q1

(2.47)

(2.48)

y (0)
0

y(0)
2

(0)
2

y(0)
0

y(0)
3

(c)

y(0)

FIG. 2. The perturbation diagrams that contribute to the energy gap m.
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q; = (1 —x p2)'/ (i = 1,2, 3).

At x = 1, the summation in Eq. (2.48) is finite and b,m& + b,m, vanishes.(-~) (—&}

For the square lattice, the series results for b,ms and b,m, are

b,m&
———[0.002044677734375x +0 00. 072956085205078x +0 00. 015844218432903xs

—0.00008217465074267x —0.00018331177739128x —Q.00022252277285162x
—0.00023307646341684x —0.00023014596432591x + O(x )],

b,m( & = —[ 0.006103515625x + 0.002391815185546875x + 0.0010838806629181x
2

+0.0005122232250869x + 0.00023472870816477x + 0.00008938332462092:
+0.0000094244732853x —0.00003582112473023x + O(x )].

(2.49)

By analyzing the above series, one can see that Ern& and 6m, do not vanish at the isotropic limit x = 1; and
the numerical integration also confirms that at x = 1

b,m~( & ———0.0051(2)—, b,m( = 0.0051(2)—.

Longer series can be calculated using Eq. (2.48):

b,m& + b,m, = —(1 —x ) [ 0 0081.48193359375x + 0.0071954727172852x

(2.50)

(2.51)

+0.0058585833758116x + 0.0047680364368716x + 0.00393576391911672:
0 0033007838421142~&4 + Q 0028094164399784zxe + Q 0024226289552537~is

+0.0021130430983801x + 0.0018614244153671@ + 0.00165408208304732:
+0.0014811092879290x + 0.00133521486774432:

+0.0012109445784598x + O(x )].

The Monte Carlo integration gives in the isotropic limit (x ~ 1)

bm( & + hm( '& = 0.08137(4)(1 —x )'~—

which is consistent with the series estimates. Therefore, the energy gap near the isotropic limit x -+ 1 is

m = (1 —x ) ~ 4S —0.78641+0.01086(8)S +O(S ) .

D. Perpendicular susceptibility

Consider the Heisenberg antiferromagnet with an external magnetic field directed along the x axis:

H = ) [S)'S' +x(SPS* +SOS")]+@) S,*.
(lm}

(2.52)

(2.53)

(2.54)

Performing the same Dyson-Maleev transformation, Fourier transformation and Bogoliubov transformation as before,
the above Hamiltonian becomes

H = SNz/2+zNS—Ci/2 — [Cz + (C i —Ci) (1 —x )/x ]8

+).~a(na + nI. ) + ).[&"'(nlnz + n~n2) + & ' n»z]
k ky, kg

+) Vo (Agp& + Agp(g) ) ~1+23+4[V( (pg p2 psp4 + era &4o'lol2) —2V2 (o'sp4o!/olz + cr4py pz ps)
(o) (0& t t t t (o& t itt

k
'"

k.

—2Vs (o'scr4clzpy +~1pz psp4)+2V4 (o'so'1 p2 p4 + o'4o'zpy ps)
(& t t t t (» t t I

+Vs (~s~4p& pz+~i~2psp4)](o& i t

+Vp (Ao + Ap + pe + p ) + V (Ao + p )
(yl (-k&

(-k&) ~1,2+a[V] (o']o'2o'3 + ps ps pl)+2Vz (] pzo'3 + pso'2pl) + Vs (p]~zols + o'ypz ps)]) (2.55)t t (-'& t t t (—y)

A:,.f



6284 C. J. HAMER, ZHENG WEIHONG, AND PETER ARNDT 46

where the two-particle vertex factor Vp and four-particle vertex factors V, (i = 1, 2, . . . , 5) are defined by Eq.(o) (o)

(') (—')
(2.13), while the one-particle vertex factors Vp

~ and Vp ~, three-particle vertex factors V~
~ (i = 1,2, 3), and Ai„

B(') are defined by

z
Ag = z(S —Ci/2)(1 —2: p~) ~ ——(C i —Ci)(1 —z2)p~z(1 —zzp~2)

B~'~ = ei'~(Ii, = h, = 0) (i = 1,2),

Vp
—— vN—S( cp—sp),(y)

(-~)
Vp ———— —C i(cp —sp),4 S

(—y)
Vj = C1C2C3 S1SQS3)

(-~')
Vg = S1C2S3 —C1S2C3)

1)
Vs = cis2ss sic2cs.

(2.56)

(1/2) (-1/2 )

)( 0
(1/2)

)i 0
y(0)

0
(1/2)

0

5( y(1/2)
0

)( (1/2)
0

(b)

(-1/2)
0

y (1/2) )( (1/2 )
0 0

(c)

y(0)
0 5e y'-'

(1/2)
(0)

v0

y(1/2)
0

'~ ~ V&-va&
0

0)

y(1/2)
0

(e)

y(1/2)
0

(0)
0

( 1/2)

y(1/2)
0

(0)
0

y(1/2)

y(-1/2)
2

y (-1/2)
3

y(-1/2)
2
(1/2)
0

y(0)
0

(0)

y (-1/2 )
3

(1/2)
0

s(1/2)
~0

y(-1/2)

y(0)
3

y(1/2)
0

y(1/2)
5p 0

y(0)

(-1/2)
3

FIG. 3. The perturbation diagrams that contribute to the perpendicular susceptibility y&. To save space, we have not
distinguished different possible time orderings of the vertices in the diagrams.
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Again, we treat the terms containing V in Eq. (2.55) as perturbation terms. Up to O(S ), there are nine groups of
diagrams in Fig. 8 contributing to the p term of the ground-state energy. Denoting the contribution from Fig. 3(a)
as Er etc, after some calculations, we get the contribution of each group of diagrams as

p'NS, - C,

p2N C g

4z (1 + z) (S —C g/2)
'

pNS C y
—Cy

4xz (1+x)(s —C y/2)

pN Cg(Cy —Cg)
8zzs' 1+z

p2N (C g
—Cg)~

8zS2xs ]. + x
psN

Ey~— (1 —z)(C g
—Cg)(C s —C g),Sx2z

p2N (co —sp) 2 & ~. Vs
~ (8, 2, 1)[Vs (3, 0, 2, 1)—Vs (3, 0, 2, 1)j

4zS& (] z&)&/& N & - + ' Q.(] —g&p. )&l&

2N
Ez ——

s q(1 —x) (C i —Cz)(C-3 C-1))SxszS2

(2.57)

psN(1 —z) i 2

4zS~ 1+x

x ) bx+s, s Vs (8~0, 1, 2)V2 (1,2, 0, 3)—Vs (3,0, 1, 2)Vs (1,2, 0, 3) —Vs (1,2, 0, 8)Vs (0, 3, 1,2)

3

+Vs (3,0, 1, 2)Vs (1,2, 3, 0) ) (1 —z P;)

ii(1/2)

y(0)
5

y(1/2)
0

yp

y(0)
0

(1
ryp

y(1/2 )

)C

(0)
2

y(0)
0

y(1/2)
0

y(1/2)
0

(1/2)
0

(0)
y(0)

0

~ y(0)
5

y(0)
0 y

)C
y(0 )
0

y(0)
0

y(0)
4

))y(1/2)
0

(1/2 )
0

y(0)
2

y(0 )
3

5(
y(1/2)

0

(1/2 )
0

y(p)
3

y(0)
2

)C
y(1/2)

0

(1/2)
Vp

y(p )
3

y(1/2 )
0

(0)

(1/2)

y(1/2)
0

y (1/2)
0

FIG. 3. (Continued).
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Therefore, the p2 term of the ground-state energy is

E~ = EJ'+ E,"+EJ'+ E„"+EJ'+ Ef + E~+ E„"+E,". ,

and the uniform perpendicular susceptibility y~& can be found by

xi = —y 2 =Kg +Kg +Kg +O(S )
1 8 E" (o} (-1) (—2)

N p2 y=o
(2.59)

where

with

(o) 1 (-~)
z(1+ x) ' " 2zSx(1+ x) '

—[(1—x)(1+2x)C ~
—(1—x )(C g

—Cg)C s —(1+2x—2x )C yCy+Cgx
—4xsSm( )(1—x ) ~ /z][4S zx (1+x)] +)(( ) +)(

(—')
cp —

sp( 2) q]q 2 ) . [Vs (3, 2, 1)[Vs (3, 0) 2) 1)—Vs (3, 0) 2) 1)]

(2.60)

(2.61)

x2 -1/2 ) bi+2 s Vs (3 0, 1,2)Vq (1, 2 0 3)2zS' 1+x
k,

—V (3, 0, 1,2)V (1,2, 0, 3) —V (1,2, 0, 3)V (0, 3, 1, 2)
3

+Vs (3, 0, 1, 2)Vs (1,2, 3, 0) ) (1 —x p;)

The staggered perpendicular susceptibility )(f is related to the uniform perpendicular susceptibility )(~ by

&f.(x) = X~(-x).

The series results for yg +)(, are

(2.62)

) j)(, =
2 [

—0.010416666666667x + 0.009114583333333x
2 'z 1+x

—0.0077989366319445x + 0.0070902506510417x —0.0061216001157407x
+0.0052963186193396x"—0.0048764370105885x + 0.0040847857793172x
—0.0039540104981926x + Q.QQ3257671248459Qx —Q.QQ32657754357341x

+0.0026704605377805x —0.0027439034689870x + 0.002237725639533x
—0.00234Q5818719119x + Q.OQ19Q8661Q188879x —Q.QQ2Q229705103912x

+0.0016518529458875x —0.0017684750196474x + 0.0014470612121930x
—0.0015613429143152x + 0.0012807533130780x —0.0013903981283547x
+Q.QP11435872886147x —Q.QQ1247564Q8Q6Q19x + Q.PP1P28934P18P435x'
—0.0011268985903297x2s + 0.00093197606974512x 9 —0.0010239556525932x

+0.00084913916280841x —0.00093535661273403x + 0.00077772256732402x
—0.00085849706759527x + 0.00071565239973556x —0.00079134309218339x
+0.00066131304941856x —0.00073228722854356x + O(x )]. (2.63)

For the spin-& model, the series for y& in x from second-order and third-order spin-wave theory, and the exact
series for y~ are, respectively,



46 THIRD-ORDER SPIN-WAVE THEORY FOR THE HEISENBERG. . . 6287

XJ 4
31'd —0.384765625x +0.391928779x —0.40289476x +0.40481929x

—0.37962963x + 0.38352225x —0.39315892x + 0.39586801x

= ———+ — + —0.33923340x + 0.33923340x1 5x 5x 169x 169x
4 16 16 512 512
—0.34507465x" + 0.34507465z —0.34921464x + 0.34921464z + O(x ),

21x 139x~

64
+

384
—0.41138267x +0.41171885xs —0.41614476z +0.41592491x +O(x ),
1 x 17xexact
4 3 48
—0.40295421z + 0.40531565z —0.40921498z + 0 41.102770z + O(x ).

(2.64)

Again, the series for the third-order spin-wave theory is closer to the exact series than that for second-order spin-wave

theory.
The results of numerical integration for ys + )(, at x = 1 and x = —1 are(-&) (-&)

( 2) ( 2) 0.021771(2)

( 2) ( 2) 0.6075(3)
32S2(1+z) '

which are consistent with the series estimates

( 2) ( 2) 0.0219(2)+" =
32S

( 2) ( 2) 0.6082(5)
Xg X 32SQ(1 )

'

(2.65)

(2.66)

Therefore, the conclusions for the uniform perpendicular susceptibility g~ and staggered perpendicular susceptibility

yf at the limit x ~ 1 are

yg = 0.125 —0.034447S + 0.001701(3)S + O(S ),
(2.67)

(1 —z)yf = 0.25+ 0.0688939S + 0.01280(5)S + O(S s).

Given in Table I and Figures 4—7 is a detailed comparison for the ground-state energy Ep/N, staggered magnetization

TABLE I. A comparison of the first-order, second-order, and third-order spin-wave results with
the recent estimates from exact series expansions (Ref. 8) for the ground-state energy Ep/N, stag-
gered magnetization M+, parallel staggered susceptibility g//, energy gap m, uniform perpendicular

susceptibility gz, and staggered perpendicular susceptibility gz at the isotropic limit x -+ 1.

Function

Spin-2 model
Ep/N
M+

(1 —z) ' m

(1 x2) 1/2~s

(1 —*)Xf.

First-order

—0.65795
0.30340
0.125
2
0.15916
0.25

Spin-wave predictions
Second-order

—0.67042
0.30340
0.056106
1.2136
0.22174
0.38779

Third-order

—0.66999
0.3069
0.06291
1.235
0.243
0.439

Series
estimate

—0.6693(1)
0.307(1)
0.0659(10)
1.27(2)
0.264(10)
0.47(1)

Spin-1 model
Ep/N
M+
gJ(1-*')-' 'm
(1 x2)1/2~s

//
(1 —z)Xf.

—2.31590
0.80340
0.125
4
0.079577
0.25

—2.32837
0.80340
0.090553
3.21359
0.09522
0.31889

—2.32815
0.80427
0.09225
3.2245
0.0978
0.3317

—2.3279(2)
0.8039(4)
0.0925(10)
3.26(4)
0.098(3)
0.333(2)



6288 C. J. HAMER, ZHENG WEIHONG, AND PETER ARNDT 46

—0.5 O. P5

—0.55
0.2

—0.6

0.15

0. 1

—0.65

0.2 0.4 0.6 0.8
I | I I I I I I I I I I I I f I I I

QQ5 —
I I I I I I I I I I I I I I I I I I I J

0 0.2 0.4 0.6 0.8 1

FIG. 4. Graph of the ground-state energy per site Eo/N
against 6 = 1 —(1 —x ) ~ for the spin-2 Heisenberg an-
tiferromagnet on the square lattice. The four curves shown
are the series estimate (Ref. 8), and the first, second and
third-order spin-wave predictions, corresponding to solid, dot,
short-dashed, and long-dashed lines, respectively.

FIG. 6. Graph of the perpendicular susceptibility y~
against x for spin- ~ Heisenberg antiferromagnet on the square
lattice. Notation as Fig. 4.

0.5

0.45

Z o4

I

1.6

0.35
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0 Q i i i I t » I i I
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FIG. 5. Graph of the staggered magnetization M+
against b for the spin-2 Heisenberg antiferromagnet on the
square lattice. Notation as Fig. 4.

FIG. 7. Graph of (1 —z ) m against 6 for spin-~
Heisenberg antiferromagnet on the square lattice (m is the
energy gap). Notation as Fig. 4.
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M, parallel staggered susceptibility y&&, energy gap m, uniform perpendicular susceptibility y~, and staggered

perpendicular susceptibility gz between the results of the first, second, and third-order spin-wave theory, and the
recent estimates from exact series expansions. s One finds in general that the third-order corrections are small, but
in the right direction to give improved convergence. For the spin-& model, the third-order corrections reduce the
discrepancy between spin-wave theory and exact series results by around 50%. For the spin-1 model, the third-order
theory agrees completely with the series results, within errors.

III. HOLSTEIN-PRIMAKOFF FORMALISM

The Holstein-Primakoff transformation is

l sublattice: Sl' ——S —altal, Sl+ = (2S) ~ fl(S)al, Sl ——(2S) ) 2al fl(S),

m sublattice: S~ = b b~ S, S—+ = (2S) ~ b f (S), S = (2S) l f (S)b~,

where f is

(3 1)

f (S) 1 l 1 l l l + O(S 3)
2S 4S 32S2

In terms of these boson operators al and b~, the Hamiltonian in Eq. (2.1) can be expressed as

(3.2)

H = SN(Sz ——h1+ h2)/2

+(zS —h1) ) al al+ (zS+ h2) ) b b +xS) (alb + al b )
I, m (ltn)

—) al alb~b~ —
4 ) (al alalb~+al b~b~b~+al al alb~+alb~b~b~)t

(im) (t )

t t t t) (alb b b b b —2al alalb b b + a alai alalb~
(lm)

+al b b b b b —2al al alb b b~+a al alai alb ) +O(S ). (3.3)

Note that in this case the Hamiltonian is manifestly Hermitian; but it is more complicated than the Dyson-Maleev
Hamiltonian, because of the final, third-order correction term. As before, we can introduce Bloch-type operators ak,
bl, by a Fourier transformation, diagonalize the quadratic part of B by a Bogoliubov transformation, and express the
Hamiltonian as (here we only need to consider the diagonal part of the third order term):

H = Sl, +AS,' "+) [(A„+DAl,)nl, +(A„++EAA,,)n'„]+ ) 8 ' (nln2yn', n'2)+8(')n1n'2
It:

+ ) Vo ((2k)9A,' + &l(Pl(, ) 2~ ) ~1+2,$+4 [V1 (P1 P2 P3P4 + o'3&4&la2)
- (o) t t ' - (o) t t t t

k,

((23P4(21+2 + +4P1 P2P3) 2V3 (~3&4(22P1 +&1)92)93)94)
(o) ttt (» tt t t

+2V4 (lz3l11P2P4 + +4lz2P183) + Vs (&scr4P1 P2 + &ll12)93P4)]~
(o) t t t t (o)

(3.4)

where the definitions of El„D, pg, n;, n,'„A&, and 8(') are the same as before, and 680( ) and b, AA, are the corrections
from third-order terms to fh and A&

..
D3

] —D —~+
(3.5)

X2 2 3D2
&A = (&(&—i —&i)(&-i+ &)+ z," l

&-i(&-i+&)—,(&-i —&i)'
l

(& —*'w~D ') ' '
D2 ) 2.2 )

and we have neglected the correction to 8(') from third-order terms. The vertices Vo (k) and V,. (1,2, 8, 4) (i =
1, . . . , 5) are the Holstein-Primakoff vertices; they are related to the Dyson-Maleev vertices by
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&q(0) H —P qq(0) D—M
Vp Vp

(1,2, 3, 4) = -[V (1,2, 3, 4) V, (4, 3, 2, 1)] (i = 1,4, 5),
Vz (1,2, 3, 4) = Vs (4, 3, 2, 1) = 2[Vs (1,2, 3, 4) Vs (4, 3, 2, 1)] .

(3.6)

A. Ground-state energy

Up to order O(S i), the ground-state energy Eo is

Sz(—D —-') + DS-Ci —— [(1 —D)C i + DCi]N 2 8
2

+ (c —c,)~(1 —x ))+(ae,' "+ad-"+ad "))~, (3.7)

bE(-il
N

where

where bf and bS& are the contributions from diagram Fig. 1(a) and Fig. 1(b). They have the same form as
(-&) (-1)

Eqs. (2.14) and (2.15), except that the vertices V, are the Holstein-PrimakoK vertices. For zero external magnetic
field (i.e. hi = hz = 0), the ground-state energy Eo is

Eo/N = —
~

S —Ci + Ci +
&

(C—i Ci)
zS(

E(—il
(1 x ) (C-1 Ci) (C—3 C-i) + + (3.8)

bEo = bSo (hi = hz = 0) = — z (C i —Ci) —C i —2C i (C i —Ci).(—y) (—y) z
64S . (3.9)

For the square lattice, one finds that the singularity of bEo /N at x ~ 1 is (1 —zs)i)'s instead of (1 —xs)s)'z.

The series result for b,E& is

bE(, ——— [0.00457763671875x + 0.00400924682617z + 0.00319408625z
N

b

+Q.PP254846725147x + P.PP2P68695142P4x + P.QQ17111998614x

+Q.00144019926x + 0.0012306616159x + O.QQ1Q65532227x

+0.000933118259x + 0.00082527290x + O(x )]. (3.10)

The singular behavior of bE& at x ~ 1 seems also to be (1—x )i) z, but the series for b,Eo +b.Et, is the same

as bE&~ l in the Dyson-Maleev formalism. Therefore, the Holstein-Primakoff formalism finally produces the same
results for the ground-state energy as the Dyson-Maleev formalism, and the singular behavior of the ground-state
energy at the isotropic limit z = 1 still remains as (1 —zz)s) 2 when the spin wave theory is promoted to the third
order.

B. Staggered magnetization and parallel staggered susceptibility

The staggered magnetization M+ and parallel staggered susceptibility ys are found to be
l/

1—x
N Bh i=o 2 4Sxz

1 82K'p 1

N Bh2 a=o 2zS
1 1 2

2+ 2 ~ (C—1 Cl)(C—1 + SC—5 4G—3) + (+—3 +—1) + +1(+—3 +—1))4zg2 x'
(—3) + ~ (—3) + ~ (—3)

(3.11)

where bM~ and by~ are the same as in the Dyson-Maleev formalism, and bM& and byb have the same(—2) (—3) ~ ~ (—2) (—3)

expressions as in the Dyson-Maleev formalism except that the vertices V,. are the Holstein-PrimakoK vertices, while
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dl, M and b,y are

Mo ——— i s(C g
—C s)(4x C z

—3C i+3x C i —2x C&+6C AC& —2x C AC& —3C, ),64S&x&

(3.12)

~( —4x C s —12x C sC i+22x C 3C—g+6C sC i —6x C 3C—]
64 sex~

—6x C i +9C sC i —9x C &C i —24C sC i +22x C sC,
+9C i —7x C i+6x C sC& —6x C 3C] 6C sCi+2x C sCg
—18C sC iCi + 6x C sC i Ci + 36C 3C—] Cg 10x C 3C—] Cg
—12C iCg + 2x C iCy + 9C sCi —12C sCi + 3C yCi).

Note that for the square lattice and at the isotropic limit x -+ 1, b,MO and hyo diverge as (1 —x~) ii2 and

(1 —x~) si~, respectively, and the series results for b, M&~
l and b,gI,

l are

b,M~ ———
~ [ 0.01116943359375x + 0.0170173645019531x + 0.0194610878825x

+p 02031743025873xio + p 0204286399521xi~ + Q 020184390093x&4

+0.01977314298840x + 0.0192896622252x + 0.018782800461x

+0.0182779348960x + 0.01778803837706x + O(x )],
(3.13)

b,yb —— s[ 0.01983642578125x + 0.0456085205078125x

+0.0702325329184532x + 0.092511795228347x + O(x )].

C. Energy gap

The energy gap m can be calculated using the same method as in the Dyson-Maleev formalism, and the result is

(i) + (o) + (-i) (3.14)

At x ~ 1, b.M&( l and Ay&(
) also diverge as (1—x2) ii2 and (1—x~) si2, respectively. But we can easily prove that

the series for AMD +b,M& and hyo +b,y&(
) are equal to those for hM&( ) and b, y&(

) in the Dyson-Maleev
formalism, respectively. Therefore, the Holstein-Primakoff formalism again gives the same results for the staggered
magnetization and the staggered parallel susceptibility as the Dyson-Maleev formalism, and the singular behavior
for the sta gered magnetization and the staggered parallel susceptibility at x = 1 still remains as (1 —x~)its and
(1 —x2) i ~, respectively.

where m(il and m(ol are the same as in the Dyson-Maleev formalism, and rn( i) is

m( ) =hmo +6m, +6m& +6m, +Am& +6m(
Here

+rnp —
2~ [(C—1 Cl)(3C& + 2 —C j ) + x C g(C y + 2)](1 —x )

(3.15)

(3.16)

while the results for 6m~ and 6m& + b,m, are the same as in the Dyson-Maleev formalism for all bipartite
(-i) (-i) (-i)

lattices. For the square lattice and at the isotropic limit x -+ 1, b,ma(
l is divergent as (1 —x2) ii . The terms

Am&( and b,m( l have the same expression as in the Dyson-Maleev formalism except that the vertices V~ are
the Holstein-Primakoff vertices, and the series result of b,mI, + 6m, for the square lattice is

b mz + Am( ) = ——
[ 0.03125x + 0.0240783691406x + 0.0251989364624x

+0 0240877438337xs + 0 Q226435948716x o + Q 0212619411675
+0.0200293216798x + 0.0189491069375x + 0.0180039755581x
+0.0171735719197x + 0.0164394356085x + 0.0157860396618x + O(x )];

(3.17)
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b,mb +b,m, also diverges at the isotropic limit z =(-~) (-~)

1. But the series result for Arno + b, rnid, + Am,
is the same as Arn& + Am, in the Dyson-Maleev
formalism. Therefore, the two formalisms give the same
final results for the energy gap, which vanishes near the
isotropic limit as (1 —z ) ~ .

Since the results for the ground state energy Eo/X,
staggered magnetization M+, parallel staggered suscep-
tibility y&&, energy gap rn in the Holstein-Primakoff for-

malism are the same as those in the Dyson-Maleev for-
malism, we will not repeat the calculation of the perpen-
dicular susceptibility y~ in Holstein-Primakoff formal-
ism.

IV. SUMMARY AND CONCLUSIONS

As noted in the Introduction, the Dyson-Maleev for-
malism is the easier of two to work with. Within this for-
malism, we have used Rayleigh-Schrodinger perturbation
theory to calculate expressions for the ground-state en-

ergy, energy gap, staggered magnetization, parallel stag-
gered susceptibility, and transverse susceptibility, correct
to third order in a I/8 expansion. These expressions are
valid for any bipartite lattice. For the particular case
of the square lattice model, these expressions have been
converted firstly into series expansions in the coupling z
about the (anisotropic) Ising limit; and secondly, into es-
timated values at the isotropic point z = 1, using series
extrapolation and Monte Carlo integration.

Comparing these results with the previous second-
order spin-wave estimates, s and with "exact" numerical
estimates, we find that in most cases the third-order cor-
rections are small, but in the right direction to give im-

proved convergence towards the "exact" results. Roughly

speaking, for the 8 =
z model the discrepancy between

the spin-wave theory and the exact results decreases by
about 50% when the third-order spin-wave corrections
are added in. Whether this trend will continue to higher
orders, or whether the spin-wave expansion will eventu-

ally begin to diverge again as expected for an asymptotic
expansion, is of course impossible to say. For the 8 = 1

model, the third-order spin-wave theory already agrees
with the "exact" results, within errors.

Our results for the staggered magnetization disagree
with those of Castilla and Chakravarty and Igarashi
and Watabe, z so that we found improved convergence
towards the "exact" results at third order, whereas they
did not. Our results for the transverse susceptibility
agree with those of Igarashi and Watabe. 2z This only
serves to reinforce the conclusion that the spin-wave ex-
pansion at T = 0 is a useful asymptotic expansion.

Turning to the Holstein-Primakoff formalism, one finds
that the Hamiltonian is longer and more complicated
than that in the Dyson-Maleev case and some of the indi-
vidual perturbation diagrams contain extra divergences
in the isotropic limit z -+ 1. Nevertheless, these extra di-
vergences cancel exactly in the final result for any phys-
ical quantity, as we have checked for the ground-state
energy, energy gap, staggered magnetization, and paral-
lel staggered susceptibility, so that the two formalisms
agree in the final outcome. The asymptotic behavior of
all these quantities in the limit z —+ 1, which typically in-

volves square-root singular terms in powers of (1—zz) i~z,

also remains the same as in second-order spin-wave the-
ory. It is noteworthy that the apparent lack of hermiticity
in the Dyson-Maleev Hamiltonian has caused no ill effects
to this order; and indeed the specific perturbation the-
ory diagrams of Figs. 1—3 show the correct time-reversal
symmetry. This is true provided one does not distinguish
between n and P bosons; and indeed the Hamiltonian is
symmetric under interchange of o.'s and P's. The agree-
ment between the two formalisms also helps to give us
confidence that our results are correct.

In summary, then, we have found that when carried to
third order in the I/S expansion, the spin-wave theory
continues to give consistent results, and improved con-
vergence towards the exact values for the square-lattice
Heisenberg antiferromagnet at T = 0.
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