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Phase diagram of a generalized t-J model: Renormalization-group approach
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A generalized t-J Hamiltonian is analyzed within the framework of a quantum real-space renormaliza-
tion group. Besides the usual hopping (t), exchange (J), and chemical-potential (p) terms, the Hamil-
tonian contains a nearest-neighbor charge interaction term and is invariant under the renormalization.
The finite-temperature phase diagram of the d =2 and d =3 model is calculated in the full range of the
parameters. Our results show that many of the critical properties of the La- and Y-based high-T, super-
conductors can be explained by the present model.

I. INTRODUCTION

The t-J model has received intensive attention in recent
years since Anderson' suggested that it contains the
relevant physics of the high-T, materials, at least those
containing copper-oxide planes. The model is described
by a lattice Hamiltonian of hard-core fermions and in-
cludes hopping (t) and antiferromagnetic exchange in-
teractions (J). This Hamiltonian is related to the strong-
coupling limit of the Hubbard Hamiltonian ( U/t »1 in
the standard notation) by a canonical transformation
within which appears the correspondence
J/t =t/2U « l. On the other hand, Zhang and Rice
derived with some approximations the t-J model directly
from a CuO multiband Hamiltonian, finding values of
J/t somewhat larger tan t/2U; consequently, the entire
range of J/t (and not only J/t «1) must be studied.
Since the experimental evidence strongly supports the as-
sumption that high-T, superconductivity is an effect
mainly due to the doped Cu02 layers of the ceramic com-
pounds, most of the work has focused the tmo-
dimensional t-J model. However, neutron-diffraction ex-
periments ' have shown a three-dimensional long-range
antiferromagnetic order in both La and Y compounds
with a rather high Neel temperature; the long-range or-
der is probably originated by weak-interplane exchange
couplings. Therefore, it is also interesting to investigate
the magnetic properties of the finite-temperature phase
diagram for the three-dimensional t-J model.

Since there are no exact solutions for the t-J model in
dimensions d & 1 (and only a few ones for d =1, see, for
instance, Ref. 6) many approaches (e.g., Lanczos
method, and approximations based on finite clusters
have been applied to the study of several of its properties.
However, most of the effort has been devoted to the
zero-temperature properties of this model. Using a quan-
tum real-space renormalization-group (RG) scheme, we
analyze in this paper the finite-temperature phase dia-

gram of a convenient generalization of the t-J model.
Such a model is described by a Hamiltonian which con-
tains, besides the hopping and exchange terms, a nearest-
neighbor charge interaction (E) as well as the chemical
potential term (ls). This model is invariant in form under
RG and can be obtained as the U —+ 00 limit of an even
more general Hubbard Hamiltonian, which also remains
invariant under RG.

Our RG procedure is based on a calculation performed
for a two-terminal cluster whose iterations yield an
hierarchical lattice. Let us anticipate that the results are
not exact for the hierarchical lattice because of the non-
commutativity of the involved operators. However, the
results are asymptotically exact at high temperature and
believed to be a good approximation for a wide range of
temperatures. To the best of our knowledge this is the
first calculation of the full phase diagram at finite temper-
ature for the present model.

In Sec. II, we derive the generalized t-J Hamiltonian
and some of its basic properties are briefly reviewed. In
Sec. III, we discuss the RG formalism and we analyze the
RG recurrence equations for some particular cases. A
numerical calculation of the d =2 phase diagram is
presented in Sec. IV; the existence of first-order phase
transitions (two-phase coexistence)' is analyzed for
different values of J/t. In Sec. V, we analyze the d =3
phase diagram, which turns out to be very rich one. Our
results suggest that the d =3 generalized t-J model could,
at least qualitatively, describe the phenomenology of the
magnetic phase diagram of some copper-oxide supercon-
ductors. We finally conclude in Sec. VI.

II. THE MODEL

Let us consider a system of hard-core fermions on a
lattice, i.e., we assume that each lattice site can be occu-
pied by, at most, one particle. Then the dimensionless t-J
model is defined by the following Hamiltonian:
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&, J —— p—H, J=t g (a; a. +a. a;
(i,j &, cr

—J g S;S+pgn,
(i j& io

where P= 1 lks T, a,. =—(1 n—, )c;, c; creates an
electron with spin o = 1, J, in a Wannier state centered at
the site i of the lattice, n;—:c; c;; t, J, and p are, re-
spectively, the dimensionless hopping constant, exchange
interaction (J )0 corresponds to antiferromagnetic cou-

pling), and chemical potential; (i,j ) runs over all pairs of
first-neighboring sites on a d-dimensional hypercubic lat-
tice. The a; operators are introduced in order to prop-
erly take into account the constraint of no-double occu-
pancy. The spin operators S; are defined by

electrons precisely coincides with the number of sites);
very unfortunately they are both commonly referred to as
the t-J model. The generalized Hamiltonian we shall in-
troduce here contains both as particular cases.

In order to study the critical properties of the t-J mod-
el at finite temperature, we use a real-space
renormalization-group method. The procedure consists
of replacing d-dimensional hypercubic Bravais lattices by
d-dimensional diamond like hierarchical lattices. Such
lattices are defined through infinite iterations on a two-
terminal cluster, which consists in an array of l
strings in parallel, each string being constituted by I
bonds in series. Some typical clusters are shown in Fig. 1

(l =3). The RG recurrence equations are then obtained
by explicitly computing the partial trace

Si= Xcia~a, p i, p»
a, P

(2) exp(&'+ C ) = Tr exp(&),
internal sites

(4)

where o are the Pauli matrices and a,P= T, J, .
There is another version of the t-J Hamiltonian that

sometimes appears in the literature, namely,

—J g (S, SJ —n, n, )+pgn,
(ij& io.

(3)

where n, =n, &+n; &. This Hamiltonian is derived ap-
proximately in the strong-coupling limit U)&t of the
Hubbard model by a canonical transformation. ' Such
procedure yields, for the Harniltonian (3}, the value
J=t l2U. ' In order to avoid confusion, let us stress
that the Hamiltonian (3} is, in general, different from the
Hamiltonian (1) (they only coincide if the total number of

where & denotes the Hamiltonian of the cluster and &'
denotes the Hamiltonian of the renormalized two-site
cluster (see Fig. 1). The partial trace is calculated by
summing the matrix elements of exp(&) over the set of
occupation numbers [n; ] associated with the internal
sites of the cluster. Such a procedure neglects, at every
iteration, the noncommutativity between the Hamiltoni-
ans associated with first-neighboring clusters. This ap-
proximation is asymptotically exact at high temperatures
(see Ref. 14 and references therein). Neither the Hamil-
tonian (1) nor the Hamiltonian (3) satisfy relation (4); in
other words, if & is a t-J Hamiltonian, the resulting &'
may contain new terms that were not present in %. In a
previous work, we derived a generalized Hubbard Ham-
iltonian whose form is preserved by the RG transforma-
tion (4), namely,

&~&=t g (c, c, +c, c; )+Urn &n &+pgn, —J g S SJ Eg (S') (—S )

(ij &, o i i o (i j& (i j&

+Y g p, p, I g [p', p,
' —(p;"p&+p",PJ—)]+R g [(p';) pj+(PJ) p;']

(, &

' ' ' ' ' ' (, &

+D g (c; cj +cj c; )(n; nj ) +—E g (c; cj +c~ c ~)n, nj (5)

where the charge operators are defined by

p',-=n, &+n, &

—1,
+

Ps Ci»o.C,
» g

pi =c; $c

p- =p,++p,

P= i(P P ).
The Hamiltonian (5) is the minimal one that contains the
Hubbard Hamiltonian as a particular case and remains
invariant under the RG transformation. In order to ob-
tain a generalization of Hamiltonians (1) and (3) that
satisfy relation (4), we should first impose the constraint

of no-double occupancy to the Hamiltonian &~G. Such a
constraint can be achieved by taking the limit U~+ 00

in Eq. (5) while keeping finite all the other parameters. In
this limit the states with doubly occupied sites will not
contribute at all and the effective resulting Hamiltonian
will have nonzero matrix elements only between states
belonging to the subspace of no-double occupancy, i.e.,
those states which satisfy n, &ni &

=0 for all sites i. In this
case the only remaining hopping processes will be those
that only connect sites with single or null occupancy;
such a condition can be made explicit by setting
D =E = —t. Since the non diagonal charge operators
p", ,p,". only connect states having null and double occu-
pancy, the corresponding terms in Eq. (5) will not con-
tribute at all. Furthermore, since n; &ni &=0 for all sites
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i, we find that

(p';) = —p';=1 —(S )

(Sz)2

(8)

(9)

&s=t g (a; a +a. a; )
—JgSS

From Eqs. (8}and (9) we see that the terms in Eq. (5) con-
taining the diagonal charge operators p'; can be absorbed
in the terms associated with the K and p parameters.
Therefore, the resulting Hamiltonian can be written as
follows:

versions) as a particular case and remains invariant under
the RG transformation. A11 the above-mentioned sym-

metry arguments, as well as the problem of the correct
choice of the cluster in this procedure, are discussed in
detail in Ref. 14. By using the same arguments, it can be
shown that, in the presence of an external magnetic field,
the Hamiltonian which remains invariant under RG is

~s +~B~ with

gfs=B gS;—J2 g [S SJ' (S—;"S"+SfSf)]
i (ij)

+R2 g [(S ) SJ +(SJ') S ] .
&ij &

—K g (S ) (SJ ) +pgn;
(i j) i, cr

(10} Let us mention some important properties of the Hamil-
tonian (10). First, we can easily verify that

The term associated with the parameter K in the Hamil-
tonian (10) can be rewritten [by using Eq. (9)] as

g(; J&n;nj so it describes a nearest-neighbor charge in-
teraction. Setting K =0 in Eq. (10), we recover the Ham-
iltonian (1},while for K = —J we recover the Hamiltoni-
an (3). The subindex S in the Hamiltonian (10} makes
reference to Schlottmann who first proposed" this Ham-
iltonian in the context of heavy-fermion systems (K—= V
in Schlottmann's notation).

The Hamiltonian %&& was derived by constructing the
most general Hamiltonian which satisfies some basic sym-
metries of the Hubbard Hamiltonian to be preserved
through the partial trace (4). It can be seen that all these
symmetry properties are still preserved in the U~ao
limit procedure used to derive the Hamiltonian (10) from
the Hamiltonian (5}. Therefore, the Hamiltonian (10) is
the simplest one that contains the t-J model (in both of its

[&s,S]=0,
[&s,N]=0,

(12)

(13}

where S=g;S; and N —=g;n;, respectively, are the total
spin and total number of particles operators. By means
of a unitary transformation, ' it can be seen that the spec-
trum of &s is invariant under the change of sign of the
parameter t. Hence, the grand-partition function

Z =Tr exp(%s ) (14)

III. THE RENORMALIZATION GROUP

A. General considerations

satisfies Z(t)=Z( t} and —the phase diagram which re-
sults is symmetric under the transformation t —+ —t. For
definiteness we assume t & 0.

„4

'2

'2

1
0

L'

(b)

L '=L )(L), (15)

The RG procedure is carried out in two steps. First we
perform an exact calculation of the partial trace (4) for a
linear four-site cluster [see Fig. 1(a)], by summing the ma-
trix elements of exp(&s } over the set of occupation num-
bers [n3, n4 ]. This calculation yields the recurrence
equations between the set of parameters L = (p„,K,J, t) of-
the Hamiltonian %s associated with the four-site chain
and the set of renormalized parameters L '=(p', K', J', t')
of the Hamiltonian 8s (associated with the two-site clus-
ter); therefore we obtain

0
2

L
1

L'

0 2

02 02

FIG. 1. Renormalization-group cell transformation. Every
two-rooted cluster generates, through infinite iterations, a
hierarchial lattice of intrinsic dimmensionality d. L stands for
the set of parameters of the Hamiltonian; o and ~ denote inter-
nal and terminal sites, repectively. (a) d =2; (b) d =3.

L '=L d(L)=l" 'L ', (L) . (16)

These equations determine the flow of points in the
(IJ,,K,J, t) parameters space for d =2 and 3 and enable

where the subindex 1 stands for d =1. In the second step
we consider a more general diamondlike cluster of the
type shown in Figs. 1(a)—1(c). Every cluster of this kind
consists in a parallel array of l" ' four-site chains, where
d is the intrinsic dimensionality of the hierarchical lattice
and I =3 is the length scale of the RG transformation.
The Hamiltonian associated with each of these clusters
can be expressed as a sum of linear-chain Hamiltonians.
Therefore, neglecting the noncommutativity between the
linear-chain Hamiltonians, ' the following approximate
recurrence relations are obtained:
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the calculation of the corresponding phase diagram as
well as various critical exponents.

The calculation of Eq. (15) involves the exact diagonal-
ization of &z. The subspace with no double occupancy
of the Fock space

~ [n; ] ) associated with the four-site
chain is a 3 -dimensional one; in such a subspace &s is
represented by an 81X81 matrix. By using the fact that
the basis vectors are simultaneously eigenvectors of N
and S' [see Eqs. (12) and (13)], we can present %s in a
block-diagonal structure by simply rearranging the order
of these vectors according to the eigenvalues of N and S'.
Even so, the largest irreducible blocks are, in general,
analytically untractable and part of the calculation must
be done numerically. %e found that all the relevant fixed
points of the recurrence equation (16) are located at the
t =0 subspace of the (lz, K,J, t) space. In fact, for this
particular case the recurrence equations can be derived
analytically. In Secs. IV and IV, we derive the phase dia-
gram generated by the general recurrence equation (16)
for d =2 and 3, respectively, ' nevertheless, it is convenient
to discuss now some general properties of the t =0 re-
currence equations.

B. The t =0 recurrence equations

F2
p' =21" 'ln

Fi

FE' = —J'+1 'ln
F)F3

(18)

2
arctanh

F~

F

where

F, —:1+4exp(p)+2 exp(2p K)g5(J)—,

F2 =exp(p/2) [1+2exp(p) +exp(2p —2K)g4( J)
+exp(p —K )g5 (J)],

F3 =exp(p)+2 exp(2p —K)g5(J)

+exp(3p —3K)gi (J),
F4 =exp(p) +2 exp(2p —K )gz( J)

+exp(3p —3K)g2(J),
F, =—exp(3p —3K)g3(J),

(19)

For t =0, the Hamiltonian (10) takes the form

&=—J g S; S, —K g (S )'(S;)'+pg (S )',
(ij) (ij)

(17)
where we have used Eq. (9). Although this Hamiltonian
looks like a quantum-mechanical analog of the BEG
(Blume-Emery-Griffiths) Hamiltonian, ' ' the situation is
actually more complex. This is due to the fact that the S;
operators cannot be interpreted as standard spin-1 opera-
tors. Since the condition t =0 is preserved through Eq.
(16), the subspace (lJ„K,J,O) constitutes an invariant one
under RG. In this case we obtain

with

g, (x)=exp(x)+ —', exp( —3x )+—,
' exp(3x)cosh(2&3x )

+exp(x) cosh(2v'2x )+ —sinh(2V2x)
2

gz(x)—:—,'exp(x)+ —,'exp( —3x}+—', exp(3x }cosh(2v'3x )

+exp(x) 2 cosh(2&2x) — —sinh(2&2x )v'2

g3(x) =g](x)—g2(X),

g4(x) = 1+2exp( —2x }+exp(4x),

g5(x):—exp( —x)+exp(x)cosh(2x) .

(20}

From Eqs. (18)—(20), we find that J=O further consti-
tutes an invariant subspace under RG (i.e., J=O implies
J'=0}. Some general properties of the phase diagram in
this subspace can be easily deduced by noting that, for
J =0, the Hainiltonian (17) takes the form

%=—K g n, n, +pgn, .
(i j) i

Defining a new variable t, at each site i as

(21)

t, =—2(n,. ——,') (t, =+1}, . (22)

the Hamiltonian (21) can be mapped into a spin- —, Ising
model with an efFective (temperature-dependent) external
field'

&,= —
—,'K g t, t, + QB, t, ,

(ij) i

where

(23)

B; —= —,'(p —
—,'z, K+ln2) (24)

and z; is the coordination number of the site i. For a Bra-
vais lattice, z; =z is a constant and the resulting field 8; is
homogeneous; for a hierarchical lattice, z; is site depen-
dent and then 8; is a local field. The line K =0 in the
plane (p, K) is also an invariant subspace of the RG (i.e.,K=0=K'=0). This subspace is associated with a
noninteracting system which corresponds, in the magnet-
ic analog [see Eq. (23)], to a free spin system in a magnet-
ic field. Along this line we find three fixed points: (i) the
semistable fixed point (p, K,J, t) =(0,0,0,0), hereafter
denoted by q; (ii) the fully stable fixed point (+ ~,0,0,0),
which we denote by p; and (iii) the fully stable fixed point
( —oo, 0,0,0), hereafter denoted by h. Through Eq. (24)
we can see that the fixed point p is associated with a
phase characterized by (t; ) &0, which is equivalent [see
Eq. (22)] to (n, ))—,'; conse. quently, this phase is an
electron rich (high d-ensity of electrons) one. The fixed
point h is associated with a phase characterized by
(t, )&0, which is equ. ivalent [see Eq. (22)] to (n, )& —,';.
therefore, it describes a hole rich phase (low de-nsity of
electrons). Both phases (electron rich and hole rich) are
paramagnetic ones. For K &0, the Hamiltonian (23) de-
scribes a ferromagnetic model and a first-order transition
line between the above two phases is expected for d & 1.
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For K & 0, the Hamiltonian (23) describes an antiferro-
magnetic Ising model and, consequently, for d & 1 an an-
tiferromagneticlike ordered phase is expected in some re-
gion of the K & 0 half of the (p, K) plane. In other words,
if we divide the lattice into two interpenetrating first-
neighboring sublattices, (t; ) & 0 for all sites of one sub-
lattice (t;) &0 for the other one. Through Eq. (22) we
can see that the sites of one sublattice are predominantly
in the state n; =0, whereas the sites of the other one are
inn the state n;=1. This situation corresponds to a
charge den-sity toau-e (CDW) phase. The total density of
electrons in this phase is n—:g, (n, ) /A'= —,', where JV is
the number of lattice sites.

Let us now consider some important limits of the JAO
case. From Eqs. (18)-(20), we find, in the limit p~+ oo,
the following asymptotic behaviors:

through Eqs. (25) and (27) the following set of fixed points
for Eqs. (18}: (p, K,J)=(+~,K,",J,"},(+ ~,Kq",J2" ),

(+ ~,K, ,J, ), (+ co, + ~, —~ ), with K,"= —0.001,
K2 = —18.78, and K, =0.328.

Another interesting asymptotic behavior occurs for
p~ —~ and K~ —~. Let us first consider the case
J=0. We first propose

K =p+lna0 . (29)

and

p'- l 'p (30)

We then use Eqs. (18)-(20) and impose that, in the
p~ —~ limit, K'-p'+lna0. We straightforwardly ob-
tain

llna0=2 ln2 . (31)

id —1

fl(d, J)=
2

arctanh

K'-fz(d, J),
J'-f, (d,J),

where

g3(J)
g2(J)

(25)

(26}

In other words, the line determined by Eq. (29) is an

3.0

g4(J)
f2(d, J}=l 'ln f, (d, J)—.

2g) Jgs J (27)

We see that the recurrence equations (25} decouple and
the only nontrivial one is that of the exchange coupling J.
This fact can be easily understood if we notice that, in the
limit p~+ ~, the density of electrons n ~1, i.e., all sites
are occupied. In such situation the charge interaction
term in the Hamiltonian (17}becomes just an irrelevant
additive constant, the Hamiltonian thus becoming
equivalent to the following one:

0.5—

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

8-—J pa;cr (28)

where a; are the Pauli matrices at the site i, i.e., we re-
cover the isotropic spin- —,

' Heisenberg model. The func-
tion f, (d, J) is depicted in Fig. 2 for d =2 and 3, for both
signs of J. The recurrence Eqs. (25) yield, for d =2, only
trivial fixed points, i.e, there is [as expected from Eq. (28)]
no phase transition into any magnetically ordered phase.
The trivial fixed point J=0 corresponds to the already
described fixed point (p, K,J, t) =(+ oo, 0,0,0). For
d =3, f, (d, J) exhibits two nontrivial fixed points: an an-
tiferromagnetic critical point J, =0.353 and a ferromag-
netic one J, = —0.522. Beside them there are two other
stable fixed points, namely, an antiferromagnetic attrac-
tor J2" =2.457 and a ferromagnetic one J2 = —oo. Note
that the antiferromagnetic attractor appears at a finite
value instead of the usual J=+~ (zero-temperature)
value. This shift of the zero-temperature fixed point is
probably due to the high-temperature approximation
made in the RG procedure. This behavior has already
been encountered in other related works (see Ref. 14 and
references therein). The fixed points of f, (3,J) provide,

0.0

-0.5—

—1.5—

—2.0
—2.0 —1.5 —0.5 0.0

FIG. 2. Asymptotic recurrence relation J'=f, (d,J) corre-
sponding to the Hamiltonian (17) in the limit p~ tx) for dimen-
sionalities d =2 and 3. (a) J & 0; (b) J (0.



6266 SERGIO A. CANNAS AND CONSTANTINO TSALLIS 46

asymptotically invariant line under the RG for J=O.
The existence of this line is numerically confirmed in
Secs. IV and V. The point (p, K,J)= ( —~,—u&, 0)~» „+,„ is a fixed one of the RG equations. If
we calculate the Jacobian of the recurrence Eqs. (18) for
J =0 and we take the limit p —+ —~ [with Eq. (29)], we
find a relevant (greater than one) eigenvalue A, =I",whose
associated eigenvector is (iM, K) =(1,0). The physical
meaning of this fixed point will be discussed in Sec. IV.

Let us now consider the JPO case. In the limit

p —+ —ao with K =p+const, we find, through Eqs. (18),
the following asymptotic behaviors:

(32)

where f, (d, J) is given by Eq. (26). From Eqs. (32) we
find, for d=3, four fixed points: (p, K,J)=(—~,

( —oo, —co, —oo ). In this limit (p,~ —oo ) the Jacobian
of the recurrence equations (18) evaluated at any of the
just-mentioned fixed points exhibits an eigenvalue A, =l,
which is associated with the eigen vector
(p, K,J)= (1,0,0). The physical meaning of all these fixed
points will be clarified in Secs. IV and V.

IV. THE d =2 PHASE DIAGRAM

First of all, we analyze the J= t =0 cross section of the
phase diagram in the (p, K,J, t) space; this cross section is
invariant under RG. The flow diagram resulting from
Eqs. (18)—(20) is depicted in Fig. 3. We find three non-
trivial fixed points in this subspace: the doubly unstable
fixed point a, the singly unstable fixed point b, and [from
Eq. (30)] the singly unstable fixed point (p, K,J, t )

0 2 1 G 0 10

FIG. 3. Flow diagram in the invariant subspace (p, EC) for
d =2. The RG How is indicated schematically by arrows. The
solid line cbd is a second-order transition line. The solid line ea
corresponds to a first-order transition between the hole-rich and
the electron-rich phases; this line ends at the critical point a; the
dashed line corresponds to a smooth continuation between the
two phases. The dotted line is associated with the relevant scal-
ing field at the fixed point b.

=( —~, —~,0,0)~»=„+(3/g)i p already discussed in Sec.
III; which we denote by Fo this last fixed point.

All points belonging to the line ea of Fig. 3 are attract-
ed by the fixed point Fo. The relevant eigenvalue of the
recurrence equations linearized at this point equals A, =l
( I =3 ) and corresponds to the eigendirection
(p, K)=(1,0). Since the chemical potential p is the or-
dering field associated with the order parameter n, this
result shows that the fixed point Fo fulfills the Nienhuis
and Nauenberg condition' for a first-order phase transi-
tion fixed point. In other words, the line ea, which has
the p, ~—ao asymptotic form indicated in Eq. (29), is a
first-order transition line (two-phase coexistence) between
the hole-rich and the electron-rich phases, respectively
defined as the complete basins of attraction of the fully
attractive fixed points h and p; this line ends at the criti-
cal point a. The basin of attraction of the fixed point q
(dashed line in Fig. 3) corresponds to a smooth transfor-
mation of one phase into the other, i.e., the density of
electrons n changes smoothly when passing through this
line. The correlation length and the correlation function
critical exponentials at the critical point a are given, re-
spectively, by v, =lnl /ink, '," and by g, =d +2(1
—Inl/in', ', '), where k, '," and 1,', ' are the eigenvalues of
the recurrence equations linearized at the fixed point a
(the associated eigenvectors are, respectively, tangential
and normal to the line ea).

All the points belonging to the region in the plane
(p, K) enclosed by the line cbd in Fig. 3 are attracted by
the fully stable fixed point (p, K,J,t)=(+ ~,
+ ~,0,0) ~» „+r, with y =4; we denote this fixed point
by m. This fixed point characterizes the CDW phase dis-
cussed in Sec. III. All points on the line cbd in Fig. 3 are
attracted by the fixed point b. This line corresponds to a
second-order (continuous) phase transition between the
hole-rich and the CDW phases. The corresponding
correlation length critical exponent is given by
vi, =lnl/ink, i„where A, i, is the relevant eigenvalue at the
point b (the associated eigenvector is tangential to the
dotted line shown in Fig. 3). All the numerical values of
the above-described fixed points and their general charac-
teristics are summarized in Table I.

The fixed-point structure shown in the J=t =0 sub-
space completely determines the flow of points in the full
parameter space (p, K,J, t) for d =2 because all the points
outside of this subspace are attracted into it, i.e., its flow
is driven by the set of fixed points located at the J= t =0
subspace; the different transition hypersurfaces are
governed by the above-described nontrivial fixed points.
We now describe several representative projections of the
d =2 complete phase diagram.

Let us now analyze the t =0 projection of the phase di-
agram for J & 0 (the J & 0 part of the phase diagram is
completely analogous to the J &0 one). In Fig. 4, we
show the K & 0 (attractive charge interaction) and p & 0
region of the phase diagram. There is a first-order transi-
tion surface between the hole-rich and the electron-rich
phases. This surface is governed by the fixed point Fo
and extends the line ea shown in Fig. 3; this surface ends
at a critical line (denoted by af in Fig. 3) whose points
are governed by the fixed point a. The first-order surface,
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TABLE I. Classification, locations, and critical exponents of the fixed points underlying the d =2 phsae diagram of the t-J model.
All the fixed points in this table are located at the invariant subspace (p, K,J, t) =(p,K,O, O); PE and PH, respectively, stand for the
paramagnetic electron-rich and hole-rich phases; CDW stands for the charge-density-wave phase.

Fixed point

h

W

Fo

Location (p, K)

(0,0)

(+ 00,0)
( —00,0)
( co, ao ) ~»

( —~, —~ )lx=„+.—p ao

( —3.42, —2.93)

(2.03,6. 14)

Stability

Singly unstable

Fully stable
Fully stable
Fully stable
Singly unstable

Doubly unstable

Singly unstable

Domain in (p, K,J, t)
space

Smooth continuation
hypersurface between PH
and PE phases
PE phase
PH phase
CDW phase
First-order hypersurface
between PE and PH
phases
Critical surface

Critical hypersurface
between PH and CDW
phases

Relevant
eigenvalues

A, =l '=3

A, =1~=3

A(1)-2 27
A, '."=7.84
A, b =2.80

as well as the critical line, extends to the E )0 and p &0
region.

In Fig. 5, we show the E & 0 (repulsive charge interac-
tion) and p & 0 region of the phase diagram. A second-
order transition surface between the hole-rich and the
CDW phases appears. This surface (which is an exten-
sion of the line cbd of Fig. 3) is governed by the fixed
point b. The second-order surface separates the CD%
phase from the hole-rich one.

The general structure of the t%0 phase diagram re-
peats that of the t =0 one. The E =0 phase diagram
[which is associated with the Hamiltonian (1)] is depicted
in Fig. 6. For p &0, we find again a first-order transition
surface between the hole-rich (below the surface) and the
electron-rich (above the surface} phases. This surface
ends at a critical line (denoted by gh in Fig. 6) governed
by the fixed point a of Fig. 3. The critical value of J in-
creases with t. No CDW phases exists for E =0.

The general structure of the full d =2 phase diagram
in the (p, E,J, t) can be summarized as follows.

(1) Three phases are present: hole rich, electron rich,
and CDW.

(2) For p &0, there is a first-order transition hypersur-
face between the hole-rich and the electron-rich phases,
which ends at a critical surface.

(3) For p & 0 and K & 0, there is a second-order transi-
tion hypersurface between the hole-rich and the CD%
phases.

(4) For p &0, the transition between the hole-rich and
the electron-rich phases is smooth (in the sense that there
is a smooth change of the electron density).

A representative cross section of the phase diagram for
typical K and t values is shown in Fig. 7. A complete list
of the fixed points underlying the d =2 phase diagram
and their general characteristics is presented in Table I.

The problem of phase separation (two-phase coex-
istence) in the d =2 t Jmodel at z-ero teinperature has
been previously treated by Emery et al. ; such work
suggests that a phase separation occurs for all values of
J/t. This is in variance with our results. Indeed, let us

analyze the phase diagram in terms of the temperature-
independent variables J/t, p, /t, and of the dimensionless
temperature 1/t. In Fig. 8, we show the coexistence lines
in the (p/t, 1/t} plane for E =0 and constant J/t, for
several values of J/t. Each line ends at a critical point
whose corresponding critical temperature (1/t ), de-
creases with J/t. In Fig. 9, we show the critical tempera-
ture (1/t), as a function of J/t Nume. rical errors make
it extremely difficult to get accurate results for very low
temperatures (1/t &0.1). However, our results suggest
that a critical value (J/t), exists below which the first-
order transition disappears for all temperatures, i.e., the
system does not phase separate for low J/t From. Fig. 9,

-4

FIG. 4. Phase diagram for t =0 and K (0 in d =2. The sur-
face eaf corresponds to a first-order transition between the
hole-rich and the electron-rich phases. This surface ends at the
critical line af and extends to the p &0, K & 0 region.
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A. The t =0 phase diagram

As we said above, all the relevant fixed points lie in the
t =0 subspace. In other words, all the points in the
(iJ„K,J, t) parameter space are driven to this subspace un-
der the RG transformation.

We start our analysis with the J=t =0 invariant sub-
space. The general fixed-point structure in this subspace
is qualitatively analogous to the fixed-point structure at
d =2 (see Sec. IV and Fig. 3). The numerical values of
the fixed points in this subspace and their general charac-
teristics are presented in Table II, where the notation for
the fixed points is the same as in d =2. All the eigenval-
ues of the linearized recurrence equations corresponding
to the scaling fields associated with the t and J parame-
ters at every fixed point are irrelevant, i.e., all fixed points

FIG. 9. Dimensionless critical temperature (1/t, ) as a func-
tion of J/t for K =0 in d =2 (see Fig. 7). The curve suggests
that (l/t), ~0 for J/t~(J/t), . The extrapolated value of
(J/t), is (J/t), =1.4.

are attractive in such directions. For J=0 there is no
long-range magnetic order. In order to emphasize the
paramagnetic nature of the hole-rich and electron-rich
phases, we now denote them as PH (paramagnetic hole
rich) and PE (paramagnetic electron rich), respectively.

The phase diagram for J & 0 and I( & 0 is shown in Fig.
10 and the set of fixed points for J &0 which determines
its structure is shown in Table III. The global connectivi-
ty of all the fixed points for J«0 is schematically depict-
ed in Fig. 11. As expected, this phase diagram shows
qualitatively a great similarity with the RG phase dia-
gram of the classical d =2 BEG model (see Ref. 17).
Three phases are present for K & 0: (i} the PH phase
below the FMT surface; (ii} the PE phase below the FTC
surface, and (iii} an antiferromagnetically (AF) ordered
phase located above the surface FMTC. These phases are
defined, respectively, as the basins of attraction of the
fixed points h, p, and (p, K,J, ) =(+~,Kz",J2" ) hereafter
denoted by A. The surface FTC is governed by the criti-
cal fixed point (p„,K,J)=(+~,K,",J,"),which we denote
as CA. The fixed points A and CA emerge from Eqs.
(25)—(26). Consequently, this surface corresponds to a
second-order transition between the PE and AF phases.
The corresponding correlation length critical exponent is
given by v„=inl/ink, „,where

Bf,(3,J)
~A

Bg

The FMT surface is governed by the fixed point
(p, K,J)=(—~, —~,Jz ), hereafter denoted by Fz. As
we have seen in Sec. III, this fixed point is attractive in all
directions but one, namely, that associated with the or-
dering field p, whose corresponding eigenvalue is A, =l .
Since the electron density in the AF phase satisfies n = 1

(p =+ ~ at the fixed point A), FMT is a first-order tran-
sition surface between the PH and the AF phases.

Thc sui face FEQe is govcrncd by thc fixe point Fp ~

The characteristics of this fixed point for d =2 were al-
ready discussed in Sec. IV. Through the same arguments
we see that the FEae surface is a first-order transition one

TABLE II. Classification, locations, and critical exponents of the fixed points at the invariant sub-
spacce J=t =0 for d =3. The connectivity between the different fixed points is the same as in the
d =2 case (see Fig. 3). See caption of Table I.

Fixed point

W

Fo

Location (p,X)

(0,0)

(+~,0)
( —~,0)
(~ ~)l~=„+„
7= 12.48

~ ) I sc =@+a—p, ao

&o= tsln29

( —1.82, —1.47)

(1.44, 14.43)

Domain in {p,,J(,J, t) space

Smooth continuation boundary
between PH and PE phases
PE phase
PH phase
CDW phase

First-order hypersurface

between PE and PH phases
Critical surface

Critical hypersurface between
PH and CDW phases

Relevant
eigen values

A, =l '=9

A, =l =27

X.")=8.27

A,
' '-ll 33

A, b =8.10
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TABLE III. Classification, locations, and relevant eigenvalues of the fixed points for J )0 and t =0,
underlying the phase diagram shown in Fig. 10. These fixed points, together with those shown in Table
II, completely determine the d =3 phase diagram for J )0; PH and PE, respectively, stand for
paramagnetic hole-rich and electron-rich phases, AF stands for the antiferromagnetic phase.

Fixed
point

A

C~

Location (p, K,J)

(+ KA JA)
(+-,'K,'",'J,'")

( —00, —oo, J2" )

(
—oo, —oo,J,")

(
—1.02, —0.01,0.70)

Stability

Fully stable
Singly unstable

Singly unstable

Doubly unstable
Doubly unstable

Domain in (p, K,J, t)
space

AF phase
Second-order hypersurface
between PE and AF phases
First-order hypersurface
between PH and AF phases
Critical end-point surface
Tricritical surface

Relevant
eigen values

A, „=2.42

X= I =27

( —1,72, —0.97,0.49) Triple
unstable

Special multicritical line

between the PH and the PE phases. This surface ends at
the isolated critical line aE, which is governed by the
fixed point a.

The FMT and FTC surfaces join smoothly at the line
FT. The fixed points E and T on this line are nontrivial
ones. The fixed point T is attractive along the line ET,
i.e., the eigenvalue whose eigenvector is tangential to the
line ET satisfies A, (1. Also, the fixed point T has two
relevant eigenvalues (A, 'z" )A, g' & 1), whose associated
eigenvectors are, respectively, transversal and tangential
to the transition surface. This structure is characteristic
of tricritical behavior and therefore the ET line is a tri-

critical one. The tricritical exponents are given by
v, = lnl /ink, 'z' and P, = ink, 'T '/in', 'z '. The numerical
values of the different relevant eigenvalues are shown in
Table III. The two first-order surfaces FMT and FEae,
and the second-order surface FTC meet along the line
FE, where the two first-order surfaces have equal slopes.
The line FE is governed by the fixed point (p, E,J)
=( —oo, —~,J,"), which we denote by G„. As we have
seen in Sec. III, this fixed point has two relevant eigenval-
ues: one first-order eigenvalue A, =l coupled to the field

p and thus giving a first-order transition in the density n,
1/v~

and the other A, =l giving the same critical behavior

FIG. 10. Phase diagram for t =0 and K & 0 in d =3. The re-

gion above the surface FMTC corresponds to an antiferromag-
netic (AF) phase; the region below the surface FTC corresponds
to a paramagnetic electron-rich phase (PE) while the region
below the surface FMT corresponds to a paramagnetic hole-rich
phase (PH). The surface FTC is an AF-PE second-order transi-
tion surface, while the surface FMT is an AF-PH first-order
one; the surface eaEF is a PH-PE first-order one and it ends at
the isolated critical line aE. The dash-dotted line FE is a
critical-end line, while the solid line ET is a tricritical one.

FIG. 11. Schematic diagram showing the global connectivity
of the set of fixed points which determine the phase diagram of
Fig. 10. The dark solid and dotted lines correspond to RG tra-
jectories respectively flowing through second- and first-order
surfaces; the double-dark solid and dash-dotted lines respective-
ly correspond to the tricritical and critical-end lines; light tra-
jectories do not correspond to any phase transition. The numer-
ical values and the general characteristics of all the fixed points
are listed in Tables II and III.
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as the fixed point Cz. The fixed point Gz is unstable to-
wards C„(see Fig. 11) with A. =1~ and unstable towards

Fo and F„with A, =I ". This structure is characteristic
of critical end-point behavior and the I'E line is made of
critical end points (critical end line) T. he tricritical line
ET, the critical line aE, and the critical end line FE join
at the fixed point E. This point has three relevant eigen-
values (A,~z'&A, z''&A, E''&1) thus being a multicritical
point. The analogous point in the classical BEG model
describes a special tricritical point associated with the
three-state Potts model transition. ' ' This fixed point is
probably related to some quantum analog of the three-
state model.

The transition surface between the antiferromagnetic
and the paramagnetic phases (including both first- and
second-order regions as well as the tricritical line) extends
to the E &0 region of the parameter space. Below this
surface there appears, for p )0, a second-order transition
surface between the hole-rich and the CDW (enclosed by
the second-order surface) phases; this surface is analo-
gous to the one encountered in Sec. IV (see Fig. 5}and is
governed by the fixed point b. In Fig. 12, we show some

typical constant-K cross sections of the phase diagram for
J &0.

The phase diagram for t =0 and J & 0 shows the same
qualitative structure as the above described (J &0}, the
antiferromagnetic phase being now replaced by a fer-
romagnetic one. For each of the fixed points for J )0
there exists an analogous one for J &0; its locations and
general characteristics are listed in Table IV. The global
connectivity between the different fixed points is the same
as that shown in Fig. 11 for the corresponding set for
J &0.

B. The tAO phase diagram

As stated at the beginning of this section, all the points
in the parameter space (p, K,J, t) are governed by the
fixed points located at the invariant subspace t =0. Then
the first- and second-order surfaces become three-
dimensional hypersurfaces in the complete parameter
space, while the tricritical and critical-end lines become
two-dimensional hypersurfaces. The special multicritical
fixed points generate isolated multicritical lines which are

2.0- 8.6-
tticritical point

1.5 -' K -1.35
2.0-

J 1.0-

critical cad pofat
0.5-

1.5-

1.0-
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-4 -9 -9 -1 h i k 9 6 1 2 3 4 5 8 7 8 9 10
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FIG. 12. Typical constant-E cross sections of the d =3 phase diagram for t =0. Dashed and solid lines, respective]y, correspon
to first- and secod-order phase transitions.
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TABLE IV. Classification, locations, and critical exponents of the fixed points for J (0 and t =0.
These fixed points, together with those shown in Table II, completely determine the d =3 phase dia-

gram for J &0; F stands for the ferromagnetic phase. The general connectivity between the different
fixed points is the same as that shown in Fig. 11 for the corresponding J & 0 set of fixed points.

Fixed
point

FF
CF

GF
T

Location (p, K,J)

(+ Qo~+ 00~ ao )

(+ oo, K,",J, )

( —oo, —oo, —oo )

( —oo, —ao, J, )

( —1.54, —0.36, —1.15)

Stability

Fully stable
Singly unstable

Singly unstable

Doubly unstable
Doubly unstable

Domain in (p, K,J, t)
space

F phase
Second-order hypersurface
between PE and F phases
First-order hypersurface
between PH and F phases
Critical end-point surface
Tricritical surface

Relevant
eigenvalues

A,F =2.03

X=I"=27

( —1.76, —1.10, —0.58) Triple unstable Special multicritical line ~~E~~- 16.87
(~)=2.96

located at the boundary between the tricritical and
critical-end surfaces. We now analyze some particular
cases.

In Fig. 13, we show some typical constant-t cross sec-
tions of the phase diagram for E =0 and J )0. For

E =0 the transition between the PH and PE phases is
smooth everywhere but for a small first-order line for
t ~ 3; this line is located very close to the second-order
line. For high values of t and low values of J, we observe
the appearance of a ferromagnetic (F) phase, i.e., a region

4.0- 4.0-

3.6- 3.6-

3.0- 3.0-

J a.o- J a.o-

1.6-

1.0— 1.0-

0.6- 0,6-

-S -4 -2 0 0 4 8 -4 -2 0 2 4 S

4.0 4.0-

3.6-
critical end

3.O - ' 3.0-

2.6-

J a.o- J a.o—

1.0-
tricritical

1.0-

0.6- 0.6-

0.0
-6 f 1 g f $ ~ $ 0 t ~-2 0 2

0.0

FIG. 13. Typical constant-t cross sections of the d =3 phase diagram for K =0. Dashed and solid lines, respectively, correspond
to first- and second-order phase transitions. The point E, is a special multicritical one. For t =3, the first-order line between PH and

PE and the second-order line are too closely located to be resolved in the present scales.
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of the parameter space governed by the fully stable fixed
point FF (see Table IV). This region is bounded by a
second-order transition surface to the PE phase. The
presence of an F phase can be better understood by
analyzing the phase diagram in terms of the variables
(p/t, J/t, 1/t) .Indeed, in Fig. 14, we show some typical
constant-J/t phase di.".grams for K =0 and different
values of J/t In. Fig. 14(c), we see that the F phase ap-
pears at low temperatures 1/t, for low values of the pa-
rameter J/t, precisely where the t Jm-odel is expected to
present a behavior similar to that of the Hubbard model
for high values of U/t. It is a known result ' that a
hole in a half-filled Hubbard model tends to form a fer-
romagnetically ordered region around itself, sometimes
called a ferromagnetic polaron. On the basis of these re-
sults, and various approximate methods, such as
Hartree-Pock, it is believed that the Hubbard model
has a ferromagnetic ground state for some range of hole
concentrations. Moreover, many approaches predict a
finite-temperature phase transition into ferromagnetic
state. Therefore, the F phase in the three-
dimensional t-J model can be understood in terms of fer-

0.5—
PH

4-

0.0
—6 -5 —4 —3 -2 —1 0 1 2 3 4 5 6

1.4

(c)
0 I I I I t 1 I I I~5 -4 -3 -3 -1 0 1 8 3 4 5

1.0- PE

0.8—

0.6—

0.4—
PH

0.2—

0.0
—0.5 0.0 0.5 1.0

v/t,
1.5 2.0 2.5

FIG. 14. Phase diagrams in the (p/t, 1/t) space for K =0
and typical values of J/t. Dashed and solid lines, respectively,
correspond to first- and second-order transitions; dotted lines
correspond to a smooth change in the density n and do not de-
scribe any phase transition. (a) J/t =1; (b) J/t =0.5; (c)
J/t =0.25.

0 I I I I I I I I I I—5 -4 -3 -8 -1 0 1 8 3 4 5

FIG. 15. Typical constant-t cross sections of the d =3 phase
diagram for J (0 and E =0; P and F, respectively, stand for
paramagnetic and ferrommagnetic. (a) t =1; (b) t =3.
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romagnetic polarons. The F phase disappears when J/t
is increased.

We observe that the system is antiferromagnetically or-
dered at low temperatures for all values of J/t and low
concentration of holes (i.e., for high values of p). The AF
order is destroyed when the concentration of holes is in-
creased, i.e., by lowering p. Several experiments show
that doping with holes destroys the Neel state in La and
Y copper-oxide compounds. ' ' ' For high values of
J/t and low temperatures, this transition can be a first-
order one (with a tricritical point separating the second-
and first-order transition lines), i.e., we get, as in the two-
dimensional case, phase separation, but now the
electron-rich phase is antiferromagnetically ordered.
Indeed, NQR (Ref. 32) and muon-spin resonance in La
compounds suggest that the magnetic transition could be
a first-order one for some range of hole concentration.
Moreover, the observed anomalies in the NQR relaxation
rates could be indicative of tricritical behavior.

Finally, we consider briefly the phase diagram for
J &0. In Fig. 15, we show two typical cross sections of
the phase diagram for E =0 and constant t. For low
values of t, the general structure of the phase diagram is
very similar to that of the J & 0 one, the AF phase now
being replaced by the F one. However, for high values of
t, this similarity breaks. We observe in Fig. 15(b) that,
for low values of ~J~, the magnetic interactions induce a
second-order phase transition into the CDW phase (com-
pare Fig. 15 with Fig. 13).

VI. CONCLUDING REMARKS

We have performed a real-space RG analysis of the full
finite-temperature magnetic phase diagram of a d =2 and
3 generalized t-J model; this phase diagram exhibits a
very rich structure. In addition to the general interest of

such a rich phase diagram, our results suggest that the
phase diagram of several high-T, materials (e.g. , La- and
Y-based copper-oxide compounds), at least as far as the
magnetic properties are concerned, could be explained by
a three-dimensional t-J model. Of course, the present
model is too simple to get a numerically accurate descrip-
tion of such materials, but many improvements could be
implemented. For instance, we see from Fig. 14 that, for
the undoped system (i.e., for p~ ~ ), 1/t —1, which cor-
responds to a Neel temperature Tz —10 K (assuming a
bandwidth —1 eV). This value is, of course, unaccept-
ably high. However, the interplane exchange couplings
are very weak. It is, therefore, reasonable to expect
that a three-dimensional t-J model with strongly aniso-
tropic exchange couplings will highly reduce the Neel
temperature (it is not unreasonable to think that an an-
isotropy of the order of 10 could reduce Tz to the or-
der of 100 K).

Our d =2 results predict that the t-J model does not
show phase separation for low vales of J/t. This result
indicates that the Hubbard model does not phase
separate at finite temperature, at least for high values of
U/t and possibly for all values U/t, a fact which is in

agreement with recent Monte Carlo calculations. An in-

teresting possibility would be to perform the present RG
analysis of the Hubbard model for arbitrary values of
U/t, both for d =2 and 3. This work is in progress and
will be published elsewhere.
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