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Thermodynamics of alternating (s,s') chains in the nearest-neighbor Ising-model approximation
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The exact solutions of the so-called ( —,', s')& ferrimagnetic z-z chain made up of two sublattices have

been previously derived by using the transfer-matrix method. In this paper, we generalize this method to
(s,s')& chains, with arbitrary s and s'. We give a general expression for the correlation length g and the
product y~~ T in the low-temperature range. We specifically discuss the case of the moment-compensated
chain in the low-temperature limit and generalize the results previously obtained. We show that, in this
limit, the chain behaves as an assembly of quasi-independent, quasirigid blocks, each with length g, and
that, in the low-temperature range, the product g~~

T behaves as gM', with M the thermal-average magni-
tude of the magnetic moment attributed to the unit cell.

I. INTRODUCTION

In recent years, several theoretical studies on the so-
called one-dimensional materials have focused on the
thermodynamics of regular exchange-coupled chains. '

Sometimes closed-form, exactly solvable expressions for
the thermodynamical functions of interest (specific heat,
correlation functions, magnetization, zero-field suscepti-
bility, etc) may be derived for infinite —or finite —regular
chains for the case in which the exchange interaction in-
volves spin components parallel or normal to a given axis
(z-z or planar models) or spin operators considered in
the classical limit with arbitrary spin dimensionality. ' '"
In a previous paper, ' we have established general condi-
tions which must be obeyed by the chain Hamiltonian in
order to allow an analytical treatment. In particular, we
have shown that the z-z model is exactly solved when the
external field is applied along the z axis. In the other
cases, approximate techniques are required to estimate
the behavior in the infinite chain limit: Some examples
are spin-wave theory, ' high-temperature series expan-
sions, ' ' Green's-function approaches, ' or numerical
extrapolation from exact calculations on finite-length
chains applied when an isotropic exchange coupling is as-
sumed.

The present work has been stimulated by the recent
synthesis of bimetallic quasi-one-dimensional complexes
MM'(EDTA) 6HzO (where EDTA is an abbreviation for
ethylenediaminetetracetic acid; M and M' stand for di-
valent transition metals), the structure of which (from the
magnetic point of view) may be represented schematically
as infinite zigzag chains of alternating metals . M-
M'-M-M' . . We have focused on the general behavior
of quantum or quantum-classical ferrimagnetic chains
(s,s')z described by a z-z exchange coupling (s= —,',
s')

—,'). These chains are considered as one-dimensional
(1D) systems involving the alternation of two kinds of
magnetic moment (which differ by their quantum spin
numbers s and s' and/or their Lande factors g and g').
In order to solve this problem, we have used a transfer-
matrix method. Among several original results, those
concerning the compensation problem appear to be of

particular interest since they bring out the interplay be-
tween short-range and long-range orders.

In the present paper dealing with ferrimagnetic chains
showing z-z exchange coupling we generalize the results
obtained for the ( —,', s')z chain and consider (s,s')~ chains
with arbitrary s and s'. For our present purpose (see
below) we may take s') s without loss of generality. Due
to the structure of the chain Hamiltonian which will be
used, the thermodynamical properties are not modified
when s and s' are interchanged, and this will not restrict
the range of applicability of the present work. We
specifically discuss a bit more the compensation case (no
net magnetic moment in the ground state), which also re-
veals subtle aspects of both short- and long-range order-
ings. We mainly build up a "map" in the (s,s') plane
describing the infinite chain behavior in that case.

II. TRANSFER-MATRIX METHOD
AND PARTITION FUNCTION

i =0 i=a

with, for a regular chain,

H,'"=J(s,'+s,'+, )s;", H; 's= —(gs,'+g's, ")B . (2)

Note that, in the edge contribution, —g's&8 must be
dropped. We shall restrict our discussion to antiferri-
magnetic (J)0) coupling.

Let Zz(B) be the partition function for that chain. Let
Zz(B) be the vector defined as follows: mz represents the
quantized z component of sz and is used to define the
current state of that spin; among all the states of the
chain contributing to the sum Z~(B), we consider those
ones for which the last spin sz is in the state described by

The transfer-matrix method is well suited for solving
z-z exchange-coupled chains under an external magnetic
field 8 applied along the z axis (Fig. 1). Since only the z
component of each spin is involved in the Hamiltonian,
the corresponding Hamiltonian for the (2N+1)-spin
chain soso s;s . sz may be written

N —1 N
~ex+ y Hmag
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FIG. 1. Structure of a quantum ferrimagnetic (s,s')N chain.

We can similarly define the quantities Z~, (B),
Zz &(B), and ZN"

~
'(B) associated to a chain beginning

at s0 and ending at sN &. It is known that the vectors
Zz, (B) and Zz(B) are related by a matrix operation so
that, by repeating this operation along the chain, we can
write

m~. The corresponding part of the sum gives the com-

ponent Zz (B). As a result, the vector Zz(B) has 2s+1
components, and we have

+s
ZN(B) = g Z~ "(B) .

m = —sN

ZN=['T(B)] Zo(B), (4)

where the so-called transfer matrix 7(B) is a square
(2s+1)X(2s+1) matrix [s has been taken smaller or
equal to s' in order to reduce the size of the matrix
7 (B)]. Its current element appears to be

[V(B)] =exp(Pgm;B)

sinh —(2s'+1} J(m;+m, , )—,BgP

2 2$'

sinh —J(m;+m; &)—,B

where r=g's'Igs is the ratio of the magnetic-moment
magnitudes. Clearly, due to the regularity of the chain,
T(B) appears to be independent of i Let. us label
u, (B,T), u~(B, T), . . . , uz, +,(B,T), the eigenvalues of
the matrix 7(B},ordered in the decreasing modulus or-
der. It is known that, in the infinite chain limit, the
whole physics of the extensive parameters is contained in
the dependence of the dominant (largest modulus) eigen-
value u, (B,T) on the relevant conjugated intensive pa-
rameters. Specifically, we have for the parallel magneti-
zation JRl and the zero-field susceptibility

y~~
referred to

the unit cell:

8 ln[u, (B,T)]
p

8 u&(B, T)

p u)(B T) ()B& 8=0

In order to get a clearer insight, we shall preferably con-
sider the product y~~T normalized to its infinite tempera-
ture value (the Curie constant): (y~~T)„. We will particu-
larly focus on its low-temperature behavior, more
specifically in the compensation case (r =1).

The next quantity of significance in the present context
is the correlation length g which may be defined as fol-
lows:

dominant eigenvalue. Indeed, it is shown (Appendix A)
on the basis of the symmetry properties of the matrix
'T(0} that, in the low-temperature limit, the correlation
length behaves as

1T—
uz(0, T)1—
u&(0, T)

as T~O .

We thus need the low-temperature behavior of the two
largest eigenvalues u, (0, T) and uz(0, T).

III. THE( ~,s')N CHAIN

g(T)- as T 02(2s'+ 1)

and the (glT)„product by
'2

The method described in the preceding section has
been used, ' for solving the ( —,', s')z chain problem for
both finite and infinite s'. Analytical expressions have
been obtained for the correlation length and the parallel
susceptibility g~~ and a brief discussion of their low-
temperature behavior has been given. Specifically, near
absolute zero, the correlation length behavior is given by

g n'l(s*,s'„)I
1 n ——0

+ oo

g l&s's'„&I
n=0

1/2

(X T)—
1 r+ —,exp( —PJ) —exp(PJs')

S

I

(2s'+ 1 } 1+, r3$'

as T~O .

Clearly, the correlation length is not an extensive measur-
able and this will require the knowledge of more than the

(10)

If the magnetic moments g/2 and g's' carried by the
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IV. THE GENERAL (s,s')N CASK

0.4—

P.2 "

Q.O'

0.0 0.5 k,TlJss'

The problem has been solved by Suzuki et al. for
s=s' and g=g' but they did not propose a general ex-
pression for the product (y~~T)„: it was observed that this
quantity vanishes exponentially at absolute zero. For
s=s' and gag', Curely et al. (s= —,') and Georges
et al. (s =1) have, respectively, shown on the basis of
closed- form expressions that the product (g~~T)„diverges
exponentially (Table I). In the general case s'~s, gag',
we now propose a mathematical treatment and give a
closed-form expression for the product (y~~T)„near abso-
lute zero.

For the nonvanishing field, the matrix 'T(B) can be
written

FIG. 2. Thermal variation of the product (y~~T)„of a com-
pensated ( —,', s')z chain with z-z type couplings, for various s'

values (J)0, g =2, r = 1, from Ref. 27).

g2
'T(8) —'T(0)+8'T'(0)+ T"(0)+

2

as 8~0, (11)

two sites are unequal (r%1), the (g~~T)„product diverges
as exp(PJs'), in the low-temperature limit (like the corre-
lation length). When these moments are equal (r =1),
the chain has no net moment at absolute zero; some kind
of indetermination is expected. It appears that the be-
havior of the product (y~~T)„depends strongly on the
spin quantum number s': for s'(2, (y~~T)„vanishes ex-
ponentially as naively expected in such a quasiantifer-
romagnetic case; however, for s') 2, it diverges exponen-
tially. In the intermediate case (s'=2), it has a finite lim-
it (Fig. 2).

where V'(0) and 7"(0) are, respectively, the first and
second derivatives of 5'(8) with respect to 8 evaluated at
8 =0. The general expression of the current element of
these matrices is given in Appendix B [Eqs. (Bl)—(B4)].
This allows one immediately to observe that 'T(0) and
V"(0) show a symmetry center whereas '7'(0) is antisym-
metric. These particular properties are used to transform
'T(B) owing to an appropriate unitary transformation de-
scribed by the matrix Q given in Appendix B [Eqs.
(B13)—(B15)]. The new matrix 7(B) has the following
forms, depending on the parity of 2s:

s =(2o —I)/2, cr ~2:
A 0 0 8' 8& A"

T(B):
() ~ +8 @ ()

+
()

0
+ (12)

A 0 0 0 0
s=oo ~2: 'T(8)= t( 0 )s&2. t(01)&2 t(00) 0 +8 0 0 t'(Os)&2 t'(01)&2

0 0 2) C' 0 0

0 0
+ t"(O,s)&2 t"(0,1)&2 t"(0,0) 0 +

0 0 It
(13)

TABLE I. Low-temperature behavior of the product (g~~T)„ for (s,s')& chains with z-z type cou-

pling.

(y() T)„— (r —1) exp(2PJss')
I

3$3$'
as T~O, with s' ~ s,

exp[2PJs (s' —2) ]
(y)( T)„—

s' (2s'+ 3 6., irz
s+1

s
3 exp( —2PJs )

(y T)„—
II 2s(s +1)(2s +3—5, ,

—6, , )

s'+ 1

3$'

as T~O, with s'=s .

as T~O, with s') s,
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du, (B,T)
v, (B,T)= u i (0, T)+B

B=0

d vi(B, T)
+

dB B=0
+ 0 ~ ~ (14)

Due to the field-reversal symmetry [dv, (B,T)ldB]s —p

vanishes (as well as all the odd terms). The zero-field ei-
genvalues u, (0, T) uz(0, T), . . . , vz, +, (0, T) belong to the
subinatrices A and 2). For s &

—,
' (0 &3), exact expres-

sions remain available. Using a convenient differentiation
process, it is possible to express the quantity
[d v, (B,T)ldB ]s p in terms of the secular polynomial
coefficients and their related derivatives with respect to

where A, 2), S', C ', A", and S" are o Xo submatrices
given in Appendix B; t(m, m') is the current element of
T(0) and t'(m, m'), t"(m, m') are the corresponding first
and second derivatives with respect to B evaluated at
B =0. For s & 1 (cr =1) the submatrices reduce to a sin-
gle element.

For s =1, 'T(B) is a 3 X 3 matrix and it remains possi-
ble (although a tedious work) to obtain exact expressions
for the dominant eigenvalue v i (B,T) and the related ther-
modynamical functions. For s ) 1, this generally be-
comes impossible: it is then necessary, in general, to use a
numerical diagonalization process. In the present work,
we have focused on the zero-field parallel susceptibility y~~

determined through a variational process. More
specifically, we expand the dominant eigenvalue

u i (B,T}
as

exp(2PJss')
2( 2s'+ 3 5, i z2

—5, , )—
(15}

which reduces to Eq. (9) for s =
—,
' (5, „ is the Kronecker

symbol). The exponential divergence of g(T) thus ap-
pears to be characteristic of 1D systems involving z-z
couplings between spin components.

For the parallel susceptibility y~~, considered in the
low-temperature range, we have developed another per-
turbation method, based on similar arguments (Appendix
D) although the submatrices S', C', A", and 2)" are not
Hermitian. This method permits to obtain a B expansion
for vi(B, T} [Eq. (D4)] from which we can derive the
low-temperature expression [Eq. (D9)] for the product

B. For s )
2 (cr )3), a numerical diagonalization is una-

voidable. However, in the low-temperature range, a
perturbation-type calculation may be set on to get the
corresponding behaviors of the correlation length and the
parallel susceptibility.

As already noted above, near absolute zero, the corre-
lation length g is a significant physical parameter; it is re-
lated to the ratio v2(0, T)lu, (0, T) between the dominant
eigenvalues of the cr X o. symmetrical submatrices A and
2) (with 0 )2). Actually, it appears (Appendix C) that
these eigenvalues are obtained through an ordinary per-
turbation calculation, which involves only two rows and
columns in each independent submatrix. Finally, the
low-temperature behavior of the correlation length g(T)
is given by the expression

exp(2PJss')

2
r „exp(—4PJs') —exp( —4PJss')
s $2

as T~0 (16)

which generalizes Eq. (10).
In the general case s'As, if the magnetic moments gs

and g's' carried by the two sites are not equal (r%1), the
ground-state magnetic moment of the chain is infinite and
the (y}T)„product diverges at low temperature, like the
correlation length g, i.e., as exp(2PJss'). When they are
equal (r = 1), the chain has no net moment near absolute
zero. We are dealing with a situation which looks like
antiferromagaetism. Actually, as observed for the
( —,', s')~ chain, the behavior of the product (yiT)„ is
governed by the value of the largest spin quantum num-
ber (say s') through the term exp[2PJs (s' —2) ]:for s' (2,
(yiT)„vanishes exponentially as would be expected for a
1D antiferromagnet; on the contrary, for s ' )2, it
diverges exponentially, a rather unexpected behavior. In
the intermediate case (s'=2), it has a finite limit.

In the particular case s =s', g=g', the product (yiT)„

vanishes exponentially as exp( —2PJs ), whatever the
common value of s and s'. These results confirm and gen-
eralize previous ones dealing with ( —,', s')~ chains. They
are summarized in Table I and are illustrated by the
curves of Figs. 3 and 4. So far, we have just considered
spin quantum numbers s and s ' such as s ' )s; but, owing
to the symmetry of the problem with respect to the inter-
change of s and s ', we can extend these results to all
values for s and s': this allows us to build up a map in the
whole (s,s') plane, for the low-temperature behavior (Fig.
5) of the product (piT)„.

In order to interpret the behavior of (pi T)„ in the low-
temperature range, we have previously suggested that,
in this respect, the chain can be considered as an assem-
bly of independent quasirigid blocks, each one with
length g (the correlation length). Then, if M is the
temperature-dependent magnitude of the magnetic mo-
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FIG. 3. Thermal variation of the product (y~~T)„of a com-
pensated (s, 2)N chain with z-z-type couplings, for various s
values (J & 0, g =2, r =1).

ment per unit cell, the product (glT)„behaves like gM,
with a mathematical indetermination when simultaneous-
ly g diverges and M vanishes. This model appears to be
also relevant for the general (s,s')N chain. In the non-
compensated case (r%1), M reaches a finite limit at 0 K
and (y~tT)„diverges like g, i.e., like exp(2PJss'). In the
compensated case (r =1), a competition appears between
the divergence of g and the evanescence of M which is
easily shown to vary like exp( —2PJs). The results of
Table I show that, in that case too, the low-temperature
behavior of (gIT)„ is exactly given by that of gM .

It has been pointed out for the ( —,', s')N chain that, for
s') 2 and r slightly larger than unity, the mean moment
M vanishes at a finite temperature. This is a conse-
quence of the available energy-level density which is
larger for spins larger than 2 than for spins —,': as T de-

creases, the former saturates more slowly than the latter,
thus leading to the possibility of exact cancellation if the

FIG. 5. "Map" in the (s,s') plane of the behavior of the prod-
uct (g~t T)„at T =0 K for a compensated (s,s')& chain with z-z

type couplings (J &0, g =2, r =1); the symbol meaning is 0—
the (y~~T)„product vanishes; C—the product shows a finite limit

(Cl =,'0, C~ = 4', ); ~—the product diverges.

moment that they carry is the largest one. At that tem-
perature, the susceptibility vanishes: this is the 1D analog
of the well-known compensation point met in various 3D
ferrimagnets. In the classical limit s'~+00, the same
kind of behavior has been predicted but the divergence of
g and the evanescence of M are expected to depend on
the dimensionality d of the space available to the classical
spin vector S'. If d =1, the behavior of S' looks like
that of a spin —,

' and the product (glT)„vanishes in the

low-temperature limit. If d =3, we are dealing with the
case s') 2 and the product (yIT)„diverges. When M and
T are close to zero, the same compensation point appears
because of the continuous character of the classical spin
energy-level spectrum. These predictions can be extend-
ed to the general (s,s')N case with s' ~ 2 (Fig. 6).

Q.4 "
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02" 0.01 '

0.0
0.0

~r

0.5 k,T/Jss'

0.00
0.00 0.05 0.10 k,r/Jss'

FIG. 4. Thermal variation of the product (g~~T)„of a com-

pensated (s, —,')~ chain with z-z-type couplings, for various s

values (J & 0, g =2, r = 1).

FIG. 6. Thermal variation of the product (g~~ T)„ofa ( —', , —,
'

)&

chain with z-z-type couplings, for various r values near the com-

pensation case (J &0, g =2; a: r =1.0000, b: r =1.0002, c:
r =1.0005, d: r =1.0010, e: r =1.0020).
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V. CONCLUSION

The transfer-matrix method has been applied to the
problem of (s,s')& chains showing z-z couplings between
nearest neighbors. Except for the correlation length, the
whole physics of the chain is contained in the dominant
eigenvalue v, (B,T}of the matrix 'T(B). An analytical ex-
pression of v i (B,T) is available when the smallest of
quantum numbers s and s' is lower than —,'. For s &

—,', the
secular problem must be solved numerically. However,
since we have focused on the parallel susceptibility, it was
only necessary to get the zeroth- and second-order terms
in the B expansion of v, (B,T). Up to s =

—,', it remains

possible to obtain the zero-field eigenvalues and express
the second derivative of vi (B,T) with respect to B by a
convenient differentiation of the secular polynomial. For
s & —„anumerical diagonalization is unavoidable. How-

ever, in the low-temperature range, the behaviors of the
correlation length and of the parallel susceptibility may
be derived through a perturbation-type process, whatever

the values of s and s'. This allowed us to build up a map,
in the (s,s') plane, for describing the behavior of the
product (X~~T)„ for a compensated chain. It appears that
this behavior results from a competition between the
divergence of the correlation length and the evanescence
of the moment magnitude per unit cell. For slightly un-
compensated chains, with the largest moment associated
with the largest spin, a 1D analog of the well-known
compensation point of 3D ferrimagnets is predicted.

APPENDIX A

with

X
Z~(0)

(Al)

We want to express the correlation length g in order to
evaluate its low-temperature behavior. In fact, by using
the definition [Eq. (7}],we must calculate the correlation
(s,'sj') that we define as

X= g . g g . g m;m [ 7'(0) 1] [T(0)J '] [T(0)'] Z '(0), (A2)
mp m,. mN

where m; is the z component of the spin s;; Z~(0) is deduced from X by substituting 1 to m;m . Moreover, we can
write

V'(0) =SV(0, T)S (A3)

where the matrix V(0, T) is obtained by diagonalizing 7'(0) in such a way that the eigenvalues v i (0, T), v2(0, T), . . . ,
v 2, +, (0, T) are written in decreasing modulus order since the chain is regular. Equation (A2) can also be written

X= g g g g g g g m, m, (/) i[v, (0, T)] ~(S ')i
mp m,. m . mN I I' I"

X(S)~ i.[vi (0, T) '(4 ')i.~ (S)~ i [vI (0, T)]'(1 ')i-~ Zo '(0) .
J p

(A4)

Let us suppose that, for finite j-i, the chain length increases to infinity with X-j and i becoming infinite too. In these
conditions, for l%1 and I"%1,the ratios [vi(0, T)/vi(0, T)] J and [vI (0, T)lvi(0, T)]' vanish and we have

X= Q g g g g m, mj($), ($ '), (S) i[vi(O, T)]' '(4 ')i (S),(S '), Zo'(0) .
mp m,. m. mN

Let us define

F I= g . g (+) i(& ')) (4)
j+I N

g (& ')I (&) i(+ ')i,ZO'(0) .
mp

(A5)

(A6)

(A7)

For j imuch greater -than unity, we can only consider the two dominant eigenvalues vi(0, T) and v2(0, T) in the I sum-
mations present in X. We then get

v2(0, T)
g gm, m F,G, + F 262 +

(A8)

F iG, +
t J

v2(0, T)
m. 2 2m,.
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pm(S), (4 '),=() . (A9)

Due to the symmetry associated to the change of z into—z, the elements (4), and (S), are equal. Similarly,
since in the zero-field limit T(0) is a symmetrical matrix
(and 4 consequently a unitary one), the elements (S '),
and (1 '), are equal and we can write

g(T)- 1

vz(0, T)1—
v, (0, T)

as T—+0. (A12)

In the low-temperature limit ~u ~
is close to unity and the

correlation length g behaves as

As a result, the contribution I;m F &G& vanishes.
I I

Thus, forj im-uch greater than unity, Eq. (AS) reduces to

v~(0, T}

v, (0, T}
(A 10)

Since ~u
~

is smaller than unity and using Eq. (7) we get
immediately

1 [u f(1+/u/)
(1—

/u /)'

t (m, m') = [T(0)] (B1)

and t'(m, m'), t"(m, m') the corresponding expressions of
d ['T(B)] IdB and d [7(B)] IdB taken for 8 =0;
we get

APPENDIX B

Using Eq (.5) we can easily calculate the elements
d [T(8)] IdB and d [7(B)] IdB; let us call when
B=0:

t '( m, m '
)
=Pgst ( m, m ') ——,[Scoth(Sx )

—cothx ]$2$
'2

(B2)

t"(m, m')=(Pgs) t(m, m')
$

where

S=2s'+1, x= (m+m') .J
2

, [Scoth(Sx) —cothx) +, [S [1—coth (Sx)]—(1—coth x)]2$' 2$
(B3)

(B4)

These matrix elements show the following symmetry properties:

t( —m, —m')=t(m, m'), t'( —m, —m')= —t'(m, m'), t"(—m, —m')=t"(m, m'). (B5)

According to Eq. (11) we can expand 'T(8) in the vanishing field limit; as the size of 5'(8) is (2s + 1)X (2s + 1) we must
distinguish the integer and noninteger $ cases.

Let us consider, for instance, the case s =
—,'. Owing to Eqs. (Bl)—(B5) we have

t (3/2, 3/2) t (3/2, 1/2) t (1/2, 1/2) t (1/2, —1/2)
t (3/2, 1/2) t (1/2, 1/2) t ( 1 l2, —1/2) t (1/2, 1/2)
I (1/2, 1/2) I (1/2, —1/2) I (1/2, 1/2) I (3/2, 1/2)

I (1/2, —1/2) t(1/2, 1/2) I (3/2, 1/2) t (3/2, 3/2)

I'(3/2, —1/2) I'(3/2, —3/2)
I'(1/2, —1/2) t'(1/2, —3/2)

t'(1/2, 1/2) t'(1/2—,3/2)—
—t'(3/2, 1/2} —t'(3/2, 3/2)

I'(3/2, 3/2) I'(3/2, 1/2)
t'(1/2, 3/2) t'(1/2, 1/2)

+B t '(1/2, —3/2) t '(1—/2, —1/2)—
—I'(3/2, —3/2) —I'(3/2, —1/2)

B2

2

t "(3/2, 3/2) t "(3/2, 1/2) t "(3/2, —3/2)
t "(1/2, 3/2) t "(1/2, 1/2) t "(1/2, —3/2}

I"(1/2, —3/2) I"(1/2, —1/2) I"(1/2, 3/2)
I "(3/2, —3/2) I "(3/2, —1/2) I "(3/2, 1/2)

t "(3/2, —3/2}
t "(1/2, —3/2)

t "(1/2, 3/2)
t "(3/2, 3/2)

+ ~ ~ ~ (B6)

Applying the unitary transformation

'T(B)=VlV(B)Vl'
defined by the matrix S':

(B7)



46 THERMODYNAMICS OF ALTERNATING (s,s') CHAINS IN. . . 6247

we obtain

1 0 0 1

0 1 1 0
0 1 —1 0
1 0 0 —1

(B8)

A 0 0 S' B& A" 0
V'(B)=

p g) +B pt p +
p qadi

+
2

with

t (3/2, 3/2)+ t (1/2, —1/2) t (3/2, 1/2)+ t (1/2, 1/2)
t ( 3/2, 1/2) + t ( 1/2, 1/2 ) t (1/2, 1/2 ) + t ( 1/2, —1/2)

t (1/2, 1/2) —t (1/2, —1/2) t (3/2, 1/2) —t (1/2, 1/2)
t (312,1/2) —t (1/2, 1/2) t (3/2, 3/2) —t (1/2, —1/2)

t'(3/2, 1/2) —t'(3/2, —1/2) t'(3/2, 3/2) —t'(3/2, —3/2)
t'(1/2, 1/2) —t'(1/2, —1/2) t'(1/2, 3/2) —t'(1/2, —3/2)

t'(1/2, 3/2)+ t'(1/2, —312) t'(1/2, 1/2)+ t'(1/2, —1/2)
t'(3/2, 3/2)+t'(3/2, —3/2) t'(3/2, 1/2)+t'(3/2, —1/2)

t"(3/2, 3/2)+t "(3/2, —3/2) t "(3/2, 1/2)+t "(3/2, —1/2)
t"(1/2, 3/2)+t" (1/2, —3/2) t "(1/2, 1/2)+t "(1/2, —1/2)

t "(1/2, 1/2) —t "(1/2, —1/2) t "(1/2, 3/2) —t "(1/2, —3/2)
t "(3/2, 1/2) —t "(3/2, —1/2) t"(3/2, 3/2) —t "(3/2, —3/2)

(B9)

(B10)

(B11)

(B12}

This matricial structure extends to all half integers s =(2cr —1)/2 values, with 0 ~ 2, and A, S,S', C', A", and 2)" are
also cr Xcr submatrices. The general form of the transformation matrix V/ is

1

v'2

1

v'2

1

v'2

v'2

(B13)

where i' and 2 are also cr X 0 submatrices defined by

For integer s values (s =0 ), the structure is slightly different; the matrix Q must be written

(B14)

1

V'2
10

1 0
10

(B15)

where i'and 2 are defined as above. The structure of 'T(B}is now

A 0 0 0 0
V(B)= &2t(p, s}. &2t(0, 1) t(0, 0) 0 +B 0 0 &2t'(O, s) &2t'(0, 1)

0 o 2) c" o 0

A" 0 0
+ &2t"(O,s) . . &2t"(0, 1) t"(0,0) 0

0 0 g)l I

where A, 2), X', C', A", and g)" are also cr X o. submatrices.

(B16)
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APPENDIX C

In order to evaluate the correlation length [Eq. (8)] in the low-temperature range, we must calculate the firs two
dominant eigenvalues v

&
(0, T), v2(0, T) of the matrix T(0). At low temperature, the leading terms of the current matrix

element t(m, m') are

t(m, m')-exp(Kim+m'i)[1+exp( —kim+m'i}+exp( —2k~m+m'~)+ . ] as T~O

with

K =PJs', k =PJ .

Let us notice that t (m, —m) is equal to 4 [cf. Eq. (B4)].
It appears that the s =

—,
' and s = 1 cases require specific treatments. For s =

—,', we have

t (1/2, 1/2)+ t (1/2, —1/2)
"T(0)=

0
t (1/2, 1/2) —t (1/2, —1/2)

from which we deduce immediately

g(T)-, , s= —,
' as T~O.exp(PJs')

2(2s'+1) '

For s =1,we get

r (1,1)+r (0,0)
'T(0) = r (0, 1)&2

0

t(0, 0)
00 t (1,1)—t (0,0)

The first and third diagonal terms are the dominant eigenvalues and we get similarly

g(T)—, as T~O, with s =1 .exp(2P Js '
)

2(2s'+ 1)

A 0
'T(0)=

0 , 2s odd [s =(20 —1)/2, 0 & 2],

A 0 0
'T(0)= t( ,0)s&2 t( 01)&2 t(0, 0) 0, 2s even (s =cr, cr )2) .

0 0

In both cases, A and 2) are the cr X 0 symmetrical submatrices defined by

In the general case (s ) 1), the matrix 'T(0) has a general form which depends on the parity of 2s. We have

(Cl)

(C2)

(C3)

(C4)

(C5)

(C6)

(C7)

(C8)

t (s,s)+ t (s, —s) t (s —l, s)+ t (s —1, —s)

A = t(s —I,s)+t(s —1, —s) t(s —l, s —I)+t(s —1, 1 —s)

(C9)

t (s —l, s —1)—t(s —1, 1 —s) t(s —l, s) —t (s —1, —s)
t(s —1,s) —t(s —1, —s) t (s,s) t (s, —s}—

In the low-temperature limit we have

t (s,s)+t (s, —s)-exp(2Ks)[f &(k)+S exp( —2Ks)] as T~O,

t(s —l, s —1)+t(s —1, 1 —s)-exp(2Ks)[exp( —2K}fz(k)+S exp( —2Ks)] as T~O,

t(s —l, s)+t(s —1, —s)-exp(2Ks)[exp( —K}f3(k)+exp[—K(2s —1)]fz(k)] as T~O,
where f, (k),f2(k),f3(k),f~(k) may be expanded as

f i (k) = 1+exp( —2ks)+exp( —4ks)+

(C10)

{C11)

(C12}

(C13)
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f2(k) =1+exp[ —2k(s —1)]+exp[—4k (s —1))+

f3(k) = 1+exp[ —k (2s —1)]+exp[—2k (2s —1 }]+
f~(k)=1+exp( —k}+exp( —2k)+ .

(C14)

(C15)

(C16)

as T~O,

where the upper (lower} sign refers to v, (0, T) [v 2(0, T) ]; we thus deduce for the correlation length the expression

At low temperature, it appears that the remaining matrix elements introduce nonsigni6cant contributions to the corre-
lation length g. As a result, the general form of the two dominant eigenvalues can be written

[exp( —K)f3(k)+exp[ K(2—s —1)]f4(k) ]
v (0, T)-exp(2Ks) f, (k)+$ exp( —2Ks)+

1
k —exp —2K 2 k

g(T)—, as T~O, with s&1.exp(2P Jss
'
)

2(2s'+3)

Owing to Eqs. (C4) and (C6), we can generalize the expression of g( T) given in the above equation:

exp(2PJss')
2(2s'+3 —5, , q2

—5, , )

(C18)

(C19)

APPENDIX D

(D 1)

In this appendix we evaluate the parallel susceptibility of an (s,s')iv chain (s' s) and more specifically the product

pll T For the particular cases s =
—,
' and s = 1, the calculation is straightforward and we get easily

2

s= I r+ —,e—xp( —PJ), as T~O,r exp(PJs'}
2'

s 2s'+ 1

2

s =1: g T-g 1 r+ ——
, exp( —2PJ), as T~O .2 r exp(2PJs')

ll s 2s'+ I
(D2)

+ 0 ~ ~

B=0

The odd terms vanish because of field reversal symmetry. Despite the non-Hermiticity of '7'(0) and T"(0) but thanks
to the Hermiticity of 7'(0), it appears that the second-order 8 perturbation can be handled, in a rather similar way to
the well-known Hermitian case. The first step consists in calculating the matrices T(0), T'(0), and T'(0) in the eigen-
basis of V(0), thus giving V(0), 5'(0), and 7"(0). Assuming that the largest eigenvalue of 7"(0) corresponds to the
first eigenvector, the 8 dependence of v1(B, T) may be written

In the general case (s & 1) we are compelled to use a perturbation method; as pointed out in Appendix C, V'(0) is a
symmetrical matrix but 7'(0) and T"(0) are not. We assume that we can expand v, (8, T) as a power series in 8:

d v, (B,T)
v, (8, T) =v, (O, T)+ (D3)

dB

g2
&11+

2
li +i1

,.~, v, (,T)—v; (0, T)
+ I ~ ~ (D4)

where the 8 and T variables have been dropped [because of the non-Hermiticity of 7'(0), the product V'„V;, cannot be
replaced by ( 5'„) ]. The resulting expression of the parallel susceptibility may be written

Pv, (0, T) ",.» v, (0, T)—v;(0, T)

1

v2(0, T)

v, (0, T)

(D6)

Let us now turn to the evaluation of the various terms involved in Eq. (D5) in the low-temperature range. This necessi-
I I

tates a work similar to that achieved in Appendix C. It is easily shown that, in this limit, the term T» can be ignoredI I

as well as the terms 'T1; T, with i & 2. Finally Eq. (D6) reduces to
~ I ~ I

2 +12+21
+II 2 as T~O,

P (v1(O, T))'
1
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where the last fraction is merely the correlation length g( T) given by Eq. (A12) and where 5'&2%'~, is given by

V,2'T» —[t'(s, s}] —exp( —2E) [ [t'(s, s —1) t—'(s —l, s)] —[t'(s, 1 s—} t—'(s —1, —s)]2] as T~O .

Using the low-temperature expansion of t'(m, m')

t'(m, m')-Pgst(m, m') —r+ ——,exp( —k~m+m'~) as T~O
s s

(D8)

and those ones of t (m, m ') and g( T) [Eqs. (Cl) and (C19)], the product y) T may finally be written
'2

)2
r

( ~ )
exp( —4PJs') —exp( —4PJss')

gs r, exp s
2

exp(2P Jss
'

)
as T~O .2s'+3 —

5g )/p
—5g }

(D9)
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