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Monte Carlo simulation of backscattered electrons and energy from thick targets
and surface films
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Electron-matter interaction is described by a Monte Carlo procedure in which the mean free path
is calculated by using a screened Rutherford formula, while energy loss is computed by using the
Kanaya and Okayama semiempirical expression. Monte Carlo simulation results of the backscattering
coe%cient have been compared with the available experimental data. The examined energy range was

5—30 keV, the atomic number range was 4—92, and the tilt angle range was 0' —80'. The agreement
between simulated and experimental data is found to be excellent in the energy range 10—30 keV;
also for 5 keV the agreement is very good when the atomic number is lower than 50. Then the mean

backscattered energy was computed for bulk targets, unsupported thin films, and surface films.

I. INTRODUCTION

The interaction of an electron beam with a solid
target has been studied since the early part of this
century. Excellent reviews about this subject have
been given by Bothe, BirkhoA, and, more recently,
Niedrig, Goldstein et al. ,

~u Newbury et ai, '~ and Feld-
man and Mayer.

Due to the fundamental role played by electron
bar.kscattering in scanning electron microscopy, electron
probe microanaiysis, Auger electron spectroscopy, elec-
tron litography, and radiation damage, since 1960 its
calculation became the subject of the work of a number
of investigators. Everhartrs (large-angle single-elastic-
scattering theory) and then Archard (diffusion the-

ory), Body, '"' Tomlin, ' and Dashen' made calcula-
tions about the backscattering coeKcient r as a func-
tion of the atomic number Z in reasonable agreement
with the available experimental data. Subsequently Ar-

nal, Verdier, and Vincensini gave a simple expression
fcr r as a function of tilt angle and atomic number. Then
primary energy and atomic number dependences of the
backscattering coefficient were given by 3acob, Hunger
and Kuchler, Williamson, Antolak, and Meredith, '
and Dapor, The papers of Kanaya and Okayama,
Lantto, Liljequist, Iafrate, McAfee, and Ballato,
Niedrig, Rogaschew ski, and Dapor are concerned
with the more general theoretical probiems of calcu-
lating transmission, backscattering, and absorpt, ion of
electrons impinging on supported and unsupported thin
films. On the basis of the Everhart theory, McAfee
obtained a general expression for the energy distribu-
tion of the backscattered electrons and Jablonski calcu-
lated the so-called Auger backscattering factor, a quan-
tity the knowledge of which is of fundamental importance
in quantitative Auger electron spectroscopy.

Electron-beam solid-target interaction also has been
approached by using the so-called Monte Carlo method,
a numerical procedure involving random numbers that
is able to solve mathematical problems. This method
is convenient, for the study of electron penetration in

matter, since the probabilistic laws of interaction of an

individual electron with the atoms constituting the target
are known. Consequently it is possible to compute the
macroscopic characteristics of the interaction processes
by simulating a great number of real trajectories and,
then, averaging them.

Leiss, Penner, and Robinson proposed Monte Carlo
simulations valid for high-energy electrons (5—55 MeV)
in carbon. Subsequently Perkins proposed a Monte
Carlo calculation of transmission and backscatt;ering of
0.4—4.0 MeV electrons penetrating in carbon, aluminium
and copper targets. Bishop based his simulations
on a screened Rutherford formula (see, for example,
Refs. 3, 39, and 40) for the elastic scattering and on
the Bethe expression for calculating energy loss, ob-
taining the results concerning keV electrons. Similar
procedures were subsequently proposed by Murata,
Shimizu and co-workers, Love, Cox, and Scott, "
and, more recently, by Armigliato et al. , Desalvo,
Parisini, and Rosa, 47 Salvat and Parellada, 4s "s New-

bury et al. ,
~~ Joy, so Fitzgerald, Gillies, and Watton, sr

and El Gomati, Ross, and Matthew. The Ganachaud
and Cailler and Ichimura, Shimizu, and Ze-Jun ap-
proaches are based on the partial-wave expansion method
(see, for example, Refs. 40, 56, and 57), while the Dapor
work is based on the Kanaya and Okayama semiem-
pirical theory. An excellent review of the various Monte
Carlo procedures used to describe electron transport in
solids has been given by 3ablonski.

All the more recent papers show that the Monte Carlo
method is a very powerful and reliable procedure to study
keV electrons penetrating in matter. The disadvantage
of the Monte Carlo methods with respect to the theoret-
ical approaches is the computer time required by compu-
tations, because the precision of a numerical simulation
depends on the number of calculated trajectories: The
rapid evolution of computer calculation capability allow,
on the other hand, obtainment of statistically significant
results in reasonable computation times.

Also the pseudo-random-number generators available
on most compilers are generally quite reliable: a simple
way to check the pseudo-random-number generator is to
simulate ~ by generating a lot of pairs of random num-

46 618 1992 The American Physical Society



MONTE CARLO SIMULATION OF BACKSCA l IERED. . .

bers distributed in the range —1—1. If the distribution of
the random numbers is uniform then the fraction of gen-
erated points which lie within the unit circle should ap-
proach m'/4. The pseudo-random-number generator used
in the present work, for example, gives a simulated value
for vr of 3.14 when the number of generated pairs is 10 000.

In the Monte Carlo simulation described here the en-

ergy loss has been calculated by using the Kanaya and
Okayama semiempirical formula2 which gives, with re-

spect to the formula of Bethe, s a better agreement with
the Cosslett and Thomas experimental datas concerning
the maximum penetration range (see, for a comparison,
Goldstein et al. i ). The mean free path has been calcu-
lated by using a screened Rutherford formula presuming
that only elastic scattering contributes to significant an-
gular deviations.

The Monte Carlo simulation described is used to calcu-
late the backscattering coefficient and the mean backscat-
tered energy for bulk targets at various angles of in-

cidence. The results concerning backscattering coe%-
cients have been compared with the available experimen-
tal data, ~ and good agreement was found. Then
the mean backscattered energy was calculated for sup-
ported and unsupported thin films.

II. THEORETICAL REMARKS

In a collision event with an atomic electron or a nu-

cleus, the incident electron both loses energy and changes
direction.

Atomic electron excitations or ejections and plasmon
excitations affect the energy dissipation and only slightly
the electron direction in the solid, while nuclear collisions
are nearly elastic and deflect it without relevant kinetic-
energy transfer due to the large mass difference between
the incident electron and the nucleus.

An electron can lose a large fraction of its energy in
a single collision; nevertheless the so-called continuous
slowing down approximation is, generally, accepted: In
such an approximation the electron is assumed to con-
tinuously dissipate its energy during its travel inside the
solid. With such an approach we need an equation to ex-
press the elastic scattering between electrons and nuclei
and another equation to express the rate of energy lost
due to the electron-electron collisions.

VVe will assume that the penetrating electrons are sub-
ject to a screened Coulomb potential V(r) of the forms

Zc2
V(&) = exp i

——[,

where e is the electron charge, Z the target atomic num-
ber, and r the distance between the colliding electron and
the nucleus. The a parameter in the exponential factor
(approximately representing the screening of the nucleus

by the orbital electrons) is calculated, as usual, by ' '

Qp

gs/3 ' (2)

Z2/3
p=k ) (4)

8 is the scattering angle, I&„= 3.26 x 10 (eVcm),
k = 3.4 eV, E is expressed in eV and o in cm~.

The elastic mean free path A can be obtained by inte-
grating the screened Rutherford formula, Eq. (3), in the
range 0—vr of 0 values

1 2P(1 y P)E'
No(m) NK„Z2

where N is the number of atoms per cms.
The probability P(8) of elastic scattering into an an-

gular range from 0 to 8 can be calculated as

o(8) (1+P)(l —cos 8)
o'(x) (1 + 2P —cos 8)

B. Energy loss

The Kanaya and Okayama semiempirical expression
for the energy lost, per unit of length dE/ds is giv—en
b ~3

where ao is the Bohr radius of hydrogen.
The Born approximation for the described potential

gives a difFerential cross section of the form40

do(8) I&„Z~sin 8

d8 E2 (1 —cos8+2P)2'

where

A. Elastic scattering

In this work the first Born approximation is pre-
sumed to be valid during all the electron trajectory fol-
lowed inside the solid target. We expect, then, that the
systematic errors introduced by this approximation on
the macroscopic quantities studied (backscattering coef-
ficients and mean backscattered energy) will be more im-
portant for the lowest primary energy examined (5 keV).
In any case an electron will be considered absorbed when
its energy has become lower than the mean ionization en-

ergy: In such a way we avoid considering electrons of very
low energy for which the partial-wave method is neces-
sary.

dE Z, XZ'~'
d F.'~~

If N is expressed in atoms/cm and dE/ds in eV—/cm
then I&, = 3.60 x 10 (eV ~ )cm

From Eq. (7) one obtains

dE 3(E"'—E'~')
&, dE/ds 5', NZslg

where Eo is the primary energy and s is the path length
corresponding to a mean electron energy E. The maxi-
mum penetration range R is the path length correspond-
ing to E = 0, namely,
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TABLE I. Comparison between the Kanaya and Okayama
maximum penetration range and the Cosslett and Thomas
experimental data.

I
impact. The direction 8, in which the electron is moving
after the last deflection, relative to the z direction, is
given by

Atomic
number

13
13
13

Incident
energy
(keV)
2.5
5
10

Experimental
range

(pm)
0.21
0.48
1.11

Kanaya-Okayama
range

(pm)
0.13
0.41
1.31

cos8, = cos0, cos0+ sin8, sin8 cosP,

where 0, is the angle relative to the z direction before
the impact. The motion Az along the z direction is then
calculated by

I

Az = As cos 0, . (14)
29
29
29

47
47
47
47

79
79
79

2.5
5

10

2.5
5
10
15

2.5
5
10

0.07
0.18
0.47

0.06
0.14
0.39
0.81

0.03
0.08
0.23

0.05
0.14
0.46

0.04
0.14
0.43
0.84

0.03
0.08
0.27

I
The new angle 0, then becomes the incident angle |I, for
the next path length.

An electron is followed in its trajectory into the solid
target until its energy becomes lower than the mean ion-
ization energy J calculated in eV by

J = (9.76+ 58.8Z " )Z.

The mean energy of the backscattered electrons is simply
computed by dividing the sum of their energies by their
number. In the present calculation the simulations have
been performed on 10000 trajectories for each primary
energy and for each target.

R= dE 3E"'
0

~, dE/ds 5I~, 1VZ ~
(9)

IV. RESULTS AND DISCUSSION

In Table I the Kanaya and Qkayama maximum penetra-
tion range calculated by Eq. (9) is compared with the
Cosslett and Thomas experimental data. s' The agree-
ment is very good.

III. MONTE CARLO SIMULATION

2Pr nd2
cos0 = I—1+P —rndz

(12)

The azimuthal angle P can take on any value in the range
0—2' selected by a random number r nd3 uniformly dis-
tributed in that range.

Both the 0 and P angles are calculated relative to the
last direction in which the electron was moving before the

Let us adopt spherical coordinates (r, 0, P) and assume
that a stream of monoenergetic electrons irradiates a
semi-infinite solid target in the +z direction. The path-
length distribution is assumed to follow a Poisson-type
law. The step length As is then given by

As = —A In(r ndq),

where rndq is a random number uniformly distributed in
the range 0—1 and A is calculated by using Eq. (5). The
energy loss LE along the segment of trajectory 6s is
approximated by

b,E = (dE/ds)As,

where dE/ds is computed by using Eq. (7).
The polar scattering angle 0 after an elastic collision is

calculated assuming that the probability P(0) of elastic
scattering into an angular range from 0 to 0 is a random
number rnd2 uniformly distributed in the range 0—1. By
Eq. (6) it follows that

When the electron beam impinges on the solid target,
a fraction of the beam is absorbed, another fraction is
backscattered, and the remaining fraction is transmitted.
The sum of these fractions is equal to 1 and each of them
lies in the range 0—1. Their value depends on the target
thickness. If the target thickness is greater than the max-
imum penetration range R no electrons are transmitted
through the specimen, the incident electrons can be only
absorbed or backscattered, and the fraction of backscat-
tered electrons assumes its maximum value generally in-
dicated as backscattering coefficient. The backscattering
coefficient depends on the material, on the electron pri-
mary energy, and on the incidence angle.

In Fig. 1 the backscattering coeKcient is represented,
for various pure elements, as simulated by the described
Monte Carlo procedure. The incidence is normal and
the examined primary energies range from 5 to 30 keV.
A lot of experimental data is available in this energy
range. ~ ~ They are reported in Fig. 1 to compare
the Monte Carlo results with them.

In Fig. 2 the backscattering coefficient dependence on
the tilt angle a between the electron direction and nor-
mal to the surface is reported for 20-keV electrons and
for a number of pure elements. The Monte Carlo re-
sults are compared, in this case, with the Neubert and
Rogaschewski experimental data.

The agreement between Monte Carlo predictions and
experimental data is very good in the energy range 10—30
keV. For 5-keV electrons there is again a satisfactory ac-
cordance, at least for the atomic number lower than 50:
for Eo —5 keV and Z & 50 departures from experimen-
tal results can be observed (less than 20%%uo for the heavier
elements, depending on the experimentalist). These de-
partures can be explained by the loss of validity of the
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FIG. 1. Backscattering coe%cient for various energies and normal incidence as a function of the atomic number (thick
targets). (x) Monte Carlo 5 keV (a), 10 keV (b), 15 keV (c), 20 keV (d), and 30 keV (e) simulated data. (0) 5 keV (a) and
15 keV (c) Palluel; (K) 5 keV (a), 10 keV (b), and 20 keV (d) Cosslett and Thomas; (0) 5 keV (a), 10 keV (b), and 30 keV

(e) Bishop; (S) 10 kev (b), 20 keV (d), and 30 keV (e) Heinrich; (j) 5 keV (a) and 10 keV (b) Hunger and Kiichler; and ($)
15 keV (c) and 20 keV (d) Neubert and Rogaschewski experimental data.



622 MAURIZIO DAPOR 46

0.6-
(s)

06- 0.6-
(c)

c
6

U
C
C

04-
6

040
Cc

04-
6

I

8 04-

02- 02- 02-

0.0
20

I

40

He l.o = 20 keV
I

60 80
00 I

20 40

C I.n= 20 kcV
I

60 8()
0.0

0
I

20 40

Mg Eo = 20 keV

60 80

1)it (deg) 'I i)i (dcg) Tilt (deg)

(d)
08 0.8

0.6-

6

C't

XI

0.4-

02-

6

U
C
t

co

06

04-

C

6

IQ

C

06

0.4-

X

00
20 40

Al Eo = 20 keV
I

60 80
02 I

20
I

40

Ca F.o= 20 keV

60 80
0.2 I

20 40

Ti Eo = 20 keV

60 80

Tilt (deg) Tilt (deg) Tilt (de/)

08
(h)

0.8
(i)

0.6-

r

0.4-

X

6
~4
8
U

0.6

04-

'6
I
I

U

06.

0.4-

X

0.2
0 20 40

Fe Eo~20keV
I

60 80
02

20
I

40

Cu Eo= 20 keV

60 80
02 I

20
I

40

Ge l'. o = 20 keV

60 80

Tilt (deg) Tilt (deg) Tilt (deg)

0.8

X

06- 6 07-
8
V

X 0.7-

04- I
X 0.5 0.5-

li x

02
0 20

I

40

Nb Eo = 20 keV
I

60 80
0.3 I

20 40

Ag Eo=20keV

60 80
0.3

0 20
I

40

Sn F.o = 20 keV

60 80

Tilt (deg) Tilt (deg) Tilt (deg)

FIG. 2. Backscattering coefficient for various pure elements and 20-keV primary energy as a function of the tilt angle (thick
targets). (x) Monte Carlo Be (a), C (b), Mg (c), Al (d), Ca (e), Ti (f), Fe (e), Cu (h), Ge (i), Nb (j), Ag (k), Sn (l), Ta (m),
Au (n), Pb (o), and U (p) simulated data. ($) Neubert and Rogaschewski Be (a), C (b), Al (d), Ti (f), Fe (e), Cu (h), Nb (j),
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Born approximation for very low energies and also on
the screening parameter used whose dependence on Z, in

reality, is not so simple as expressed by Eq. (2).
Let us now consider a surface overlayer, namely a thin

film deposited on the top of a substrate constituted of
a difFerent material. Compared with the case in which
the substrate is not present, the fraction of backscattered
electrons is increased, especially for very thin films, due
to backscattering from the substrate. 2 In general the
backscattered fraction will assume a value between the
backscattering coefBcient of the substrate and that of a
bulk of the material constituting the film, depending on
the overlayer thickness.

Curves of backscattering as a function of film thickness
for copper, silver, and gold deposited on silicon are pre-
sented in Fig. 3 (primary electron energy 20 keV). Sim-
ilar curves allow the overlayer thickness to be evaluated
by simply measuring the backscattering fraction: Obvi-
ously this method can be used only when the film atomic
number is quite different from that of the substrate.

Let us now consider the mean backscattered energy. It
is not realistic to consider the backscattered electrons as
perfectly reflected from the surface without dissipation of
energy. It is more reasonable to think that they have pen-
etrated below the surface up to, say, s~, and have lost a
small fraction of their energy. As a consequence the mean
energy of the backscattered electrons E~ will be a large
fraction of the primary energy whose value will depend on
the mean path traveled in the solid before emerging from
the surface. Since the mean fractional depth of penetra-
tion of backscattered electrons, u~ ——s~/R, is increasing
as the atomic number decreases, their energy lost is
greater for the light elements with respect, to the heavy
ones. Therefore the mean energy of backscattered elec-
trons, or its fractional value EIt/Ep, presented in Fig. 4
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0. 1 i

200

E =20 keV
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FIG. 3. Fraction of electrons backscattered from surface
films deposited on Si for 20-keV electrons and normal inci-
dence as a function of the film thickness. (C3) Cu/Si, (A)
Ag/Si, and (0) Au/Si. Simulated data.

for bulk targets and normal incidence, will be an increas-
ing function of the atomic number. Similar trends have
been predicted in other papers (see, for example, Refs. 19
and 59).

In Fig. 5 the fractional energy backscattered is pre-
sented as a function of the tilt angle ct between the elec-
tron direction and the normal to the surface, for a number
of pure elements: E~/Ep increases as a increases and the
rate of increase is higher for the lighter elements. As a
consequence the variation of the mean backscattered en-
ergy is reduced as tilt increases. A similar behavior has
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gets for 20-keV electrons and various atomic numbers as a
function of the tilt angle. (&) Al, (K) Ti, (0) Ge, (~) Nb,

(k) Sn, ($) Ta, and (x) U. Simulated data.

been observed for tilt dependence of the backscattering
coefficient 7 (see Fig. 2).

Up to now we have considered backscattered energy
only from bulk targets and we have seen that it is an in-

creasing function both of atomic number and tilt. Let us
now consider an unsupported thin film: It is reasonable
to think that, for a given material, EB increases as the
film thickness decreases below the mean depth of pene-
tration of backscattered electrons 8~, because electrons
can lose less energy inside the solid.

In Fig. 6 we present the fractional energy backscat-
tered from thin films of copper, silver, and gold both un-

supported and deposited on silicon. The primary energy
examined is 20 keV. The incidence is normal.

The mean depth of penetration of backscattered elec-
trons can be evaluated as the thickness for which the
mean backscattered energy from an unsupported thin
film becomes constant. With such a definition and cal-

culating the maximum penetration range R by using the
Kanaya and Okayama formula [Eq. (9)j we found that the
backscattered electrons for copper, silver, and gold come
from mean depths equal to (0.28+ 0.02)R, (0.22 +0.02)R

and (0.18 + 0.02)R, respectively, at 20 keV (see arrows
in Fig. 6). On the basis of their experimental data,
Cosslett and Thomas gave, for the same quantity, about
0.3R for nickel and copper and 0.2R for gold, at 25 keV.
As previously observed, the fractional mean depth of
penetration of backscattered electrons u~ decreases as
the atomic number increases, and, therefore, the mean
backscattered energy from thick targets is an increasing
function of the atomic number (see Fig. 4).

Let us now consider the curves relative to the sup-
ported films. The mean energy backscattered will take
on a value influenced both by the presence of the sub-
strate and the film thickness: In particular, if the sub-
strate atomic number is lower than that of the overlayer,
a maximum is expected located somewhere before the
mean depth of penetration of the backscattered electrons.
This is confirmed by the trends presented where, starting
from the value of a bulk of silicon, the mean backscat-
tered energy reaches a maximum at about 0.5sg (0.1R)
and then decreases up to the value corresponding to a
bulk of the material constituting the film.
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V. CONCLUSIONS

A Monte Carlo simulation based on a screened Ruther-
ford scattering formula and on the Kanaya and Okayama
energy-loss expression has been shown to give results
in good agreement with the available experimental data
concerning backscattering coe%cient in the energy range
5—30 keV.

Then the mean energy backscattered has been com-

puted for thick targets at various angles of incidence and
for supported and unsupported thin films. The results
have been found to be reasonable and self-contained.
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