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Previous theoretical studies and molecular-dynamics simulations show that a periodic one-dimensional

lattice with nearest-neighbor quadratic and quartic interactions supports stationary localized modes.

The most localized of these are an odd-parity mode with a displacement pattern

A(. . . ,0, —2, 1, ——,',0, . . . ) and an even-parity mode A(. . . ,0, —1, 1,0. . . ), where A is the amplitude.

These solutions are asymptotically exact for the pure even-order anharmonic lattice in the limit of in-

creasing order. We show here that in both this asymptotic limit and for the harmonic plus quartic lat-

tice, the odd-parity mode is unstable to infinitesimal perturbations, while the even-parity mode is stable.

For the pure quartic case, the predicted growth rate for the instability is 0.15 in units of the mode fre-

quency, in excellent agreement with the rate observed in our molecular-dynamics simulations. In con-

trast, we observe the even-parity mode to persist unchanged over more than 32000 mode oscillations.

Our simulations show that the instability does not destroy the odd mode, but causes it to move. We will

also discuss a smoothly traveling version of these modes. As they move, these modes have a nonconstant

phase difFerence between adjacent relative displacements, in contrast with traveling modes discussed pre-

viously by others.

I. INTRODUCTION

Previous analytical and molecular-dynamics (MD)
simulations show that stationary, opticlike intrinsic local-
ized modes exist on a one-dimensional monatomic
periodic lattice with nearest-neighbor quadratic and
quartic interactions. ' These modes are reminiscent of
defect-induced localized modes for harmonic lattices, ex-
cept they occur in perfect lattices and can occur on any
lattice site. Furthermore, it has been shown that these in-
trinsic localized modes can also move. ' It has been sug-
gested that three-dimensional versions of these modes
could exist in strongly anharmonic crystals, such as solid
He and ferroelectric systems.

The most localized versions of the stationary modes are
an even-parity mode with approximate displacements
A (. . . ,0, 1, —1,0, . . . ) (Ref. 2) and an odd-parity mode
with displacements A (. . . ,0, —

—,', 1, ——,', 0, . . . ) (Ref. 1),
where A is the amplitude. For positive anharmonicity,
both of these modes have amplitude-dependent frequen-
cies above the maximum harmonic phonon frequency.
Moreover, they become exact solutions for a pure even-
order anharmonic lattice in the asymptotic limit of in-
creasing anharmonic order.

In this paper we first use this asymptotic limit to show
very simply that the odd-parity mode for this case is in
fact unstable against certain velocity and displacement
perturbations, whereas the even mode is stable against
analogous perturbations. This is done in Sec. II. In Secs.
III and IV, we then focus on the case of a quadratic plus
quartic lattice and use perturbation theory to show that
the odd-parity mode for this case remains unstable
against similar perturbations. We predict the growth
rates for the instability and find that they agree well with
rates measured in our MD simulations. These simula-

tions show that the unstable nature of the odd-parity lo-
calized mode does not destroy the mode; instead, it
causes it to move. In contrast to the odd-parity case, no
instabilities are predicted for the even-parity mode for
the quadratic plus quartic lattice and none are observed
in our simulations. Indeed, we 6nd this mode to be ex-

tremely stable. Finally, for a wide range of anharmonici-

ty, we have observed a type of smoothly moving localized
mode with nonconstant phase difference between adja-
cent relative displacements. These modes are discussed
in Sec. V, and the paper is concluded in Sec. VI.

II. ASYMPTOTIC MODE STABILITY

To bring out clearly the physics of the odd-parity-
mode instability in the harmonic plus quartic lattice, we

will first discuss the much simpler case of an odd-parity
mode in a pure even-order anharmonic lattice in the
asymptotic limit of increasing anharmonic order. For a
purely anharmonic lattice of even order r, the potential
energy is

k,V= g (u„+,—u„)",
r

where k„ is the rth-order spring constant and u„ is the
displacement of the nth particle from its equilibrium site.
Figure 1 shows the particle oscillations for the odd-parity
mode, obtained via MD simulations for the case r=6.
These oscillations are seen to resemble closely those for
free particles undergoing elastic collisions at the turning
points. This suggests that, as the order increases, the
portion of an oscillation during which the particles are
subject to large accelerations decreases and the system
behaves like a chain of elastically colliding point masses
attached to each other by nearest-neighbor inextensible
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FIG. 3. Simultaneous collision and snap for the odd-parity
mode A(. . . ,0, ——,', 1, ——,',0, . . . ) in the asymptotically exact
hard-sphere —string model. The amplitude for this mode is
A =20 /3. As discussed in the text, this mode is unstable to any
perturbation which destroys the simultaneity of the collision
and snap.

FIG. 1. Molecular-dynamics-simulation results for the dis-
placements of an odd-parity localized mode A(. . . , 0, ——,',
1, ——,', 0, . . . ), centered at site zero in a 21-particle pure anhar-

monic lattice of order 6. For this simulation, k6 and the ampli-
tude were chosen so that co = 1.6coo, where coo= 1.00

2
[eV/(A amu)]'~' is a convenient frequency unit. The displace-
ments for the particles not shown are negligible. The oscilla-
tions are seen to resemble closely those of free particles under-

going elastic collisions at the turning points.

strings. The e6ect of the string is just to produce an in-
stantaneous velocity change whenever they are fully ex-
tended. The particles will collide when their relative dis-
p1acements satisfy un+, —

un = —a, where a is the lattice
constant. Since the potential is symmetric in the dis-
placements, the string length between adjacent point par-
ticles must then be 2a, producing a reversal when

u„+&—u„=a, as illustrated in Figs. 2 and 3 for the even-
and odd-parity modes, respectively.

A. Theory

To verify this "hard-sphere —string" model in the limit
of large even anharmonic order, consider the potential
between two adjacent particles in the limit of large r:

k b ~, Iu +,—u„I)b
[(u„+,—u„)/b] "~

where k„b "/r approaches a finite constant as r ~ Qc. This
is a square-well potential of width b, involving the rela-
tive displacements between two adjacent particles. This
is just the type of potential described by the above hard-
sphere —string model. For point masses the width of the
mell must be b =a.

The equations of motion are separable into spatial and
temporal parts, so that the solutions for the stationary
modes will have the form u „=A g „f ( t ), where A is the
amplitude, [g„] is the normalized displacement pattern,
and f (t) is a periodic function describing the time depen-
dence of the mode oscillations. Energy conservation
yields

(a)
k, AE=—mA f gg„+

n

f"g (g„+,—g„)", (3)

C =::= 0
A -A

(4)

where m is the particle mass. If we scale f (t} such that

If (t)I = I when f(t)=0, the amplitude is given by
1/r

A =b g(g„,—g„)"
n

To determine the period, the energy-conservation equa-
tion can be rewritten as

—,
' m A f gg„=E( 1 f '}, —

FIG. 2. (a) Collision and (b) "snap" for the even-parity mode
A(. . . ,0, 1, —1,0, . . . ) in the hard-sphere —string model. The
particles are perfectly elastic point masses with adjacent parti-
cles connected by inextensible strings of length 2a, where a is

the lattice constant. As shown in the text, this model exactly
describes the mode in the asymptotic limit of increasing order in

a purely even-order anharmonic lattice. The open circles show

the equilibrium positions. The point masses collide halfway be-

tween their equilibrium positions; the amplitude for the mode is

A =a/2.

which can be integrated to yield

m gg„~=43
2E f df(l f P)

0
(6)

In the limit r~ ~, (rE/k„b")'~"~1, since rE/k„b"
remains finite, so that the amplitude becomes

A —+a A',

where A' is the limit of [g„(g„+,—g„)"] '~" for large r
and we have replaced b with its point-mass value a. For
large r the integral in Eq. (6) approaches unity, and the
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amplitude approaches the value given by Eq. (7). Hence
the period becomes

&~4a A'

1/2
m gg„

n

2E
(8)

In this limit the period depends only upon lattice spacing,
the normalized displacement pattern ( g„), and the ener-

gy.

contrast, this mode is stable against odd-parity perturba-
tions because such perturbations change the speed and
amplitude of both of the central particle's neighbors by
the same amount; the collision and snap remain simul-
taneous.

Finally, we note that the even-parity mode involves no
simultaneous interactions. Hence it is stable.

III. STABILITY ANALYSIS THEORY
FOR THE HARMONIC PLUS QUARTIC CASE

B. Even-parity mode

For the even mode A(. . . ,0, 1, —1,0, . . . ), Eq. (7)
gives A ~a/2 and Eq. (8) gives r—+2a (m/E)'~, which
can be identically rewritten as r=2a/v, where u is the
particle speed. As illustrated in Fig. 2, this is the same
amplitude obtained for this mode in the hard-
sphere —string model. Also, since 2a is the distance trav-
eled by one of the oscillating particles during an oscilla-
tion, the period is just what one obtains for a particle un-

dergoing elastic collisions at its turning points. Hence
the above asymptotically exact results for the amplitude
and period show that the even-parity mode is correctly
described by the hard-sphere —string model.

C. Odd-parity mode

For the odd mode A (. . . ,0, —
—,', 1, ——,', 0, . . . ), Eq. (7)

gives A ~2a/3 and Eq. (8) gives r~8a/3v, where v is
the speed of the central particle. This is the same ampli-
tude predicted by the hard-sphere —string model, as
shown in Fig. 3. Again, the period is the distance trav-
eled by the central particle divided by its speed. Hence
the exact results for both the amplitude and period show
that the odd-parity mode is also correctly described by
the hard-sphere —string model.

For this mode the central particle has twice the speed
of the two adjacent particles. At the turning points, the
central particle simultaneously interacts with both of its
neighbors: It collides with one of its neighbors at the
same time that the string attaching it to the other neigh-
bor snaps taut.

D. Instability

In the large-order anharmonicity limit, any perturba-
tion of the odd-parity mode which causes the collision
and string snap to occur at different times will destroy
the mode. For example, an even-parity velocity change,
i.e., (. . . , 0, —b v, O, b u, O, . . . ), will increase the speed of
one of the central particle's adjacent neighbors while de-
creasing the speed of the other adjacent neighbor. This
destroys the simultaneity of the collision and snap, obvi-
ously destroying the stationary mode. Similarly, an
even-parity displacement perturbation, i.e.,
(. . . , —bu, O, hu, O, . . . ), will increase the amplitude of
one of the central particle's adjacent neighbors while de-
creasing the amplitude of the other adjacent neighbor.
This too will destroy the simultaneity of the snap and col-
lision. Thus the odd-parity mode is unstable against both
even-parity velocity and displacement perturbations. In =cos(cot +P„)—sin(cot +P„}(P„+&

—P„) . (10)

While the asymptotic limit of high-order anharmonici-
ty brings out very simply the qualitative difference be-
tween the odd and even modes with regards to stability, it
remains to quantitatively investigate stability for finite or-
ders. Accordingly, we now focus on a lattice with
nearest-neighbor harmonic plus quartic interactions. To
determine if the odd-parity mode in this lattice is also un-
stable, we will consider the effects of small perturbations
on this mode.

The potential for a periodic lattice with harmonic and
quartic nearest-neighbor interactions is

k2 k4v= g(u„+&—u„) + g (u„+&—u„)
n n

where k4 and kz are the quartic and harmonic spring
constants, respectively. The stationary intrinsic localized
modes may be obtained analytically by first substituting a
solution of the form u„= A(„cos(cot) into the equations
of motion. One then makes the "rotating-wave approxi-
mation, "'

by identically rewriting the resulting cos (cot }
factor as —,'cos(cot )+—,'cos(3~t ) and keeping just the
cos(cot ) term. The equations may then be solved to deter-
mine the frequency and displacement patterns as func-
tions of the amplitude. '

To study the stability of the odd and even modes for
the harmonic plus quartic lattice, we will assume a solu-
tion of the form u„= A/„(t}cos[cot+P„(t)], where we
are now allowing the normalized displacement pattern
t („) to vary with time and have added a time- and site-
dependent phase P„ to the cos(cot) term. In Ref. 8 it was
argued that stationary intrinsic localized solutions for a
one-dimensional harmonic plus quartic periodic lattice
would be stable, provided k4) 0. However, the stability
analysis given there neglected the possibility of a time-
and site-dependent phase, which we have found to be
essential.

Since our molecular-dynamics simulations show that
the odd and even localized modes are generally stable
over at least several periods, the phases and displacement
patterns must vary slowly in time on the scale of the
mode period. If we assume that the relative phase
differences between adjacent particles introduced are
small, we can write

cos(cot+/„+, )

=cos( cot +P„)cos(P„+,—P„)
—sin(cot +P„}sin(P„+&

—P„)
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Substituting this into the equations of motion yields an
equation involving first and third powers of cos(cot +/„)
and sin(cot+/„). We next multiply by cos(cot+/„) and
integrate over a mode period, obtaining

k2
(4+i+4- i

—2k. )

+— ~'l(k. +i —k. )'+(k. -i —k. )'j .

Analogously, a second equation is obtained by multiply-
ing the equations of motion by sin(cot +/„) and integrat-
ing:

g„P„+2cog„+2/„g„

k2
(k. +i(0.+i —0.)+k. -i(4"-i—0. ) j

k4+
4

~ l. (k. +i —k. ) k. +i(0.+i N. )—
+(k. -1—k. )'k. -1(4.-1—4. ) I .

(12)

on the scale of the mode period. The derivation of Eqs.
(11) and (12) utilizing the rotating-wave approximation
would place no restrictions on the time variation of the
normalized displacements and phases. However, our
simulations show that these quantities do evolve slowly
compared with the mode period. Hence we feel that our
time-averaging approach more correctly reflects the
physical situation. Moreover, we will see just below that
the zeroth-order version of our Eq. (11) reproduces pre-
cisely the same stationary mode as given by the use of the
rotating-wave approximation. In view of our derivation,
any perturbation obtained from these equations whose
time variation is greater than or comparable to the mode
period should be unphysical.

Now we let g„=g„+5(„(t) and P„=P +5/„(t),
where the {g„) are the normalized displacements which
describe the unperturbed stationary mode and where the
time-dependent terms are infinitesimal perturbations. To
zeroth order in the perturbations, Eq. (11) reduces to

(V+ i+0'. -i —2g )

+— ~'l. (k'+i —0'. )'+(k'. —i
—k'. )'j

Only the linear terms in the difference P„+,—P„have
been kept in the second equation, since we have assumed
that these terms are small. Since we are assuming that
the normalized displacement pattern and phase vary
slowly with respect to the mode period, these quantities
should be unaffected by the time average.

We note that these equations are the same as those one
would obtain by using the rotating-wave approximation
on both the sin (cot+/„) and cos (cot+/„) terms and
making no time averages. In obtaining Eqs. (11) and (12)
using the time-averaging method, we explicitly required
that the phase and normalized displacements vary slowly

I

(13)

which is just the equation that determines the frequency
and normalized displacement pattern for the unperturbed
modes. ' The first-order equations involve first time
derivatives, which can be eliminated by making the sub-
stitutions $„=5g„and („=5$„. This doubles the num-
ber of variables, but if we assume that the perturbations
have an exponential time dependence exp(A, t), we can
reduce the problem to an eigenvalue equation involving
k. The four first-order equations for the nth particle are
then

k2
A,(„=2a)g„y„+cog'„+ (5(„+i+5)„ i

—25(„)

+— ~'((4+i —P)'(54. +i —5k. )+(F-i—0)'(N. -i 4'. )j (14)

~e. = —2~0.4'+ f4+1(54"+1
—50. )+k'-1(54. -1 50.)ic'

+
4

~ 't(k'. +1
—C )'4+ 1(54.+1

—54. )+(k'. -1—0'. e'. -1(54.-1—54'. ) j ~C

iNQ„= g„,
iNg„= g„.

(16)

To determine the eigen values, we have to solve a
4m X 4m eigenvalue problem, where m is the number of
sites included in the perturbation theory. The mode will
be unstable if a perturbation exists which produces an ei-
genvalue with a positive real part, since this means that
the perturbation will grow exponentially with time.

IV. RESULTS

A. Pure quartic case

First, we will consider the simpler case of the odd-
parity mode in a pure quartic lattice. In this case the sta-
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tionary odd-parity-mode normalized displacement pat-
tern is independent of the amplitude and is accurately
given by (. . . ,0,0.02, —0.52, 1.0, —0.52,0.02,0, . . . ).
There are five particles with nonzero displacements, so
Eqs. (14)—(17}generate a 20X20 eigenvalue problem that
determines the growth rate A, . By casting Eqs. (14)—(17}
into a dimensionless form and solving the eigenvalue
equation numerically, we find that the odd-parity mode is
unstable for all values of the amplitude and k4. The
eigenvectors show that this mode is unstable against
infinitesimal even-parity perturbations in either the parti-
cle phases, i.e., (. . . ,5$, 0, —5$, . . . ), or in the displace-
ments, i.e., (. . . , 5$,0, —5g, . . . ). Since a change in a
particle's phase produces a change in its velocity, these
are just the same type of velocity and displacement per-
turbations which result in instability for the asymptotic
pure anharmonic odd-parity mode, as discussed above in
Sec. II D. Furthermore, our eigenvalue solutions predict
that the growth rate for the instability is 0.15lco, where co

is the unperturbed odd-parity-mode frequency.
In order to test the predictions of the perturbation

theory, we performed molecular-dynamics simulations by
numerically integrating the equations of motion using the
fifth-order Gear predictor-corrector method. The mass

0
was taken to be 39.95 amu, the lattice constant was 1 A,
and the harmonic spring constant, when included, was
k2=10.0 eV/A . This value is such that the maximum
harmonic frequency co,„=2(k2/m)'~ has the same
value as coo, the frequency unit used in the pure anhar-
monic runs (thus the time units in Figs. 1 and 5 —8 are the
same). The time steps were chosen such that there were
at least 100 time steps per mode oscillation, for all runs.
A 21-particle lattice with periodic boundary conditions
was used for the odd-parity and traveling modes. The
even-parity mode was run on a 20-particle lattice, with
periodic boundary conditions.

Our simulations explicitly reveal the instability of the
odd-parity mode for the pure quartic lattice. We can
determine the growth rate for the instability in the simu-
lations by plotting ln( ~u

&

—u, ~
) against time, where u,

and u, are the central particle's nearest-neighbor dis-
placements at the displacement maxima. The difference
u, —u, isolates the even-parity perturbations of the
normalized displacements I g„], so the slope of the plot
will give the growth rate. For a pure quartic odd-parity
mode, our measured growth rate is 0.151+0.001, in units
of the mode frequency, which is in excellent agreement
with the rate 0.151 predicted by perturbation theory.
One cannot expect better agreement than this since the
frequency predicted for these modes by assuming a
sinusoidal time dependence differs from the measured fre-
quency by —1%. The value and uncertainty for the mea-
sured growth rate are determined from a linear least-
squares fit to our ln(

~
u

&

—u
& ~ ) vs time plot.

B. Quadratic plus quartic case

When harmonic interactions (k2) are included, the
perturbation theory predicts that the growth rate de-
creases as the anharmonicity decreases (and hence as the
mode frequency decreases). By casting Eqs. (14)—(17)

0.18

8
o 0.14

C

e 0.10

c 006
U)

0.02
1.0 2.0 3.0 4.0 5.0

FIG. 4. Growth rate for the odd-parity intrinsic localized
mode instability for a 21-particle harmonic plus quartic lattice,
as a function of the ratio of the mode frequency to the max-
imum harmonic frequency. The solid line gives the theoretical
prediction obtained using the odd-parity-mode displacement
pattern A (. . .0,0.02, —0.52, 1.0, —0.52,0.02,0, . . . ), and the
triangles are results obtained from our molecular-dynamics
simulations for various values of the amplitude and k4/k2. For
reference, the dashed line gives the growth rate for the odd-
parity mode in the pure quartic lattice. As discussed in the text,
the discrepancy between the predicted and measured growth
rates for the lowest-frequency point is completely removed
when the spatial broadening of this mode is taken into account.

into a dimensionless form, we find that the predicted
growth rate only depends upon the ratio of the mode fre-

quency to the maximum harmonic frequency. The solid
curve in Fig. 4 shows the predicted growth rates as a
function of co/co, „. The triangles give the growth rates
observed in our simulations for various values of the am-
plitude and the ratio k~/k2. As seen in this figure, the
predicted and measured growth rates are in good agree-
ment.

The pure quartic displacement pattern A (. . . ,0,
0.02, —0.52, 1.0, —O. S2,0.02,0, . . . ) was used in our per-
turbation calculation of the growth rates shown in Fig. 4.
However, adding the harmonic interactions slightly
changes the displacement patterns for the stationary
mode. For our lowest-frequency point at co/co, „=l. 38,
we find that the corrected displacement pattern
is A (. . . , —0.029,0. 162, —0.637, 1.0, —0.637,0. 162,
—0.029, . . . ), which is somewhat broader spatially than
the pure quartic pattern given above. Using this dis-
placement pattern, we find that perturbation theory pre-
dicts a growth rate of 0.0490co, in good agreement with
the growth rate 0.0489+0.0001co measured in our simula-
tions. Thus this broadening is the cause of the small
discrepancies between our predicted and observed growth
rates in Fig. 4 for the lower co/co, „values.

Even though the odd-parity mode is unstable, it can
still persist (in either the harmonic plus quartic or in the
pure quartic cases) for several oscillations before being
affected by a perturbation. For example, with a displace-
ment perturbation (. . . , 5a, O, —5a, . . . ), where 5a is
0.01% of the unperturbed mode amplitude, the odd-
parity mode shown in Fig. 5 oscillates for roughly 15
periods before the instability alters its displacements
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FIG. 5. Example of the instability of the odd-parity mode for
a 21-particle harmonic plus quartic lattice. Here co/co, „=1.63,

0J=k4A /k~ =1.25, A =0. 1 A, and the t =0 unperturbed dis-
placement pattern was A (. . . ,0, —0.011,0. 106, —0.595, 1.0,
—0.595,0. 106, —0.011,0, . . . ), centered at site zero. This
mode was seeded with a displacement perturbation
A (. . . ,0, —0.0001,0,0.0001,0, . . . ), resulting in the mode
evolving into a moving mode that oscillates between sites. For
clarity, the displacements have been scaled up by a factor of 2.
The displacements for the particles not shown are negligible.

significantly. As seen in this figure, the instability does
not destroy the mode, but rather causes it to begin oscil-
lating between neighboring sites. Subject to the same
perturbation, a pure quartic odd-parity mode survives for
roughly 10 oscillations before beginning to oscillate be-
tween sites.

In contrast, no instabilities are predicted for the even-

parity mode in either the pure quartic or harmonic plus
quartic case, and we have found the even-parity mode to
be extremely stable in our simulations. For instance, we
have run both the pure quartic and harmonic plus quartic
even-parity modes in simulations for more than 32000
mode oscillations and have seen no changes in the mode
whatsoever, as shown in Fig. 6 for the pure quartic case.
Even if we include a displacement perturbation with the
same relative magnitude, 0.01% A, as the perturbation
used to seed the instability for the odd-parity mode
shown in Fig. 5, our simulations show that the even-

parity mode still remains unchanged after more than
32 000 mode oscillations.

FIG. 6. Corrected even-parity mode A (. . . ,0, —6, 1,
—1, 6,0, . ~ . ) for a 20-particle pure quartic lattice, observed in

our simulations after more than 32000 oscillations. The mode
is centered at sites ( —0.5,0.5). For this simulation, k4 and the
amplitude were chosen so that co = 1.7coa, where coo= 1.00
[eV/(A amul]'/' is a convenient frequency unit. The displace-
ments for the particles not shown are negligible. This mode is
extremely stable, in agreement with the perturbation-theory
analysis.

site and evolves into an even-like mode. These modes
make many oscillations in the time required to move be-
tween adjacent sites. Also, as the modes move from site
to site, their displacement patterns alternate between the
even- and odd-parity-mode patterns, and the mode fre-

quency remains constant.
For example, for a relative phase perturbation

5$, —5$o =5$o —5$,= —0.09 rad,

our simulations yield smoothly traveling modes having a
very well-defined velocity, for a wide range of anharmoni-

10

6
N

o
V)0a 0
Q)
o -2

4
CL

-6

-10
V. TRAVELING LOCALIZED MODES

I

20 40 60 80 100

We have shown that the odd-parity localized mode on
the harmonic plus quartic lattice is unstable against
infinitesimal perturbations. Nevertheless, as illustrated in
the particular case shown in Fig. 5, the instability does
not destroy the mode; rather it causes it to move. De-
pending on the initial conditions and strength of the
anharrnonicity, the odd-parity mode has been observed in
our simulations to manifest its instability by evolving into
three different types of modes: one that oscillates be-
tween adjacent sites, as shown in Fig. 5; one that travels
smoothly from site to site with constant velocity, as
exemplified in Fig. 7; or one which becomes trapped at a

time (units of 2n/I }

FIG. 7. Traveling localized mode in a 21-particle quartic plus
harmonic lattice. For this mode J=—k4 A /kz = 1.63, A =0.1
0

A, co/co, „=1.67, and the t =0 unperturbed displacement pat-
tern was A(. . . ,0, ——', 1, ——',0, . . . ), centered at site zero.

This mode was seeded with an initial velocity perturbation
0

&
=0.00718, in units of A cg,„,corresponding to a rel-

ative phase perturbation of 5P, —5$0=6$o—6P, = —0.086.
The velocity of this traveling mode is —0.053 in the units
0
A cu,„, well below the harmonic sound speed of 0.5. As in Fig.
5, the particle displacements have been scaled up by a factor of
2, for clarity.
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city. For all of the traveling-mode simulations discussed
below, the t =0 amplitude was set to 0.1 A, one-tenth of
the lattice spacing. To characterize the anharmonicity,
we used the dimensionless parameter J=k4 A 2/k2.
Traveling solutions were observed over a range from
J=0.763, which was the lowest value considered, to
J=2.46, corresponding to a frequency range of
1.35—1.94, measured in units cairo, „. The speeds for

0
these traveling modes, measured in units of Aco,„, in-
creased monotonically with J, from v =0.029 for
J=0.763 to U =0.067 for J=2.46 A11 of these speeds
are well below the speed of sound for the corresponding
purely harmonic lattice, which in our units is 0.5. Figure
7 shows the traveling mode for the case of J =1.63 and
an initial phase perturbation of

5$, 5$o=—5$o 5$—, = —0.086 rad .

The speed for this traveling mode is 0.053. When J is in-
creased to 3.44, the frequency becomes 2.3 and the mode
travels 12 sites before rapidly evolving into a mode which
oscillates between two sites.

Previous analytical work on the traveling modes used
the relative coordinates d„=u„+ &

—u„and assumed a
solution with a constant phase difFerence between these
quantities. ' In particular, in Ref. 5, a solution was as-
sumed of the form d„=Ag„(t)cos(cot+/„), with

P„=nka, meaning that there is a constant phase
difFerence between adjacent relative displacements. The
derivative d„ is then given by

d„=—~A(„sin(tot+/„)+ A g„cos(cot+/„) . (18)

The envelope [g„J should vary slowly in time with
respect to the mode period. Thus the second term in this
equation should be small, provided sin(t0t+nka) is not
close to zero. In this case we can determine the phase
difference from the equation

P„+)
—P„=tan dn+1

Q)d~ + )

—tan ' (19)

Figure 8 shows P 4
—P 3 as a function of time for the

traveling mode shown in Fig. 7. The times span the in-
terval during which the traveling mode passes the
n = —3 particle. The phase differences in the plot were
measured near the velocity extrema for the oscillation,
where the g„ terms should be negligible. As shown in the
figure, the phase difference is not constant as assumed in
Ref. 5. Moreover, nonconstant phase difFerences of simi-
lar magnitude were observed between the adjacent dis-
placements themselves, as well as between the relative
displacements. Hence the phase changes need to be tak-
en into account in analytical models describing these
traveling modes. Similar results were obtained for modes
with lower anharmonicity, down to J=0.763, the lowest
value considered. This value produced a mode with
co/co = 1.35.

0.12

CO

6$

0.09-
O
CO

c

006-
I
C0

CL

0.03 I I

9 10
time (units of 2n/m )

FIG. 8. Phase difference between the relative displacements
d —4 Q —4 Q —3 and d 3

=u 3
—u 2 for the traveling mode of

Fig. 7. The triangles give the relative phase as the traveling
mode passes the n = —3 particle. This is a type of traveling lo-
calized mode where the phase is nonconstant.

VI. CONCLUSIONS

In this paper we have shown that in the limit of in-
creasing even-order anharmonicity, the dynamics of the
odd- and even-parity modes are very simply described by
the asymptotically exact hard-sphere-string model,
which describes the lattice as elastic point masses con-
nected by inextensible nearest-neighbor strings. In this
limit one easily sees that the even-parity mode is stable,
whereas the odd-parity mode is unstable against even-
parity velocity and displacement perturbations.

We then used perturbation theory to show that the
odd-parity mode is also unstable in the harmonic plus
quartic periodic lattice. Instability growth rates predict-
ed by the perturbation analysis agree well with the rates
measured in our molecular-dynamics simulations. More-
over, the simulations show that the even-parity mode is
stable, in agreement with our perturbation-theory results.

The simulations show that the instability does not des-
troy the odd-parity mode, but causes it to move. Al-
though we have considered only constant-energy systems
here, we note that if there were a mechanism which could
create an odd-parity mode and then feed energy into it,
the amplitude would grow. In practice, there would al-
ways be a triggering mechanism for the odd-parity mode
instability, i.e., fluctuations, numerical round-off errors in
simulations, etc. Thus the amplitude would grow until
the instability overtakes it and causes the mode to move.
This appears to have occurred in the simulations of Bour-
bonnais and Maynard, ' where they applied a periodic
force to a single-lattice site in a periodic one-dimensional
lattice having harmonic and quartic nearest-neighbor in-
teractions and observed the subsequent production of
traveling intrinsic localized modes.

The unstable odd-parity mode is observed to evolve
into several different types of moving localized modes.
For certain perturbations the odd-parity mode evolves
into a mode which smoothly travels from site to site with
a constant velocity. Preliminary results show that these
traveling modes exist over a wide range of anharmonicity
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and can become trapped as the anharmonicity increases.
These modes are a type of traveling localized mode that
have a nonconstant phase di8'erence between relative dis-
placements.
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