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We discuss the double-time Green s-function approach for the phonon-phonon interaction in anhar-

monic solids. Using a certain interpretation of the phonon operators, the crystal Hamiltonian may be
rewritten in a compact form. The equation of motion for the Green's function is tremendously simplified

with this formalism. The self-energy can be obtained in a very simple way, to any desired perturbation
order. Our results reproduce the corresponding terms of the available literature results, which are limit-

ed to the fourth order in the perturbation parameter.

I. INTRODUCTION

The theoretical interpretation of Raman and infrared
spectra in molecular crystals has made effective and ex-
tensive use of the methods of many-body quantum field
theory. ' The phonon-phonon interactions due to the
crystal anharmonicity are responsible for the finite life-
time of the phonon excitations and thus for the line
broadening of the optical bands. Recently, high-
resolution Raman techniques, Fourier-transform in-
frared (FTIR) spectroscopy, and time-resolved coherent
anti-Stokes Raman spectroscopy (CARS) .(Refs. 10—12)
have allowed reliable rneasurments of the phonon band-
widths in the frequency domain or the direct observation
of the time evolution of phonon excitations. Theoretical
studies in molecular crystals have been generally carried
out by limiting the perturbation expansion of the Green's
function to the lowest-order terms. ' ' In this approxi-
mation the computed bandwidths depend linearly on the
temperature in the classical limit. Experimentally, the
temperature dependence of the bandwidths has been
found to be linear only in a few cases, such as some lattice
phonons in naphtalene' and antracene. ' In the case of
the intramolecular modes, the temperature dependence
has turned out to be quadratic in most of the experimen-
tal studies. ' ' ' Recent Raman and infrared rneasure-
ments on CO2 crystal have shown that, at high temper-
ature, higher-order processes are important also for lat-
tice phonons. In the case of nitrogen, the bandwidth of
the observed lattice modes and intramolecular modes has
been found to follow a nonlinear behavior even at rela-
tively low temperatures. Higher-order processes thus ap-
pear generally to play a crucial role in determining the
spectral properties of molecular solids. An effective tool
for evaluating the phonon linewidths at high perturbation
orders would be very useful in the interpretation of exper-
iments. The approach used by most authors is based on
the Matsubara representation for the temperature-
dependent Green's function. ' In this formalism the
Green's functions are time independent and are evaluated

by use of a perturbation expansion of the scattering ma-
trix S. The Green's function is given by a summation of
terms which are represented as Feynman diagrams. At
each perturbation order, one must construct all the topo-
logically distinct diagrams and then evaluate the corre-
sponding Green's function by contour integration, using
rules given by Maradudin and Abrikosov, Gorkov, and
Dzyaloshinski. The method is involved and becomes
rapidly unmanageable with increasing perturbation or-
der. Moreover, for high orders, the construction of all
topologically distinct diagrams is far from being a trivial
task. Tripathy and Pathak and Monga and Pathak
succeeded in deriving most of the terms of order A, con-
tributing to the phonon lifetime. To our knowledge,
there has not been a subsequent attempt to extend the
Matsubara technique to higher-order corrections of the
photon self-energy.

An alternative description of the spectral properties in
anharmonic solids is based on the double-time Green's
functions. The double-time Green's functions (retarded,
advanced, or causal) are explicitly time dependent. Using
the Heisenberg equation of motion, one can build up an
infinite chain of coupled equations involving a Green's
function of increasing complexity. This technique,
known as the equation-of-motion method, was used by
Zubarev to study electron-phonon interactions in met-
als. Tyablikov and Bonch-Bruevich developed a pertur-
bation series for the mass operator based on a simple
decoupling scheme. Recently, this technique has been
used to study phonon-phonon interactions by Bogani,
Cardini, and Schettino for the vibrational relaxation of
the Fermi doublets in CO& crystals, and by Procacci
et al. for the relaxation of isolated vibrons in linear
chains of polyatomic molecules. The double-time
Green's-function method has been reviewed by Parry
and more recently by Wallis and Balkanski. ' The
method is, in principle, straightforward, although the re-
sults depend on the approximations used in decoupling
the infinite chain of equations. ' ' Furthermore, the alge-
braic intricacies involved in decoupling even a short
chain of equations have deterred many from applying the
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The Harniltonian of an anharmonic crystal in a
second-quantization representation may be written as a
diagonal harmonic term &z plus a series of off-diagonal
anharmonic contributions ' &„,n & 3:

&=&~+&3+&4+&,+ .

where

(2.1)

method to the phonon-phonon interaction.
In the present study we discuss the double-time

Green's-function approach in the case of the phonon-
phonon interaction (i.e., for anharmonic crystals). We
shall show how the equation-of-motion method may be
improved by appropriately redefining the crystal Hamil-
tonian and the decoupling scheme, in order to evaluate in
an extremely straightforward and surprisingly simple way
the self-energy to any desired perturbation order. Results
up to order A, are found to be equivalent to those ob-
tained by other authors using the standard technique of
the temperature Green's function. ' The present paper
is organized as follows. In Sec. II we rewrite the crystal
Hamiltonian by redefining the phonon operators. In our
formalism both positive and negative signs of the branch
indices are allowed. The sign of the branch index distin-
guishes between annihilation and creation operators.
With this simple device, the crystal Hamiltonian is
rewritten in an extremely compact form. The equation-
of-motion method is introduced in Sec. III and developed
in Sec. IV, where, in order to build up the infinite chain
of coupled equations, we derive an exact equation
satisfied by the Green's function. The decoupling scheme
for the infinite chain is discussed in Sec. V. The decou-
pling method allows one to obtain at once the complete
self-energy expression to any desired perturbation order
without drawing all the topologically distinct irreducible

diagrams. The latter may be easily identified, a posteriori,
by decomposing the overall expression for the self-energy.
In Sec. VI, finally, we give an explicit example of finite-
order expansion by adopting our procedure up to order
A, . The overall expression for the proper self-energy has
been decomposed into the various contributions arising
from all the topologically distinct A, and A, diagrams.
All the diagrams obtained by Tripathy and Pathak are
easily identified. We also report some additional A, con-
tributions to the real part of the proper self-energy.

II. HAMII. TONIAN OF THE SYSTEM

The interaction coefficients Vk; . . . k; are multidimen-11 nn
sional Fourier transforms of potential derivatives and are
symmetric in the indices ki. The label i distinguishes
different phonon branches with the same wave vector.
We choose positiUe integers as branch labels.

Equations (2.3) and (2.4) are rather complex and can-
not be manipulated easily. We will transform them into
extremely compact expressions with the device of intro-
ducing negatiUe indices for the branch labels. For a nega-
tive i, we define

bk, =b —k, (fo.r i (0) . (2.5)

In this notation each factor bk;+b k, in Eq. (2.3) be-
comes a sum on both positive and negative signs

bk,.+b„,. Thus, by allowing the sums to run on both
positive and negative branch indices and choosing
Vk; . . . k; to be independent of the signs of the branch

11 nn
indices, we rewrite Eqs. (2.2) and (2.3) as

&2= Q co, (b, b, + —,'),
a)0

V, . . . „b, . b„.

(2.6)

(2.7)

Here and in the following, in order to make complex ex-
pressions more compact, we have replaced each pair of
indices k, i with a single collective index: a —= (k i„),and
—a =( —k„i,). By—a & 0, we mean i, &0.

The commutators (2.4) may be rewritten as a single
equation:

[b„bb ]= cr, 5, b, (2 8)

Green's functions in many-body theory are a generali-
zation of correlation functions. Given two operators in

the Heisenberg representation, A (t') and 8 (t"), acting
at different times t' and t", the retarded Green's function
G(A, B;t) depends, for a stationary system, only on the
time lag ' ' t =t' —t" and is defined by

where cr, —=sgn(i, ) has been introduced to make Eq. (2.8)

valid for all signs of a and b. Equations (2.6)—(2.8) are
compact equivalents of (2.2)—(2.4) and constitute the
starting point in our derivation by completely defining
the phonon system.

III. EQUATION OF MOTION
FOR RETARDED GREEN'S FUNCTION

&2—geek;(bk;bk, + —,
' ),

k, i

(2.2) G ( A, B;t)= —ie(t)( [ A (t),8 (0)]—), (3.1)

Vk, .
, k . (bk, ,

+b —k, ,
}

X (bk, +b k;). (2.3)

The operator bk, and its adjoint bk; annihilate and create
phonons with wave vector k and energy cok; and satisfy
the boson commutation rules

where e(t) is the unit-step function (1 for t &0 and 0 for
t (0) and the angular brackets indicate the canonical en-

semble average appropriate to the anharmonic Hamil-
tonian (2.1). By differentiating Eq. (3.1) with respect to
the time t, we obtain

i ' ' =5(t)([A (t),8(0)])
dt

—ie(t)[([A (t),H],8(0)])
[bk bk i„ l 5k k 5i

[bk; bk, ;, 1=[bk;
(2.4) =5(t)([A (t),8(0)])+G([A,H],B;t),

(3.2)
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where 5(t)=de(t)ld(t) is the Dirac's 5 function and we
have used the fact that the operator A (t) obeys
Heisenberg's equation of motion,

i =[A(t),H] .
dt

(3.3}

By taking the Fourier transform of both sides of Eq.
(3.2), we obtain

coG ( A, B;co) = ( [ A (0),B (0)] )

+6([A,H],B;co), (3.4)

IV. GREEN'S FUNCTION HIERARCHY

Our objective is the determination of the phonon spec-
trum of the crystal, that is, the transition probability of
the system under an applied periodic field. Linear-
response theory relates the spectrum to the one-phonon
Green's function 6(b, b;co) The d. istribution of the
poles of 6(b,b;co) is found to correspond to the spec-
trum of the elementary excitations of the system. In
our notation 6(b, bq , co) becom'es G(bq, b

q ,co), with'

q &0. As we will see, by repeatedly applying Eq. (3.4),

where 6 ( A, B;co) is the Fourier transform of the Green's
function 6 ( A, B;t), i.e.,

6(A, B;co}=f e'"'G(A, B;t)dt . (3.5)

The last term in Eq. (3.4) is a higher-order Green's func-
tion involving [A(t),H] instead of A(t). The equation
for G([A,H],B;co}may be obtained by replacing A with

[A,H] in Eq. (3.4}, producing the new Green's function
6([[A,H],H], B;co}on the right-hand side. Repeating
this process, we construct an infinite chain of coupled
equations involving a hierarchy of Green's function.

[A,&q]=(co, +col, +co, + +co&+co, ) A, (4.1)

where, by taking into account the fact that N &;=Nk;
(because of the time-reversal symmetry of the phonon
Hamiltonian), we have defined the energy as an odd func-
tion:

N = NJ J (4.2)

The commutator [ A, b ] is a sum of terms, one for each
operator b in A. The term corresponding to b. is ob-
tained by replacing b with 5 in A:

[A, b ]=5, b~b, bdb, +b, 5s b, bdb,

+b bbb 5dqb + b bbb bd5

(4.3)

Also, the commutator [ A,gf„] is a sum of terms, one for
each operator b in A. Each term is a copy of A with b.
replaced by

we obtain a hierarchy of Green's functions of the form
G(A, b

q , co'), where A is a product b, bbb, bdb, of
operators.

The commutators [ A, b ], [A,Sf'], and [A,&„]that
are required to use Eq. (3.4} may be evaluated by induc-
tion on the number of operators b. appearing in A, as is
shown in the Appendix. The resulting commutators are
given here for a generic product A of the form
A =b, blab, bdb, Th. e commutator [A,&z] is propor-
tional to A. The proportionality constant is a sum of en-
ergies NJ, one for each operator b~ appearing in A, with
the minus sign for j (0 (i.e., for a creation operator

bj =b j, ; and the plus sign for j & 0 (for an annihila-
i i

tion operator b. =bz; ..
i'i

'

n g crj V J23. . . „b2b3 b„:
2y 3y ~ ~ ~ y n

[A,&„]=n g (o, V 23. . . „b2b3 b„)blab, bdb, +n
2) 3y ~ ~ ~

bq (Hb V b23. . .

„blab

3 b„)b, bdb,
2, 3, . . . , n

+ +n g b, bbb, bd(o, V,23. . . „b2b3 b„) .
2y 3p ~ ~ y n

(4.4)

We are now in position to apply the equation of motion (3.4) by writing down the starting equation in the hierarchy for
G(b, b q;co):

coG(bq, b;co)=([b,b ])+6([b,&~],b;co)+ g G([b,&„],b;co)
n~3

=1+co G(b, b;co)+ g n g V qz3. . . „G(b2b3 b„,b;co),
n 3 23~. . ., n

(4.5)

where, using Eqs. (4.3), (4.1}, and (4.4), with A =b, we have exploited the linearity of G ( A, B;co) and the fact that
o'q= 1 (as q &0}. As we have anticipated, the equation of motion (3.4} for the Green's function G(bq, b q, co) involves
higher-order functions of the form G(bzb3 . . b„,b q', co). Because of the form of Eqs. (4.1) and (4.4), the equation for
6(bzb3 b„,b q;co) involves more Green's functions of the same form. In our effort to remove all excess baggage
from the formalism, we leave as implicit the arguments b

q
and N, which are always present in the Green s functions,

and use the shorthand

G(abc d) =G(b, bbb, bd, b— ;co) .
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Thus we rewrite Eq. (4.5) for G (q) =G(b~, b ~;co) as

(co —co )G(q)=1+ g n g V z3. . . „G(23 n) .
fl 3 2&3». . . 1l

(4.6)

Neglecting the last term in Eq. (4.6), we obtain the Green s function in absence of anharmonic interactions (the "bare"
Green's function), Go(q):

Go(q) —= (4.7)

Go(q) has a pole at co =co, the unperturbed phonon energy. In order to go beyond this zeroth-order approximation, we
need to evaluate the Green's functions G (23 n) appearing in Eq. (4.6). Thus, using again Eqs. (3.4), (4.1), and (4.4),
we write the equation of motion for the generic Green's function G (abc de) as

G(abc de)= 1

co (co +cob+co + ' ' ' +cod +coe )

X ([bb&b, bdb„b ])+g n g cr V,~3. . . „G(23 . nbc de)
Pl 3 2&3». . . 11

+cr&V &&3. . . „G(a23 nc de)+ +O', V,z3. . . „G(abc d23 n} ' . (4.8)

This compact equation, of which Eq. (4.6) is a special
case, is the basic equation that will be used in moving up
on the hierarchy of coupled equations for the Green's
functions. The advantage of using positive and negative
branch indices to distinguish annihilation and creation
operators is evident in Eq. (4.8), which, for n operators
b„b&, . . . ,b„ is equivalent to a set of 2" equations in-

volving various combinations of the operators
b„b„b&,b&, . . . ,b„b, . The signs of the energies coJ [Eq.
(4.2)] and of the factors oJ adjust for the signs of the
branch indices j and thus allow a single compact equation
to replace several equations. Equation (4.8} is a direct
consequence of Heisenberg's equation of motion (3.3) and
of the definition of the system [Eqs. (2.6)—(2.8)] and is
thus an exact equation.

V. DECOUPLING SCHEME
AND DYSON'S EQUATION

The Green's function G(q) may be evaluated by re-
peatedly substituting Eq. (4.8) in Eq. (4.6). Thus we ob-
tain an expression for G(q) involving the thermal aver-
ages ([b,b& b„b ~]). Because of the structure of
Eq. (4.8), all such thermal averages appear in combina-
tions of the form

[co—(co, +coq+ +co, )] '([b, bq
. . b„b q]) .

This combination is the only nontrivial factor left to
evaluate in the expansion for G(q). In order to evaluate
it, we use first Eq. (4.3) to reduce the commutator to a
combination of simple products b, bb . b, and then ap-
proximate the thermal averages (b, bs . . b, ) by p«-
forming them over the ensemble appropriate to a purely
harmonic Hamiltonian. With this approximation and in
the limit of a large sample, Wick's theorem holds. '

The average of a product of creation and annihilation
operators is nonzero only if there is an even number of
operators and these occur in conjugate pairs b & b&. The

I

average is equal to the sum of the products of all possible
pair averages (b, bs ) =5, s (b sb» ). The operators in

each pair are in the same order than in the original prod-
uct. For a number 2n of operators, there are
(2n)!/(2" n! ) different possible pairing schemes. Thus

(b, bq b, bd) =(b,b~) . (b,bd)

+all other pairing schemes

=5,b 5,d n~ nd

+all other pairing schemes, (5.1)

where, by taking into account the commutator (2.8), we
have defined

and

n~ —= (b t b~ )

(

blab&

) =n (co& ) for b )0,
(b &b s ) =n (co & )+ I for b (0

n (co)= 1

(e —1)

(5.2)

(5.3)

is the mean phonon occupation number at the tempera-
ture T as given by Planck's distribution.

The connection between Wick's theorem [Eq. (5.1)]
and the possibility of representing perturbative expan-
sions in terms of sums on diagrams is discussed in many
standard texts. ' ' ' ' Wick's theorem implies that all
the arguments of the interaction coefficients occur in con-
jugate pairs j, —j. The Feynman diagram corresponding
to a term is obtained by drawing a vertex for each in-

teraction coefficient, with a line for each argument, and
then connecting all pairs of lines which correspond to
conjugate summation indices j, —j. All the diagrams
that occur in the expansion for G (q) have two "external"
lines (i.e., arguments not subject to summations), labeled
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+other terms), (5.4}

where, for 2n+1 operators, the sum is extended to all
(2n + 1 }!/(2"n!) terms allowed by Eqs. (4.3) and (5.1).

We now note that the factor (co —
co~)

' in Eq. (5.4) is
the noninteracting, or bare, Green's function Go(q}. Be-
cause of the structure of Eq. (4.8), all terms in the expan-
sion for G(q) contain such a factor. Thus we may write
Eq. (4.6) as

(co —
c0~ )G(q) = 1+Xo(co }Go(q), (5.5)

where the function Xo(co) contains the complete sum in
Eq. (4.6) except for the factor Go(q}. The function Xo(co)
may be expressed as a sum on all diagrams. Let us define
the auxiliary function X(co) as the same sum restricted to
the "irreducible" diagrams. A reducible diagram is a dia-
gram where the connection between the external lines q
and —

q may be severed by cutting just one internal line.
In the diagrammatic treatment it is proved that Eq. (5.5)
remains valid if the sum on all diagrams Xo(co}is rePlaced
by the sum on the irreducible diagrams X(co), and simul-
taneously the bare Green's function Go(q) is replaced by

—
q and q, which arise, respectively, from Eq. (4.6) and

from the 5,~ factors in Eq. (4.3).
In the digrammatic treatment of the Green's function

G (q), the error made in substituting the average us-

ing the anharmonic Hamiltonian with that using the un-
perturbed harmonic Hamiltonian [Eq. (5.1)] is eventually
canceled by the contribution of the "disconnected" dia-
grams, so that Wick's theorem holds without any approx-
imation. As the equation-of-motion treatment is ap-
parently equivalent to the diagrammatic treatment,
we suspect that an analogous proof could be possible also
in our case. We have almost no doubts about the
equivalence of the two treatments, as we may recognize, a
posteriori, which diagram corresponds to which term in
our expansion. By examining a large number of terms,
we have convinced ourselves that no diagram is missing
and that they are properly evaluated. However, we do
not know of any formal proof of the equivalence of the
two treatments, and we have not attempted such a proof
here. Theorems and concepts originally developed in the
framework of the diagrammatic treatment will be used
without further proof other than the assumed equivalence
of these two treatments.

Going back to the combination

[c0 (co +cob+ ' ' ' +c0 )] ([b bb ' ' 'b b q])—
we see that the average is nonzero only if one of indices
a, b, . . . ,c is equal to q, as a result of the 5,~ factors in
Eq. (4.3}, while all other indices occur in conjugate pairs
j, —j, as a result of the 5, b factors in Eq. (5.1) (Wick's
theorem). Thus one of the energies in
(co, +cob+ +co,} is co, while all the other energy
pairs co +co vanish as co = —co [Eq. (4.2)]. Hence

[C0 (Co~+Cob+CO~ ' ' '
+CO~+Coe)]

X([b,bbb, bdb„b ])
=(co coq ) (5~q5b ~

' ' ' 5g en~ ' ' ' ne

the full, or interacting, Green's function G (q): '

(co —co )G(q) =1+X(c0)G(q) . (5.6)

This equation is Dyson's equation, with neglect of "polar-
ization mixing. " In order to ensure that the same equa-
tion is obtained also in the equation-of-motion treatment,
we make exactly the same two steps: (1) discard all terms
in the expansion for G(q) that are represented by reduc-
ible diagrams and (2) replace Go(q) by G(q) in Eq. (5.4).

Dyson's equation [Eq. (5.6)] is equivalent to

G (q) = [co—co —X(c0)] (5.7)

Thus the full Green's function G(q) is mathematically
similar to the bare Green's function Go(q)=(co —c0~)
[Eq. (4.7)], except for an energy change X(co), which is
the "self-energy. "' ' The pole of Go(q), at the unper-
turbed energy c0=c0, is moved to a pole of G(q), at a
new perturbed energy. If X(c0) is a small enough and
slowly varying function of co, this perturbed energy is ap-
proximately co=c0 +X(co ). In general, X(co ) is com-
plex, with a real part 6, which represent an energy shift,
and an imaginary part I ~, which may be interpreted in
terms of a linewidth I or a phonon lifetime h /I'z.

Some comments about the validity of Eq. (5.7} are in
order. In the diagrammatic treatment Dyson's equation
[Eq. (5.7)] is obtained ' by proving that Eq. (5.5) may be
rewritten as

VI. FINITE-ORDER EXPANSION

Since the expansion for G (q), which is obtained by re-
peated substitution of Eq. (4.8) in Eq. (4.6), involves an
infinite number of terms, we need a systematic criterion
for grouping terms in successive order of approximation.
Following Van Hove, Hugenholtz, and Howland, we re-
gard &z,&3,JY~, . . . ,&„as being of order
A, , A, ', k, . . ., A,",where A, is some suitably chosen ex-
pansion parameter. The Green's function G(q) may be

G =Go+ GoXoGo

Go+GoXGo+GoXGoXGo+GoXGoXGoXGo+ ' ' '

(5.8)

where all function arguments have been dropped to hide
unessential details and the terms with one, two, etc., X
functions represent all diagrams made on one, two, etc.,
irreducible parts. Equation (5.8) is the power-series ex-
pansion for G =(Go ' —X) ', that is, Eq. (5.7}. In our
treatment we have found, to a finite order, that the ex-
pansion for G(q) may be reorganized in the form of Eq.
(5.8). Thus we have further evidence for the equivalence
of the two treatments. As a qualitative argument, we
note that both in applying Wick s theorem and in dis-
carding the reducible diagrams we are neglecting some
correlations induced by the anharmonic interactions be-
tween the phonons. Hence it is reasonable to assume that
the error in the decoupling is at least partially compen-
sated by the replacement of the bare Green's function
Go(q) with the full interacting Green's function G (q) and
that Eq. (5.7) is a good approximation.
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evaluated to any desired order n in A. by repeatedly sub-
stituting Eq. (4.8) in Ecl. (4.6), while systematically dis-

carding all terms of order higher than A,
" until no Green's

function is left. As the second term of Eq. (4.8) is of or-
der k, n + 1 successive substitutions are suScient to elim-
inate all the Green's functions of order A,

" or lower. At
this stage we evaluate all the thermal averages using Eq.
(5.4), discard all terms represented by reducible diagrams,
and replace Go(q) =(co—

coq } '
by G(q). A finite expres-

sion for G(q) is thus obtained in terms of interaction
coeScients V123. . . „, factors cr and n, and resonance
factors [co—(co, +cob+ +co, )]

In order to compute the self-energy X(coq}, we will

I

eventually replace co by co in the resonance factors.
Thus we introduce the shorthand

z,b. . . , =[—(co, +cob+ . +co, )]

so that

(6.1)

[co —
(co& +cob + ' ' +co& ) ] =z

q+b

We choose this definition so that z has the desirable prop-
erty of being symmetric in all the indices.

In order to clarify the nature of the expansion for G (q)
and to make the discussion more concrete, we report as
an example the expansion to order A, :

(co—coq)G(q)=1+3V qz36(23)+4V zzqG(234)

=1+9V qz3[co (coz—+coz)] '[( [bzb3, b q] &+o zV z4~G(453)+o 3V 345G(253)]

+ V—q234[ (~2+~3+4)] ([b253b4 5-q ] &

=1+9V qz3V —4z5 rcz[ co—(coz+co3)] 'G(q)(5q455 3n3+5q554 —3n3+5q354 —5n5)

+9V qz3 V 345cr3[co (coz+—co3)] 'G(q)(5qz54 ~n5+5q45z 5n&+5q~5z 4n4)

+4V qz34 (q)(5 z53 4n4+5 35z 4n4+5 45z 3 3)

=1+6(q)[18V, zV q, zz q, z(n, oz+O. ,n z)+18V,V, z zz]cr]nz+12V q, , n, ] . (6.2)

Here we have used in sequence Eqs. (4.6), (4.8), and (5.4),
discarded all terms of order higher than A, , discarded
commutator averages involving an odd number of opera-
tors, summed away the Kronecker 5's, replaced
(co —

coq )
' by G (q}, and renamed the summation indices

to collect identical terms. For compactness, the sums on
the indices 1,2, 3, . . . have been left implicit. By compar-
ing Eq. (6.2) with the expected form
(co —

coq )G(q) =1+X(co)G(q) [Ecl. (5.6)], we recognize the
expression in braces as the self-energy X(co). The three
terms in braces correspond to diagrams (1), (2) of Fig. 1

and (1) of Fig. 2. If the sums on positive and negative in-

dices are carried out using Eqs. (4.2), (5.2), and (6.1), we
obtain the usual expression for X(co )=X,(co )+Xz+X3.

n1+n2+ I
X,(coq)=18 g ~

V
] )Q coq ( co ] +coz )

2)0

1 2
—n +n

coq (co] coz )

n1 —n2

coq ( co]+coz)
—n1 —n2 —I

(6.3a)
( co] coz)

The real and imaginary parts of X(coq)=b,qil q
may be

calculated in the standard fashion by setting co equal to

coq
—i e, and taking the limit for c.~O+.

Making these steps, namely, decomposing the thermal
averages, discarding the reducible diagrams, and replac-
ing the bare Green's function with the full Green's func-

(~)

CD

R

Xz=18 g Vq q]V
1&0,
2)0

(2nz+1}
(6.3b)

X3=12+ Vq q, ,(2n, +I) .
1&0

(6.3c)
FIG. 1. co-independent diagrams.
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TABLE I. Self-energy expressions for the co-independent diagrams.

(1) 12Vq q] ]n,
18Vq —q] V—12—2Z] +]n2

1 —12—2n 1n2
(4) 90Vq q1 V—12—23 —3Z1~] 2 3

(5) 180Vq q] ]2V 23 —3Z2n 1
o.2n 3

(6) 120Vq q]23V ]—2 3Z]23(n]n203+n]o2n —3+o]n —2n —3)
(7) 144Vq —q]2V 1 23 3z]2(n]o 2+o ]n 2 )n3

(8) 216Vq q] V 123 V—2 —34 4Z]Z23 X]n4( n2cr3+ o 2n 3 )

(9) 144V, q, V 2 —3 —4V —]234Z]Z234Cr]04[n 2(T] 3+T]3) +T]2n 3]

q q] 22 3 13 44Z]Z3o ]n 2o'3n 4

(11) 216Vq q]2V ] 23 V 34—4Z]2Z3u3n4(n ]o2+o ]n 2 )

(12) 216Vq q]2V —]34V 2 3 —4Z]2Z2340][(n 2+n2)(n3Cr4+03n 4)+02(n3n4+n 3n 4)]
(13) 216Vq —q]2V ]3 3 V 24 —4z]z]2']cr2n3n4
( 14) 324 Vq q] V ]23 V 2 34 V 45 5z]z23z4o ]o'4n 5( n2a3+o 2n 3 )

q
—q] —123 —24 —4 —35 —5 1 23 3 1 2 3 4 5

(16) 324V, „V ]23 V—245 V—3—4 —5Z]Z 3Z2345 T ]]]T[(2n +3n 3)(n405+]T4T] 5)+]T3(T]4n5+n 4n 5)]

tion, constitutes our decoupling scheme. The extension
to orders higher than A, is trivial, although rather tedious
and lengthly. In Tables I and II, we list the self-energy
X(coq) for all diagrams of order A, and A, , omitting the
intermediate steps which, at this stage of the discussion,

should be straightforward. The corresponding diagrams
are shown in Figs. 1 and 2. The diagrams have been par-
titioned into two sets: The diagrams in the first set (03-

independent diagrams, Table I, Fig. 1) yield self-energy
terms which do not depend on coq, they contribute only

TABLE II. Self-energy expressions for the co-dependent diagrams.

(1) 18Vq 1 2V q]2 q]2(n]o2+cr]n 2)

60Vq —1 —2V—q]23 —3Z —q12 3(n1o 2+o ] —2 )

Vq —1 —2—3 V—q123 —q123( 1 2+3+ ]+2 —3+o ] —2n —3 )

(4) 432 Vq —1 —2V—q]3 V2 —34—4Z —q]3n4[Z —q]2]T3(T]]]T2+]T]T]—2)+Z-23]T](T]2]T3+02T]—3)]

(5) 216Vq ] 2V]2 —3 4 V—q34z —q]2z q34(n]o'2+o']n 2)(n3u4+cr3n 4)

(6) 432 Vq ]—2V q]23 V 34 4Z —q]2Z3CT3n4(n ]o2++]n 2 )

( 7 ) &8Vq ] 2 V—
q ]3 Vl —34 V—45 —5 Z —4 ]3Z4 (T41]5 [Z —

q ]2 ]T3 ( 1]]0 2 +0 ]If —2 ) +Z3(2T( ]—T]2]T3 + (T —2T] —3 )]

32Vq —1 —2V—q]34 V2 —3 —4( —q]34[ —q]2( 1]T2+ ]+—2 )(n3]T4+~3 4)—
+Z —234]T](n 2n3]T4+n —203]] 4+0 —2n —3n 4)]

+Z —q]2[Z q]34]T2(n]n304+n]03n 4+0]n —3n 4)

+ 2Z —4—32[O]]T 3(n4+n 4)(n2+n 2)+a]]T2(nln4+n 3n 4)]j )

(9) Vq —] —2 V—q]3 V24 —5 V—3 —45Z —q]3 [Z q]2Z —q] —45]30 5T(T] ] 0 2+0 ]1]—2 )( n4 + n 4 )

+ 2Z 2 45(Z 23 +Z q] 45 )]T]CT3[(]T5(n4+n 4)(n +n 22)+]T—2(n4n 5 + n 4n5 )]

+Z —23Z34 5Cr]O2(n3n4]T 5+n3]T4n5 +]T3n 4n5) j

( ) Vq 1 2 V q34 1 —3—5 2 45 q34 q235 [Z q]20'4(T]10'2 1 —2 )( 30'5 31]—5 )

+Z —]35 ]T20 4( T] —] T] 3 (T5 +T] —] ]T3n —5 + ]T—]T] —3 1]—5 ) j
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IL
LA

(7)

(]o)

FIG. 2. co-dependent diagrams.

to the real part 6 of the self-energy, ' resulting in a
shift of the phonon energies co . The diagrams of the oth-
er set (co-dependent diagrams, Table II, Fig. 2} introduce
an imaginary contribution iI as well and describe the
effect of decay mechanisms. Such diagrams are responsi-
ble for the finite lifetime of the phonon excitations. For
diagrams 2, 6, and 8, which are not symmetric for ex-
change of q and —

q, we have summed the diagram shown
and its mirror symmetric.

The analytical expressions for diagrams (4), (5),
(8)—(11), (14), and (15) in Table I and (6) and (7) in Table
II are also given. All these terms involve "instantane-
ous" vertices of odd order (third and fifth order), involv-
ing anharmonic coefficients of the form V

&
and

Vq q ] ]2 It has been proved that these coupling
coefficients vanish if each atom in the crystal lies on a
center of inversion. For a cubic molecular crystal of
small centrosymmetric molecules, such as CO2 and N2, it
has been found that such contributions are negligible. '"'

These diagrams cannot be in general neglected for non-
centrosymmetric crystals or for centrosymmetric crystals
of large molecules.

VII. CONCLUSION

In this study we have discussed the application of the
equation-of-motion method to the effect of phonon-
phonon interactions on the spectral properties of the sys-
tern. We have developed a formalism in which the posi-
tive or negative sign of the branch indices is used to dis-
tinguish between annihilation and creation operators.
Using this formalism, we have been able to write the
equation of motion [Eq. (4.8}]for a general Green's func-
tion in an extremely compact form. A decoupling
scheme has been proposed for obtaining the expression
for the self-energy to any perturbation order. In this
scheme the thermal averages are replaced with those ap-
propriate for a harmonic Hamiltonian, the contributions

represented by reducible diagrams are discarded, and the
bare Green's function is replaced by the full Green's
function. All the topologically distinct diagrams are nat-
urally included by following the proposed decoupling
scheme. The method is parallel to the usual diagrammat-
ic method, and we are convinced that the two treat-
ments are equivalent. As a matter of fact, our results for
the self-energy up to order A, are found to be identical to
those obtained with the standard diagrammatic treat-
ment. The A, contributions to the phonon self-energy
arising from diagrams with instantaneous vertices of odd
orders are also reported. The decoupling strategy, due to
the compactness of the adopted formalism, is particularly
suitable to be implemented on a computer. The descrip-
tion of an algorithm for computing self-energy correc-
tions at higher orders is planned to be the topic of a
forthcoming paper, where we will report the expressions
to order A, for the ~-dependent diagrams. The compact-
ness of the self-energy expressions is useful in the actual
calculations of high-order diagrams. We have numerical-
ly evaluated the contributions to the linewidths of select-
ed diagrams up to order A,

' in solid nitrogen. The com-
puted linewidths compare well with the experiments.
Contributions of order higher than A4 have been found to
be important for lattice phonons but negligible for vib-
rons. These results will be presented in a subsequent
work.
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APPENDIX: EVALUATION OF COMMUTATORS

+ i [b2 B]b3

+b, b2b3 [b~,B] . (A 1)

We prove this identity by induction on the number m of
operators. Equation (Al) is obviously valid for the case
of a single operator A =b, . Now, if (Al) is valid for a
product A =b, b2b3 . - b of m operators, then, using
the identity [XY,Z]=[X,Z] Y+X[Y, Z] we find that a
commutator involving a product of m + 1 operators also
has the stated form

[b, . b b +,,B]=[bi . b,B]b

+bi b [b +i»] . (A2)

Equation (4.3) for [A, b ] is obtained immediately by
substitution of the commutator (2.8) into Eq. (Al) and
taking into account that o.a5aq 5+q as q & O.

Using the commutator (2.8) and the definition of &2
and co [Eqs. (2.6) and (4.2), we find directly

All the required commutators, [ A, b q], [A,&2], and
[A,%„],may be evaluated by replacing B with b
or %„ in the identity

[b, b b b,B]+[b,,B]b b b
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[b, ,%,]=a),b, . (A3)

Thus Eq. (4.1) is valid for A made of a single b o.perator.
Substitution into Eq. (Al) yields Eq. (4.1) for [A,&2].

Using Eq. (2.8), we may easily prove by induction on
the number of operators b, b2 . b„ that

[bj,b, b2 . b„]= tr, 5, Jb2 . b„
[bj.,&„]=n g tr~ V J23. . . b2b3 b„.

2, 3). . .) n

(A5)

Now, by properly renaming the summation indices
1,2, . . ., n and exploiting the symmetry of V,2 „with
respect to exchanges of indices, we prove that Eq. (4.4)
for [A,%„]is valid for a single operator b, :

+b)+252 j ' ' '
bn

+ +b, b2 o„5„ (A4)
Substitution into Eq. (Al) completes the proof of Eq.
(4.4).
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