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Length scales relating the quid permeability and electrical conductivity
in random two-dimensional model porous media
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We present results of a study testing proposed length scales I relating the bulk electrical conductivity
o of a fluid-saturated porous medium to its permeability k, via the relation k ~ I cT/era, where era is the
fluid conductivity. For a class of two-dimensional model random porous media, we compute a, k, and
the following three length scales: h, the ratio of pore volume to pore surface area; A, as defined by
electrical-conductivity measurements; and d„asdefined by a nonwetting-ffuid-injection experiment.
Over a range of two and half decades in k, we find that both A and d, are reasonably good predictors of
k, whereas h clearly fails. We also examine differences between the electric fields and the fluid-ffow fields

for a given pore structure by comparing their respective two-point correlation functions. The length
scale A is analytically related to an electric-field correlation length, and is found, to a good approxima-
tion, to be proportional to a fluid-velocity correlation length. The results of this paper demonstrate the

important effect that spatial randomness in the pore space has on flow problems. In a random pore
structure, with a distribution of pore sizes, the flow will tend to go more through the largest pore necks,
decreasing the importance of the narrowest necks that tend to dominate the behavior of periodic models.

I. INTRODUCTION

There are a wide variety of random, porous materials,
whose transport properties are of scientific and techno-
logical interest. ' Important examples include sedimen-
tary rocks, soils, catalysts, ceramic filters, and cement-
based materials such as concrete. Transport properties
include the rate of either diffusive, electrical, or fluid
movement through fluid-filled pore space. The techno-
logical reasons for interest in these transport properties
varies from material to material. For example, the rate
of flow of water and oil in sedimentary rock is important
to the petroleum industry, while the water-aided move-
ment of ions is more important for cement-based materi-
als and plays a central role in their degradation, and in
their use as containment barriers for toxic and radioac-
tive wastes. In general, however, a common scientific
goal for all such materials is to develop a quantitative un-

derstanding of the relationship between pore structure
and transport properties.

Recently, there has also been considerable interest
in relationships between transport properties. In particu-
lar, the question of the existence of a useful relationship
between the fluid permeability k of a Quid-saturated
porous material, and its bulk electrical conductivity o.

has been studied. The fluid permeability is defined via
Darcy's law

where U is the Quid velocity averaged over the total cross
section of the porous sample, q is the fluid viscosity, and
AI' is the pressure drop over the sample length L. The
analogous defining equation for the bulk conductivity of
the same porous material, where the saturating Quid is a

1 =PP, k =P'Pl (3)

where P is the total porosity, which corrects for the re-
duced cross-sectional area available for flow, I is some
length scale defined by the pore structure, and p and p'
are factors that take into account pore shape, tortuosity,
connectivity, etc. Given Eq. (3), it is easy to see that an
estimate of k can be made by using l =pp as an estimate
of the p'p product, and then defining a pore structure
length scale I. The prediction for k would then be

k =borh', (4)

where c =P'/P is an unknown, but hopefully calculable,
constant scale factor. Different predictions of the ap-
propriate length scale l' have been made in the literature.
We consider the three following length scales: h, the pore
volume divided by the pore surface area, sometimes
called the hydraulic radius A, defined by electrical-
conductivity measurements; and d„defined by a
nonwetting-fluid-injection experiment. A fourth length
scale defined in terms of a diffusion-limited trapping

conductor and the solid phase is an insulator, is Ohm's
law:

I AV=0
L

where hV is the potential drop across a sample of length
L and cross-sectional area A, and I is the total current
passing through the sample. We define I:—o /tro, where

oo is the conductivity of the saturating fluid, as the di-

mensionless conductivity. Since k has dimensions of
length squared, a length scale l, based on the pore struc-
ture, must be defined in order to relate k and I .

To show heuristically how k and I separately depend
on pore structure, it is useful to write them as' '
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length, which we do not consider, has also been exam-
ined ' and shown to have limited success in predicting
permeability.

The physical assumptions that underlie the usage of
the above-mentioned length scales are quite different. It
is therefore important to test and compare each length
scale in order to understand what properties of a
material's pore structure most strongly determine its per-
meability. It is also of interest to try to determine how
and if, at a fundamental level, the electrical and fluid-Qow
problems are related. In this paper we carry out this pro-
gram using computer simulation, applied to a simple
two-dimensional (2D) model of a continuum random
porous material. Such an experimental program has been
suggested by Le Doussal, and computer simulation stud-
ies with similar goals, ' using mainly periodic models,
appeared as this manuscript was in preparation.

An outline of this paper is as follows. In Sec. II the
various length scales are defined and in Sec. III we dis-
cuss the structural models and algorithms used to com-
pute k, I, and the three length scales. In Sec. IV we ana-
lyze the example of a simple periodic porous medium,
and in Sec. V results on random porous material models
are presented. In Sec. VI, correlation functions are used
to quantitatively compare and contrast the electrical and
fluid problems. Our findings are discussed and summa-
rized in Sec. VII.

II. PORE-STRUCTURE-DEFINED LENGTH SCALES

The pore volume to pore surface area ratio h is the first
and simplest length scale of interest. In this paper, h is
actually defined by twice the pore area to pore perimeter
ratio, or 2V&/S. Quantities such as h sometimes go by
the name of hydraulic radius. ' The use of h as a permea-
bility length scale is motivated by the fact that the value
of h in 3D for a circular cylindrical tube of radius R and
length L is just 2(n R L) l(2m RL ) =R, which is obviously
the length scale that controls the permeability of the
tube. In 2D, h is equal to the tube width d. Physical as-
sumptions that underlie the validity of using h to predict
permeability include' that (l) the variation of pore size is
small, and (2) the fluid-flow field is uniform throughout
the pore space.

The second length scale that we consider is the A pa-
rameter, defined in the following way. If a material's
pore space is filled by a conducting Quid with conductivi-
ty o.o, and a potential drop is applied, then A is defined by
the following ratio of integrals:

/E/ dS

f fE[ dV

where E(r) is the magnitude of the electrical field in the
pore space, d V is a volume element in the pore space,
and dS is a surface element on the pore-solid interface. If
the electric field were constant everywhere, like that in a
circular cylindrical tube when the potential gradient is
along the axis of the tube, then A=h. Since in a real
porous medium, this would not be the case, A can be
thought of as a dynamically weighted hydraulic radius,

where regions of small electric field, which would prob-
ably have small fluid-flow velocities as well, contribute
less than high-field regions. In particular, stagnant re-
gions with little or no flow and fully isolated pores would
contribute negligibly to A. How well pore space regions
with low electrical-current-flow rates actually match up
to pore space regions with low Quid-Qow rates will be
studied in Sec. VI.

The third length scale we consider is denoted as d„
and is defined by a nonwetting-fluid-injection experi-
ment, typically using mercury, which is nonwetting for
most porous materials of interest. Mercury is injected
into an evacuated sample under hydrostatic pressure, and
the additional amount of mercury intruded for each in-
crease in pressure is monitored. The pressure at which
the mercury first forms a continuous, percolating path
through the sample is defined as the critical pressure P, .
The continuity of the mercury is monitored electrical-
ly. ' If the solid phase of the porous material is an insu-
lator, and the pore space is evacuated, then a nonzero
bulk conductivity would only be achieved when the mer-
cury percolates. The critical value of pressure P, is con-
verted into a critical pore size d, using the Washburn
equation

4y cos8
C (6)

where y is the surface tension of mercury, and 8 is the
contact angle of mercury on the solid phase of the porous
material of interest. Equation (6) assumes a circular cy-
lindrical geometry for pores. "

Physically, the length scale d, can be thought of as the
smallest member of a subset of the pore space containing
the largest pores that form a continuous pathway
through the pore space. ' This is because, as can be seen
in Eq. (6), the injected mercury fills the largest pores at
the lowest pressures, and then fills progressively smaller
pores as the injection pressure is increased.

III. STRUCTURAL MODELS AND ALGORITHMS

A. Structural models

The structural models studied in this paper are all digi-
tal image based. ' A square array of pixels is defined
such that each pixel represents either a solid or liquid
phase. Assuming all pixels initially represent fluid, solid
circular inclusions are introduced by centering a continu-
um circle on a pixel center, and changing all pixels to
solids whose centers fall inside the boundary of the con-
tinuum circle. ' For circles with diameter greater than
15 pixels, the area of the digital circle varies from the
area of the generating continuum circle by less than one
percent. ' Figure 1 shows a 41-pixel-diameter circle, cen-
tered on the middle of a pixel. Using circles of diameter
41 pixels or larger, we then construct random porous
media by randomly depositing' many circles on a
1000X 1000 unit cell such that no circles overlap.
Periodic boundary conditions are maintained by wrap-
ping pixels that would extend outside the unit cell around
to the opposite side. Using monosize circles a porosity of
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FIG. 1. 41-pixel-diameter digital circle (gray), centered in a
51 X 51 pixel unit cell.

50% can easily be achieved. The lowest porosity achiev-
able for parking of monosize circles is 45%, called the
"random jamming limit. "' ' Lower porosities are at-
tainable using additional, smaller disc sizes. In our case,
we tried adding additional disks with a diameter of 21
pixels. However, the spacing between disks at the lower
porosities became too small, in terms of numbers of pix-
els, to ensure adequate resolution and numerica1 accuracy
in the electrical and fiuid-flow computations. To be able
to explore porosities less than or equal to 50%, we kept
the unit cell at IOOOX1000 pixels, but "rescaled" the
pore space by using 83-pixel-diameter circles as the
large-size circle, and 43-pixel-diameter circles as the
small-size circle, so that there were fewer circles but more
space between circles. Using fewer, larger circles of
course meant that our sample statistics became somewhat
worse.

B. Nonwetting Auid injection

The algorithm for nonwetting fluid injection has been
previously described, ' and is a geometric method that
works only for completely nonwetting fluid injection, in
2D, with a contact angle of 180'. The algorithm begins
by surrounding a porous image with a bath of fluid pixels.
A pressure is implicitly chosen„via the Washburn equa-
tion, ' by selecting a diameter that is the smallest channel
through which the fluid will be allowed to go. The fluid
is then successively intruded from the outside by trying
to place fluid circles of the chosen diameter, centered at
previously intruded fluid pixels. The circular intruding
shape gives approximately the correct meniscus, and the
chosen diameter guarantees that the fluid will only go
into allowed regions. By keeping track of how much

pore area was intruded with each choice of the pore di-

ameter, an approximate pore-size distribution can be
traced out. Figure 2 shows complete pore-size distribu-
tions, averaged over ten realizations of a 60% and a 35%
porosity 1000X1000 system. Each curve has been nor-
malized by the total porosity. The value of d, is deter-
mined directly by using a "burning algorithm"' to deter-
mine when the intruded fluid has percolated. The value
of d, is then the intruding fluid circle diameter at per-
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FIG. 2. Two pore-size distributions, computed using the
nonwetting-Quid-injection algorithm, and averaged over ten
configurations of a 35% and a 60% porosity system of circles
deposited in a 1000X1000 pixel unit cell. The curves are nor-
malized by the porosity.

colation, averaged between the left-right and up-down
thresholds, which are not always the same due to finite-
size effects. '

C. Electrical conductivity and A

The dc electrical properties of the model porous media
are determined using a finite-difference method of solving
Laplace's equation in the pore space. This procedure is
equivalent to setting up a random conductor network and
solving the Kirchhoff's law network equations. A node
is placed in the middle of each pixel, and unit conduc-
tance bonds are placed between adjacent pore space pix-
els. All other nearest-neighbor pairs are assigned zero
conductance. Bond assignment is carried out according
to periodic boundary conditions. A unit voltage
difference is applied in the x direction, and is maintained
throughout the conjugate-gradient relaxation process '

by requiring that nodes separated by the system size L in
the x direction differ in voltage by one.

Once the voltage at every node was obtained, the total
current was computed to determine the bulk conductivity
o. , equal in this case to I because o.

o was normalized to
one. The electric fields were computed from the voltages,
and used in Eq. (5) to compute A directly. We have
checked the accuracy of this method against the exact re-
sult for a single insulating circle in an L XL conducting
sheet. The relative conductivity for a single isolated cir-
cle, ' with diameter much less than L, is I =2/ —1,
which can be used to show, by using a technique de-
scribed in Ref. 3 involving adding a very thin conducting
layer to the insulating circle, that A=L /(m. d ), where d
is the diameter of the circle and P is the porosity. In this
limit, h and A become equal. Using Eq. (5) with our
electric-field results, we found that the computed values
of A were off by the multiplicative factor m/4. This is
due to the fact that the exact perimeter of a digital circle
is 4D, instead of mD (see Fig. 1), no matter how large the
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values the fiuid permeability was determined via Eq. (1).
The /=0. 35 models took about 20 min of CPU tim; for
each realization, while the / =0.80 models took 2—4 h.
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FIG. 3. A piece of a pore space-solid interface. The dark

lines are pixel boundaries, and the dashed lines are the superim-

posed MAC mesh for the fluid-flow computation. The arrows

show the locations where the fluid velocities are determined,

and the black circles show the nodes where the pressures are
determined.

diameter D. The surface integral part of the A calcula-
tion is then too large. Correcting our A results by 4/n
gave the exact results within 2%. All subsequent compu-
tations of A were corrected by the same factor.

D. Fluid-flow computation

IV. TEST OF LENGTH SCALES
FOR SIMPLE GEOMETRIES

Certain porous media with simple geometries allow
analytical calculations of the quantities studied in this pa-
per. Before results are presented for flow in the more
complex random geometries, it is instructive to first ex-
amine these simpler cases. These results are summarized
in Table I, and discussed below.

For a simple 3D tube with radius R, k-R, h, A,
and d, scale as 8, and I =1 so that the relation k =cI 12,

with c a contant, holds exactly for all three length scales.
Now consider a periodic square array of insulating

solid circular inclusions in two dimensions where L is the
spacing between nearest-neighbor circles, d is the circle
diameter, w =L —d is the width of the narrowest part of
the pore space between the disks, p =m.d /(4L ) is the in-
clusion area fraction, and the porosity / = 1 —p. We note
that P and w are related by P = 1 —

m (1 w /L) /4—
We have used exact solutions for this system in various

limits as a check of the fluid-flow algorithm, using an
L =301 pixel square unit cell. In the limit w ((L, a re-
sult from lubrication theory ' is that the permeability k
is given by

To determine the permeability of our pore structures
we numerically solved the Stokes equation

2v2 w'"k=
9~

(8)

1
V v= —V'P, V v=O,2

7l
(7) and in the limit d ((L, the permeability is given by

using a finite difference scheme in conjunction with the
artificial compressibility method. The pore space was
discretized as a MAC mesh, where MAC stands for
"marker-and-cell. " A node was centered in each pixel,
with pressure defined at the nodes, and velocities defined
at the pixel boundaries as shown in Fig. 3. No-slip
boundary conditions [v(r) =0] were imposed at all
Quid-solid interfaces. In order to improve the accuracy
of our solution, noncentered difference equations were
used near the pore surface to force the fluid velocities to
be zero exactly at pixel boundaries. This results in veloci-
ty profiles across channels being accurate to at least
second order. A pressure difference was maintained
across the microstructure, in the same way that the volt-
age gradient was maintained in the electrical algorithm.
After the fluid velocities were relaxed to their equilibrium

2

k = [lnp '~ —0.738+p —0.887p2
4m

+2.038p +o(p )] . (9)

Figure 4 shows the computed quantity log, o(L /k) plot-
ted vs p =(1—P). The solid line is Eq. (8), and the
dashed line is Eq. (9). For large values of 1 —P (small
values of P), w «L and the data points agree well with
Eq. (8). The agreement is also still surprisingly good for
intermediate values of 1 —P, and thus fairly large values
of w. The data points at small values of 1 —

P (d «L)
agree well with Eq. (9).

Similar "lubrication-theory" calculations can be done
for the electrical conductivity, and thus A, in the limit
w~0. The technique for calculating A using the con-

TABLE I. The relationships between k, I, h, A, and d, for a single tube, and for a periodic square
array of circles. The tube radius is 8, the circle diameter is d, L is the spacing between circle centers,
w =L —d is the width of the neck between adjacent circles, and c stands for an arbitrary constant.

Tube
Periodic

circles
w «L
d «L

5/2

L 2ln(L /d)

1/2

1

k/(I h )

w

ln(L /d)/(L /d)

k/(I A )

C

ln(L /d) /(L /d)

k/(I d, )

C

ln(L /d)
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FIG. 4. Permeability k vs porosity P for the periodic square
array of circles system. The solid line is Eq. (8) and the dashed
line is Eq, (9).
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(10)

A=2w .

Figure 5 shows A/(2w) and I =o /cro vs w. The numeri-
cal results for conductivity at small w/L do not agree as
well with Eq. (10) as the permeability data did with Eq.
(8). This is at least partly because the How of electrical
current is not as dominated by the neck as is fluid flow,
since the tangential electrical current is not forced to be
zero at the edges of the neck like the fluid velocity. This
is seen clearly in the differing power laws in w for k and
I, —,

' and —,'. Therefore the range of w over which the lu-

brication theory result holds for the electrical conductivi-

ductivity is taken from Ref. 3. The results are, in the lim-
it w~o,

ty is much smaller than for the fluid permeability. The
numerical results for A/(2w) are seen to be heading to-
ward the exact asymptotic limit of 1, as w~0. In the
limit w/L ~1, both u/o. o and A agree well with the ex-
act asymptotic expressions given in Sec. III, and shown in
Fig. 5.

Using the above results, we examine in what regimes
the relation k =el / holds (see Table I). When w «L,k-w, I -w', and A and d, -w, so that the relation
k =cl I again holds exactly. However, h goes to a con-
stant for w &&L, and hence the relation k =cl I fails for
l =h. This failure is indicative of h not accurately
representing the dynamically connected pore space, as
suggested by Johnson, K.oplik, and Schwartz. We note
that for the case of A, c =

—,'„which is different from the
value of —,', that has been proposed for general pore struc-
tures. The value of —,', comes from the case of a circular
cylindrical tube. In the case where the circle size is
small compared with the spacing between circles
(d «L), k-L ln(L/d), d, -L, h-L /d, A-L /d,
and all three length scales fail to satisfy the relation
k=cI l2.

V. RESULTS FOR RANDOM SYSTEMS

Figure 6 shows the permeability k (in units of pixels
squared) and Fig. 7 shows the relative conductivity I for
the 1000X 1000 pixel unit-cell random systems, plotted vs
porosity. For porosities 50% or below, the number ratio
of small to large circles was fixed at 1.5. Each data point
in Figs. 6 and 7 has been averaged over the x and y direc-
tions and over four random structures. The permeability
changes by more than two orders of magnitude from
/=0. 8 down to /=0. 35, with a typical standard devia-
tion computed over the different configurations of about
10% at the higher porosities, increasing to about 30% at
the lower porosities. The standard deviation in the con-
ductivity data was never more than a few percent for all
porosities.
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FIG. 5. Quantities A/(2d) and I =o /era vs the scaled neck
width m/L for the periodic square array of circles model. The
lines are the exact asymptotic formulas from Eq. (10) (small
dashes), L '/(vrd ) (solid), and (2P —I ) (large dashes).

FIG. 6. Permeability k, in units of pixels squared, vs porosity
for the 1000X 1000 pixel random systems, averaged over the x
and y directions and four configurations.



6085

400.7 I I I I I

/
/

///
r////r/

/
r

/O
///

//

Cp'

&&r'
0/'

//
0 ~ I I I I I

~ Simulation0.6—
30—

0.5—

o 0.4—

03—

10-0.2—

0.1—

40 6020I

0.6
l

0.2
I

0.4
I

0.8
0.0

0.0

FIG. 9. A plotted vs d, using the data of Fig. 8. The slope of
the dashed line is fit to the data, and the line is constrained to go
through the origin.

FIG. 7. Showing the relative conductivity I = cr/o 0 vs poros-
ity for the 1000X 1000 pixel random systems, averaged over the
x and y directions and four configurations. The dashed line is
the graph of P~.

hydraulic radius h, with c'=32, shows a systematic dip
toward lower values as porosity decreases. This is con-
sistent with the results obtained for the periodic-model,
since the permeability depends sensitively on the pore
necks, while h is determined by all the pore area and
volume. Therefore as the critical necks controlling the
flow become small while the porosity still remains fairly
large, the value of h will increasingly overestimate the
permeability length scale.

Figure 10(c) shows how the parameter d, serves to
scale the permeability, with c'=12. Reasonably flat be-
havior is shown across the whole range of porosity, with
some rise at lower porosity. The lowest porosity, 0.35,
has a significantly narrower pore-size distribution than
does the 0.60 porosity system, for example, as can be seen
in Fig. 2. Since a basic assumption behind the Katz-
Thompson equation is a broad pore-size distribution, '

Fig. 10(c) may be showing a systematic trend in the con-

Figure 8 shows the three length scales, A, /t, and d,
plotted against porosity. Figure 9 shows A vs d, . The
A-vs-d, plot in Fig. 9 is roughly linear, in general agree-
ment with the predictions of Banavar and Johnson. '

Figure 10 shows the scaled permeabilities for the
1000X1000 pixel unit-cell random models. The per-
meabilities are scaled by the factor c'/(I /~), where the
choices of / are (a) / =A, (b) / =h, and (c) / =d„and c' is
a constant chosen to make the high-porosity end of each
curve be approximately equal to one. Figure 10(a) is
quite flat over the whole range of porosity shown, imply-
ing that the parameter A is giving a good estimate of the
pore length scale that is controlling permeability. The
value of c' used was 6.5. References 3 and 5 used
c'=1/c =12 in the relation k =cl / .

Figure 10(b), where the permeability is scaled by the
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FIG. 10. Permeabilities of Fig. 6, scaled by the values of I
from Fig. 7 and the length scales of Fig. 8, plotted vs porosity.
A different value of e' was used in each graph, in order to make
the high-porosity data points fall on the y =1 line: (a) e'=6.S,
(b) c'=32, (c) c'=12.

FIG. 8. Three length scales A, h, and d, plotted vs porosity
for the 1000X 1000 pixel random systems. Each point
represents an average over four configurations, and for A and
d„anadditional average over the x and y directions.
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stant c' as the pore-size distribution becomes narrower.
The constant c' is expected to get smaller for narrower
pore-size distributions, which is consistent with our
data.

VI. COMPARISON BETWEEN ELECTRICAL
AND FLUID-FLOW PROBLEMS

We have verified in Sec. V, in the case of the parameter
A, that the electrical properties of Quid-saturated porous
media can be utilized to give a fairly accurate prediction
of its permeability. In this section we study the actual
electrical fields and fluid velocity flow fields more closely,
and compare then qualitatively, with gray scale pictures,
and quantitatively, with correlation functions.

Using the magnitude u(r) of the solution v(r) to the
Stokes equations for a given pore structure, we define the
scaled two-point fluid velocity correlation function S„(r)
as the angular average of S„(r):

S,(r)= fdQ„S„(r),1

(u(r')u(r'+r) ) ~S„(r)= (u(r')u(r') )~,„,
(12)

where the quantity (a(r')b(r+r'))& is defined by

(a(r'}b(r'+r)) =—f d r'[a(r')b(r+r')],1

g

and Q also denotes the area of the region Q. In Eq. (12),
the numerator is an integral over the total sample volume

V, with u(r) =0 in the solid regions, while the denomina-
tor is an integral over the pore space volume V only.
For an isotropic system, S(r)=S,(r). In our case, the

applied pressure gradient breaks the isotropy, so we aver-

age over all possible directions of r to get back a correla-
tion function that depends only on the magnitude of r.

The normalization in Eq. (12) was chosen so that

S,(0)= V /V=/, the porosity. In the limit r~ ao, the

fluid velocities must become completely uncorrelated in a
pore structure with only short-range structural correla-
tions, so that S„(r)asymptotically goes to

and only takes on the equality in the special (unphysical)
case when u (r) =const everywhere in the pore space. In
that special case, the correlation function S, ( r) is actually
identical to the two-point correlation function S(r) of the
pore structure, where S(r)= (f(r')f (r'+r ) ) z, and the
function f (r') is one for pore space and zero for the solid
phase. In the more general case of u (r)Wconst, we define

S,(r ~ ):—P„where P„is an effective porosity that
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FIG. 11. (a) Pore space, (b) electrical field magnitude, and (c)

fluid velocity magnitude correlation functions as a function of
distance r, for porosity=0. 8. The correlation functions are
defined in the text. The dashed lines indicate the exact small-r

behavior, defined in the text.

measures the part of the total pore space that plays a role
in fluid flow. This definition implies that the inequality
P„&P must strictly hold.

We define the correlation function Sz(r) similarly to
S„(r)in Eq. (12), but with the magnitude of the fluid ve-

locities replaced by the magnitude of the electric fields.
Using the method of Ref. 27, it is then straightforward to
show that de(r}/dr = P—/(nA) .at r =0, so that the ini-
tial slope of this correlation function gives another way to
measure A. The r~~ limit of SE(r) defines PE, the
effective electrical porosity. Also, the initial slope for
S(r), the pore space correlation function, is 2$—/(nh).
in 2D. The quantities h and A can then be considered to
be length scales defined by their respective correlation
functions. However, using the method of Ref. 27, which
turns the numerator of Eq. (12) into a surface integral, it
can be shown that dS„(r)/dr =0 at r =0, a result that is

a direct consequence of the no-slip boundary conditions
forcing v(r) =0 at the fiuid-solid interface. We therefore
define a length scale L„from the small-r behavior of this
correlation function in a different way, by expanding S„
to second order around r =0: S„(r)=P P(r/L, ) .—

Figure 11 plots the three correlation functions S(r),
SE(r), and S,(r), vs spatial separation r, for an 80%
porosity system. The straight dashed lines in Figs. 11(a)
and 11(b) are drawn using slopes calculated from direct
numerical determinations of h and A, while the parabolic
dashed line in Fig. 11(c)was fit to the small-r data. Good
agreement with the simulation data is seen in all three
cases, confirming the above initial slope derivations. The
square root of the large-r limit of the correlation func-
tions gives /=0. 8, Pz=0. 77, and $„=0.62. The fact
that PE and P, are both less than P indicates that even at
this high porosity, there are areas of the pore space that
carry relatively little flow. Furthermore, the inequality

P, & Pz indicates that there are more of these stagnant
areas (with little or no flow) for fiuid flow than for electri-
cal current flow.

Figure 12(a) shows a gray-scale image of the electric-
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field magnitudes and Fig. 12(b) shows the fluid velocity
magnitudes, for an 80% porosity system, where white is
the minimum and black is the maximum magnitude of
the field quantity being considered. The fluid-flow paths
are clearly more concentrated, and follow a more tortu-
ous path than do the electric current paths. It is plain to
see that there are significantly more stagnant areas for
fluid flow than for electrical current flow.

Figures 13 and 14 are the equivalent of Figs. 11 and 12,
but for / =0.5, and Figs. 15 and 16 show the same results
for /=0. 35. As the porosity decreases, the differences
between the spatial arrangement of the fluid- and
electrical-current-flow fields appear to become more pro-
nounced. The fluid-flow field for /=0. 35, shown in Fig.
16(b), is particularly striking, as one or two main path-
ways seem to carry almost all the flow. This can be attri-
buted to the Qow becoming increasingly controlled by
narrow necks, so that the fluid picks out a continuous
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FIG. 13. (a) Pore space, (b) electrical-field magnitude, and (c)
fluid velocity magnitude correlation functions as a function of
distance r, for porosity=0. 5. The correlation functions are
defined in the text. The dashed lines indicate the exact small-r
behavior, defined in the text.

FIG. 12. Gray-scale image of (a) the electric-field magni-
tudes, and (b) the fluid velocity magnitudes for a porosity of 0.8.
White is zero; black is maximum.

FIG. 14. Gray-scale image of (a) the electric-field magni-
tudes, and (b) the fluid velocity magnitudes for a porosity of 0.5.
White is zero; black is maximum.
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behavior, defined in the text.
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FIG. 17. Electrical and fiuid-defined effective porosities Ps
and III„,and their ratio p„/pE, plotted against porosity p.

path connected by the largest neck sizes. The periodic
model from Sec. IV showed how much more sensitive
fluid-flow rate is to the width of narrow necks than is the
electrical-current-flow rate, due mainly to the no-slip
boundary condition.

Figure 17 shows a plot of QE, p„,and p„lpE, vs It.
While the inequality P, (Pz holds for all P, the ratio

P„lPE, surprisingly, remains fairly constant. The sizes of
the dynamically connected pore regions are therefore not
exactly the same for the electric and fiuid-flow cases, but
they do decrease in a commensurate fashion with porosi-
ty for the model pore structures studied.

Figure 18 shows a plot of L, vs the length scale A. It
should be recalled that L„is extracted from the small-r

portion of the fluid velocity correlation function, and A is
extracted from the small-r portion of the electric-field
correlation function. We have found the surprising re-
sult, displayed in Fig. 18, that these two length scales are
roughly proportional to each other for the model porous
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FIG. 16. Gray-scale image of (a) the electric-field magni-

tudes, and (b) the Quid velocity magnitudes for a porosity of
0.35. White is zero, black is maximum.

FIG. 18. Fluid velocity length scale L, plotted against the
electrical length scale A. The slope of the dashed line is fit to
the data, and the line is constrained to go through the origin.
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media studied. This is direct quantitative support for the
result of Fig. 10(c), which showed that A worked well as
a length scale to predict permeability. Figure 18 shows
that in some sense, the electric fields sample the local
neighborhood of the important pore necks in a way simi-

lar to that of a moving fluid, since L, and A are deter-
mined by the small-r behavior of S,(r) and SF(r), respec-
tively.

VII. DISCUSSION AND SUMMARY

The utility of using electrical measurements to measure
fluid permeability is unquestionable, as electrical mea-
surements are usually easier and faster to make, as long
as the value of oo can be readily determined. For sedi-
mentary rocks, the pore fluid is injected, so 0.0 is
predetermined, while for cement-based materials, for ex-
ample, the conductivity of the pore fluid is determined by
hydration chemistry and is not so easily determined.

The question that this and other recent papers have fo-
cused on is the validity of the basic concept of relating
electrical conductivities and fluid permeability quantities.
The principal contribution of the present work is that all
relevant quantities have been computed on a truly ran-
dom continuum system, with a reasonably large range of
pore sizes. In Ref. 5, the 2D tortuous model considered
was constructed such that all pore channels had roughly
the same size, so that the electrical-current- and fluid-
flow fields looked qualitatively similar. This is a special
case. When there is a size distribution of necks through
which the flow must go, as is typical in most real porous
materials, then, as was shown in Sec. VI the fluid velocity
fields and the electric fields can sample the pore space
quite differently. The results of this paper demonstrate
the important effect that spatial randomness in the pore
space has on the two different flow problems. The

periodicity of the models considered in Refs. 5 and 8

forces the flow to be one-dimensional, so that all the flow

must go through the narrowest neck. However, in a ran-
dom pore structure, with a distribution of neck sizes, the
flow will tend to go more through the largest necks, de-
creasing the importance of the narrowest necks.

In summary then, we have computed, for a 2D contin-
uum random porous system with a reasonably wide pore
size distribution, the permeability k, the electrical con-
ductivity 0., and three pore-space-based length scales A,
h, and d, . We have shown that for over two decades in

permeability, both A and d„in conjunction with the elec-
trical conductivity, gave reasonably constant scaling of
the permeability. Study of the fluid velocity and electric-
current-flow fields via gray-scale images revealed
significant qualitative differences between the two kinds
of flow. However, a constant ratio between the effective
porosities dynamically sampled by the electric and fluid-
flow fields, as well as the proportionality between length
scales derived separately from two-point electric-field (A)
and fiuid velocity (L„)correlation functions, lend support
to the idea that there may be a deeper connection be-
tween the two problems. As to the nature of this connec-
tion, we believe that further progress in this area requires
more intense theoretical analysis of the basic equations of
electrical and fluid flow in a porous medium, similar to
work carried out recently by Torquato.

ACKNOWLEDGMENTS

We are grateful for useful discussions with J. R. Bana-
var, A. Sangani, J. Koplik, S. Kostek, L. M. Schwartz, D.
L. Johnson, and A. H. Thompson. The authors would
also like to thank D. P. Bentz and W. C. Carter for their
assistance in generating the gray-scale images presented
in this paper, and P. M. Duxbury for supplying a 2D
electrical conjugate-gradient relaxation routine.

'A. E. Scheidegger, The Physics of Flour Through Porous Media
(University of Toronto Press, Toronto, 1974), Chap. 4.

Pozen Wong, Phys. Today 41(12), 24 (1988).
D. L. Johnson, J. Koplik, and L. M. Schwartz, Phys. Rev. Lett.

57, 2564 (1986).
4A. J. Katz and A. H. Thompson, Phys. Rev. B 34, 8179 (1986);

J. Geophys. Res. 92, 599 (1987).
5S. Kostek, L. M. Schwartz, and D. L. Johnson, Phys. Rev. B

45, 186 (1992).
S. Torquato, Phys. Rev. Lett. 64, 2644 (1990); M. Avellaneda

and S. Torquato, Phys. Fluids A 3, 2529 (1991)~

7P. Le Doussal, Phys. Rev. B 39, 4816 (1989).
8R. B. Saeger, L. E. Scriven, and H. T. Davis, Phys. Rev. A 44,

5087 (1991).
9A. H. Thompson, A. J. Katz, and C. E. Krohn, Adv. Phys. 36,

625 (1987).
E. W. Washburn, Proc. Natl. Acad. Sci. U.S.A. 7, 115 (1921).

' This assumption has been criticized (Refs. 7 and 12). Recent-
ly, this criticism has been addressed by showing that the

Katz-Thompson assumption of circular geometry does not
automatically preclude accurate predictions of permeability
(Ref. 13), as the pore diameter appearing in the Washburn
equation is only an effective tube diameter, which integrates
over real pore shapes. Reference 13 showed that, at least for
elliptical-cross-section tubes, the permeability of the circular
tube with the mercury-defined effective diameter was almost
identical with the true permeability of the original tube.

2J. R. Banavar and D. L. Johnson, Phys. Rev. B 35, 7283
(1987).
E. J. Garboczi, Powder Technol. 67, 121 (1991)~

~4K. R. Castleman, Digita/ Image Processing (Prentice-Ha11, En-
glewood Cliffs, 1981).
E. J. Garboczi, M. F. Thorpe, M. DeVries, and A. R. Day,
Phys. Rev. A 43, 6473 (1991).
D. W. Cooper, Phys. Rev. A 38, 522 (1988).

'7B. J. Brosilow, R. M. Ziff, and R. D. Vigil, Phys. Rev. A 43,
631 (1991).

SE. J. Garboczi and D. P. Bentz, Ceram. Trans. 16, 365 (1991).



6090 N. MARTYS AND E. J. GARBOCZI 46

Fumiko Yonezawa, Shoichi Sakamoto, and Motoo Hori,
Phys. Rev. B40, 636 (1989).
S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes: The Art of Scientific Comput
ing (FORTRAN Version) (Cambridge University Press, Cam-
bridge, 1989).

22L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon,
London, 1959).

Roger Peyret and Thomas D. Taylor, Computational Methods

for Fluid Floto (Springer-Verlag, New York, 1983i.
~Total CPU time used to obtain all results presented in this pa-

per was about 80 h on a two-processor Cray-Research YMP
computer, with 16 million words of core memory.

~~A. S. Sangani and A. Acrivos, Int. J. Multiphase Flow 8, 193
(1982).

A. H. Thompson (private communication).
~7J. G. Berryman and S. C. Blair, J. Appl. Phys. 60, 1930 (1986).
~8B. J. Christensen, T. O. Mason, and H. M. Jennings, J. Am.

Ceram. Soc. 75, 939 (1992).












