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%e investigate the renormalization group of the generalized Fibonacci lattices associated with the
aperiodic sequences as constructed by the inflation rule: {A,Bj~{A "B,A{, in which m and n are
positive integers. The derived renormalization group consists of 2n (n +m —1)+1 basic
renormalization-group transformations. By suitable combinations of these basic transformations, local
Green's function and local density of states at any sites can be calculated for electrons on the generalized
Fibonacci lattices. The off-diagonal model is employed, and the local electronic densities of states at
several sites are numerically calculated for some generalized Fibonacci lattices.

I. INTRODUCTION

The one-dimensional (1D) quasiperiodic (aperiodic)
Schrodinger equation has been extensively studied in re-
cent years, ' since it provides a mathematical model to
describe the electronic states in such aperiodic systems
intermediate between periodic crystals and amorphous
materials. A typical example of 1D aperiodic systems is
the Fibonacci lattice, of which the electronic properties
were investigated by Kohmoto, KadanofF, and Tang, ' and
independently by Ostlund et al. , and for which a
dynamical-map technique has been developed. In 1986,
Niu and Nori proposed a renormalization-group (RG}
theory based on a decimation scheme to study the elec-
tronic properties of the Fibonacci lattice. Although this
theory is only exact in a certain limit, it provides an intui-
tive and coherent picture about the hierarchical splitting
in the energy spectrum and the scaling properties of the
wave functions.

The first experimental realization of the Fibonacci sys-
tem is due to the work of Merlin et al. by the molecular
beam epitaxy. Because of the development in fabricating
this system, it becomes possible to produce other 1D
aperiodic systems in laboratory and provides further
stimulus to the investigation of 1D aperiodic systems.
Recently, the generalized Fibonacci lattices have received
much attention. " Since these aperiodic systems are a
straightforward generalization of the Fibonacci lattice, it
is mathematical accessible to study their physical proper-
ties and easy to fabricate them in experiments. However,
these simple aperiodic systems exhibit rich physical prop-
erties, much more than those of the Fibonacci lattice.
For instance, three kinds of wave functions, i.e., extend-
ed, critical, and localized ones, are found in the general-
ized Fibonacci lattices and it is revealed that there may
be mobility edges in these aperiodic systems. ' In addi-
tion, transition phenomenon concerning the electronic

states is also demonstrated by the adjustment of the sys-
tem parameters. " In this paper we study in a systematic
manner the RG of the generalized Fibonacci lattices. It
will be shown that these RG can be conveniently used to
determine the local Green's function (LGF) and then the
local density of states (LDOS} of aperiodic systems of
which the similar properties were calculated by New-
man' with the analytic method. This RG method was
previously employed to investigate the local electronic
properties of the Fibonacci lattice, ' ' and recently it was
further used to deal with some of the generalized Fi-
bonacci lattices. ' As improvements, we deal with here
all the generalized Fibonacci lattices and derive the
unified RG transformations.

The present paper is organized as follows: in Sec. II,
the renormalization group of generalized Fibonacci lat-
tices are derived, which are composed of
2n (n +m —1 }+1 basic RG transformations T„Tz, . . . ,
T2„~„+,~ &, T&, and T~. These RG transformations
can be used to calculate the LGF and the LDOS at any
site of a generalized Fibonacci lattice. In Sec. III, we ap-
ply the derived 2n(n+m —I)+1 basic RG transforma-
tions to calculate the LDOS at several sites in some gen-
eralized Fibonacci lattices. Section IV is a brief sum-
mary.

II. RENORMALIZATION GROUP

Our theoretical work on electronic properties of quasi-
periodic systems is concerned with 1D models described
by a tight-binding Hamiltonian

H= y„~i&., &i~+ y Ii& V„&jl, (1)
V

where e; and ~i & are the site energy and an atomiclike or-
bital centered at site i, respectively, and {VJ I are the
nearest-neighbor hopping integrals. Here {V;. I takes two
values V~ and Vz, which are arranged in the generalized
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Fibonacci sequences S„constructed by the inflation rule

[ A, B j~[A "B,A j or alternatively by the recursion
relation SI+,= [SI",SP, j with So = [Bj, S, =

[ A j, l ~ 1,
and m and n are positive integers. The site energy e; gen-
erally takes one of the following four values:

(a)

e if V; );=V;, +)= Vq,

ep if V; );=V~ and V;;+(=V~,
6'y 1f V; &;

= Vz and V;; + &

= Vz

e& if V;, ; = V;,.+,= V~,

(b)

according to the local environment of site i. The sites
with the site energies E', E'p, E'y, and e& are here referred
to as the sites of types a, P, y, and 5, respectively. Par-
ticularly, for the subfamily of the generalized Fibonacci
lattices with m = 1, the sites of type 5, which have the lo-
cal environment V; &;

= V;;+ j
= Vz, do not exist, so the

site energy e; only takes one of the values e, e&, and E'y.

Corresponding to Eq. (1), the Green's function is defined
as

FIG. 2. Schematic representation of the decimation pro-
cedure for the generalized Fibonacci lattice with (m, n) =(2, 1).
The top chain represents the original lattice and those from the
second chain to the bottom one represent, successively, the new
sublattices obtained by the basic RG transformations Tp, Tj,
T„, T2, and T„respectively. (a) P-type key site of the original

lattice, which is assigned as site 0; (b) y-type key site of the orig-
inal lattice, which is assigned as site 0.

(Z H)G(Z)—=I, G;1 = (i
~
G(Z) j~) of Green's function G (Z) is given by

where Z=E+io+ and I denotes the unit matrix. From
Eq. (3) it follows that the matrix element

(Z —e;)GJ=5; + g VI, Gq, i,j =0,+1,+2, . . . , (4)
k

where 5; is the Kronecker delta.

-2 02I. A. Basic RG transformations T& and T~

In order to calculate the exact Green's function of gen-
eralized Fibonacci lattices, we first introduce two basic
RG transformations T& and T~, which correspond, re-
spectively, to the decimation rules

and

[(BmA n)n —IBmA n+m BmA n
j [ A i B~j

[( A II +n1Bm( A IIBm)n —1 A nBm
j (6)

%0 24 (b)

FIG. 1. A schematic representation of the decimation pro-
cedure for the generalized Fibonacci lattice with (m, n)=(1,2).
The top chain represents the original lattice and those from the
second chain to the bottom one represent successively the new

sublattices obtained by the basic RG transformations T&, T&,

Tp, T3, T„T4, T5, T6, and T„respectively. (a) P-type key site
of the original lattice, which is assigned as site 0; (b) y-type key
site of the original lattice, which is assigned as site 0.

When m =n =1 in particular, TI3 and T~ are reduced to
those corresponding to the decimation rules on the Fi-
bonacci lattice: [BA A, BA j ~ [ A', B'

j and

[ A AB, AB j ~ [ A ', B' j, respectively. For a generalized
Fibonacci lattice, each of the RG transformations (5) and
(6) yields a new inflated generalized Fibonacci lattice with
only the parameters e s and V;-'s renormalized. Careful
examination of transformations T& and T& shows that
there is a special site in a generalized Fibonacci lattice,
which is called the key site of type P or y with the same

property as the key site in the Fibonacci lattice, ' i.e.,
when T& or T~ is applied to a generalized Fibonacci lat-

tice, the key site of type P or y remains undecimated and
its environment is not changed. In Figs. 1 and 2 the two

types of key sites are shown and assigned as the sites 0,
respectively. According to the geometric properties of
the decimation rule (5), the RG equation of T& is derived
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VB[S,„+ 1R 2 „1U„2(X)—S 2 „+ 1Y]

S 1„+ 1Z —S 2„+,S,„,U„2( )

VA [Sm 1 „+m 2Z Sm 2 „+m 2Sm 1 „1U„2(X)]
Sm, „+m,Z —Sm 2 „+m 1Sm, „1U„2( }

(7a)

VA [Sm 1 „+m 2Z —Sm 2 „+m 2Sm 1 „1U„2( )]
Ep= Ep+ Sm, n+m 1Z —Sm 2 „+m 1Sm 1 „1U„2( )

+ VBSm 2 n 1

Sm —1,n —1

(7b)

B[ m 1 „+m 1Rm 2 „1U„2(X)—Sm 2 „+m 1Y] V„Sm

Sm —l, n+m —1Z —Sm —2, n+m —1Sm —l, n —1U„2(X) Sm —1,n —1

VBS 2 n 1+VqS
Eg= Ep+

Sm —1,n —1

VA = VB/[S, „+ lZ —S 2 „+ 1S 1 „1U(x)],
VB = VB/S

where

(7c)

(7d)

(7e}

(7

g =(E en)I2V„—, h =(E es)I2—VB, (8a}

P;=
E —

Ep
U;(g) —U; 1(g), Q;

= E—
E~

U;(h ) —U; 1(h ), (8b)

R;J =Q;P~ — U;(h)P~, S,)
= Q;U~(g) U;(h)UJ —1(g),

V~ VB
(8c)

X=—,'(Rm —1 n —1
—Sm 2 „1), Y=Sm 2 „1U„2(X)+U„

Z =R
1 „1U„2(X)—U„3(X),

and Uz(X) is the Nth Chebyshev polynomial of the second kind

sin[(N+ 1)cos '(X) ]
sin[cos '(X) ]

which satisfies the recursion relation

UN(X}=2XU„,(X)—U„2(X) .

Similarly, we can obtain the RG equation of the transformation T~

(8e)

(10)

V„[Sm 1 „+m 2Z —Rm 1 „+m 2Sm 1 „1U„2(X)]
E~=E'y+

Sm 1 n+m 1Z Rm 1 n+m 1Sm 1 n 1U» 2(X)

VB[Sm 1 „+m 1Sm 2 „2U„2(X)—Rm 1 „+m 1Y]

m —l, n+m —1 m —l, »+m —1 m —l, n —1 n —2(X)
(1 la)

VB[S 1 „+ 1S 2 „2U(X)—R 1 „+,Y]
Ep= Ey+ S 1 „~ 1Z —R 1 „+ lS 1 „1U„2(X}+ VaSm —1 n —2

Sm —1,n —1

(1 lb)

V„[Sm, „+ 2Z —R, „+m 2S,„,U„2(X}]E'=E +
Sm 1 „+m 1Z —

m 1 „+m 1Sm 1 „1U„2(X} + VBS -2,.-1
Sm —1,n —1

(1 lc)

m —1,n —2 B m —2, n —1E'g= E~+
Sm —1,n —1

(11d)

V„' = VB/[Sm 1 n ~m, Z —R 1 „+m 1Sm 1 „1U„2(X)],
VB = VB/S

where

(1 le)
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g =(E —e )/2V„, h =(E—es)/2V21,

E—
ep E —e

P, = U;(g) —U, ,(g), Q; = U, (h) —
U, ,(h),

8

Vz Vz
R; =Q;P — Q;,U(g), S; = P U;(h) —U, ,(h)U(g),

(12a)

(12b)

(12c)

X= ,'(R—,„,—S,„2), Y=R I „,U„2(X)—U„3(X),
Z=S, „2U„2(X)+U„3(X) .

(12d)

(12e)

When m = 1 in particular, since there is no site of type 5
in this family of generalized Fibonacci lattices, Eqs. (7d)
and (1 ld) should be removed. Using the properties of
Chebyshev polynomial of second kind, U 2(X)= —1 and
U 1(X)=0, it can be verified that the RG equations of
the two basic RG transformations Tp and T are still
applicable to this particular family of generalized Fi-
bonacci lattices as long as Eqs. (7d) and (lid} are re-
moved.

Because the two hopping integrals V„' and Vz folio~
to zero by infinitely iterating the basic RG transforma-
tion T& or Tz on a certain generalized Fibonacci lattice,
the electronic LGF at the site of type P or y is then given

by

ties at the sites different from the key ones. These addi-
tional basic RG transformations consist of
2n (n +m —1)—1 transformations and are here classified
into two groups: one group is composed of
n(n+121 —1)—1 basic RG transformations T„T„.. . ,

n+m ~ n+m+1~ ' ' ~ n(n+m —1)—1, WhiCh

represent, respectively, the following decimation rules:

[ (g m —I g ng }n
—lg m —I g n +my pm

—I g ng j

[(pm
—2g nJJ2}n

—lg m —2 g n+mg2 pm
—2g nR 2

]

j A', 8'j,

1
Goo =

E—e*
P

(13)
I (R my

n }n
—2g my n +

mmmm

g n g n g m
j

or

1
Goo =

E—e*
r

(14)
t ( g m —I g ng )

n —2g m —I g n +mg m g ng g m —I g ng j

~I 3',8'j,
where e& or e~ is the value of the site energy e& or e~ after
infinite iterations of the transformation T& or T . Igg n+mgm —1(gg num —I }n

—I gg num —I
j

B. Basic RG transformations T&, T2, . . . and

T2n(n +m —1)—1

In addition to Tp and T, other basic RG transforma-
tions are needed to investigate the local physical proper-

and the other group is composed of
Tn(n+m —1)& Tn(n+m —1)—1& ' ' '

& (n + 1)(n +m —1)—1 &

T(„+1)(„+ 1), . . . , and Tz„(„+,) 1, corresponding,
respectively, to the following decimation rules:

[ [ g n + m —lg m( g num )n
—I g ]n

—I g n +m —lg m( g nag m )n + m —I g g n +m —
ling m( g nJJ m )n

—I g j

[ [ g n+m —2Rm( g num}n
—I ~ 2]n —I g n+m —2gm( g num)n+m —I ~ 2 ~ n+m —2Rm( ~ num)n —1~ 2j

j [ gR m( g nR m}n —I g n +m —1]n —I gym( g nR m)n+m —I g n +m —I gym( g nJJ m)n —I g n+m —I
j ~ j g ' (16)

I [ g n+m —lgm( g num)n
—I g ]n

—2g n+m —lgm( g nizam}n+m
—I g n+mgm( g num)n

—I g
gn+m —lgm(gngm)n —lg j [g~ g~j

I gym(g ngm)n+m —lg n+m —I[ gym( g num)n
—I g n+m —1]n —I gym( gngm}n —I g n+m —I

j
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For example, when m =n = 1 in particular,
2n(n+m —1)—1=1. This indicates that for the well-

known Fibonacci lattice, only one additional basic RG
transformation T1 is required, which is given by

{ABABA, ABA ]~ {A', B']. However, for the 1D gen-
eralized Fibonacci lattice with (m, n)=(2, 1), three addi-
tional basic RG transformations T„Tz, and T3 are need-

ed, which are given by

and

{BAAAB,BAB]~{A', B'j,
{A ABBABBABBA, A ABBA ]~ {A', B'],

{ABBABBABBAA, ABBAA ] ~{A', B'],
respectively (see Fig. 2). When the 2n(n+m —1)+1
basic RG transformations composed of
T1 Tz ~ Tzn ( n +m —1 ) 1, TI3, and T~ are applied to a
generalized Fibonacci lattice, respectively,
2n(n+m —1)+1 sublattices are obtained, of which each
sublattice is similar to the original one. Moreover, any
site in the original generalized Fibonacci lattice is also
embodied in a certain sublattice.

For the sake of convenience, we successively number
the sites in a 1D generalized Fibonacci lattice with in-
tegers from the left to the right and assign the key site as
site 0 (see Figs. 1 and 2). If the site 0 is the key site of
type P, it remains undecirnated and its environment does
not change after the iteration of the transformation T&.
However, transformations T1, Tz, . . . , T„(„+,) 1, and

Tr make the sites 1,2, . . . , n(n+m —1)—1 and
n ( n +m —1) in the original generalized Fibonacci
lattice become the P-type key sites of the sub-
lattices, respectively, while other n ( n +m —1) basic RG
transformations T„(„+ 1),T„(„+,)+,, . . . ,

(n+1)(n+m —1)—1, (n+1)(n+m —1)& (n+1)(n+m —1)+1& ' '

Tzn(n+m —1)—2, and Tzn(n+m —1)—1 make the sites
—[n (n+m —1)+n —1], [n (n+—m —I)+n —2], . . . ,—[(n —1)(n+m —I}+n ], —[(n n —1)(n—+m —1}
+n —2], —[(n n —1)(n+—m —1)+n —3], . . . , —2,
and —1 in the original lattice become the
y-type key sites of the sublattiees,
respectively. When the site 0 in the original gener-
alized Fibonacci lattice is the key of type y,
transformations T&, T„Tz, . . . , and T„(„+
transfer the sites —n(n+m —1),—[n(n+m —1)—1],—[n(n+m —1)—2], . . . and —1 to y-type key sites
of the sublattices, respectively, while transformations

n(n+m —1)& Tn(n+m —1)+1& ' & T(n+1)(n+m —1)—1&

T(n + 1)(n +m —1) & (n+1)(n+m —1)+1~ ' ' and

Tz„~„+,~, transfer the sites 1,2, . . . , ( n + ml ),
[(n+1)(n+m —1)+2], [(n+1)(n+m —1)+3],. . . ,
and [n (n+m —1)+n —1] to the P-type key sites of the
sublattices, respectively. For each sublattice, when the
above RG transformation procedure is repeated,
2n(n+m —1)+1 new subsublattices are produced, of
which each new subsublattice has a key site of
type P or y. For instance, the sites—[(n +1)(n +m —1)+1], —[(n+1)(n + m —1)], . . .
and —(n +m) in the generalized Fibonacci lattice with

V„[P„+ zZz —Q„+ zZ4]e'=e +
Pn+m —2Z1 Qn+m —2Zz

+ V„[P„+ 3,—Q„+ 3 z]
P.+ —zZi Q. + —»z
Va [P„+ 3Z1 Q„+ 3Z2 ]

6p= 6'~+
n+m —2 1 Qn+m —2 2

+ VA ~n —z, n+m —2

Fn —z, n+m —z

V~[P.+ —zZ3 —Q. + -zZ4]
Fy=E~+

Pn +.~ 2Z1 Q„+m 2Z2

+ VAF„—2 „+m 3

Fn-z, n+m-2

(17a)

(17b}

(17c)

P-type key site becomes sites —1 of the new sublattices

by the applications of T&, T„Tz, . . . , T„(„+,) 1, and

Tz to the original lattice, respectively, and then the
transformation Tz„(„+,), further transfers each of
the above sites to the y-type key site of a new subsublat-
tice. In this way, any site in a original generalized Fi-
bonacci lattice can be converted into the key site of type
P or y. When (m, n)=(1,2) in particular,
2n(n+m —1)+1=9. All nine basic RG transforma-
tions are shown in Figs. 1(a) and 1(b), corresponding to
the eases in which the original generalized Fibonacci lat-
tices with (m, n) =(1,2) have the key sites of types P and

y, respectively. In Fig. 1(a), site 0 in the original lattice is
the key site of type P. Sites 1, 2, 3, and 4 are converted
into the P-type key sites of the new sublattices as trans-
formations T1, Tz, T3, and T~ are applied, respectively,
while transformations T4, T5, T6, and T7 transfer the
sites —9, —8, —2, and —1 to the y-type key sites of the
new sublattices, respectively. As for the sites —7, —6,—5, —4, and —3, they can be first transfered to the sites
—1 in the sublattices by the transformations TI3, T1, Tz,
T3, and T, respectively, and then to the key sites of the
subsublattices by applications of T7 to each sublattice. In
Fig. 1(b), the site 0 in the original generalized Fibonacci
lattice is the key site of type y. Similar to Fig 1(a),. trans-
formations T& and T, , Tz, . . . , T7 transfer the —4, —3,
—2, —1, 1, 2, 8, and 9 to the key sites of the new sublat-
tices, respectively. For other sites, they can also be con-
verted into the key sites of certain new sublattices by
choosing suitable combinations of the basic RG transfor-
mations, and applying them to the original Fibonacci lat-
tice with (m, n) =(1,2). As to the five basic RG transfor-
mations for the generalized Fibonacci lattice with
(m, n)=(2, 1) as shown in Fig. 2, their properties are
similar to those of the nine basic RG transformations
shown in Fig. 1.

Analogous to TI3 and T~, according to the geometric
properties of the transformations T1,Tz, . . . , and

Tz„~„+,~, , we can obtain 2n(n+m —1)—1 sets of
RG equations corresponding to T1, Tz, . . . , and

Tz„~„+,~, . For instance, it follows from Eq. (5) that
the set of RG equations corresponding to transformation

Tz„(„+ 1) 1 can be written as
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A [Fn —2, n+m —3+ Wn —2, n +m —2]
Gg

=E~+
n —2, n+m —2

(17d)

n +m —2Z1 Qn +m —2 2
V~ =

n —2, n+m —2

(17e)

where

g =(E—e )/2VA, h =(E—es)/2Vs,
E —e E—

ep
G; = U;(g) —U;, (g), H; = U;(h) —U;, (h),

(18a)

(18b)

Va
P, =G;H, — H 2U, (g), Q; = U, (h)G; —U 2U;(g), (18c)

X=(P„ i
—Q„2)/2, R; =P„ i U; (X) U; ~(—X),

S; =Q„2U;(X)+U;, (X), Fi =R;P& P„2Q—
~ U;(X),

W~ =Q„,PJ U;(X)—S;Q, , Y=—,'(F„2„+,—W„2 „+ 2)

Z, =F„+m 2 „+m,[F„2„+m,U„3(Y) —U„4( Y)) F„+m —
2 „+m 2W„2 „+m,U„3(Y),

Z2=F„+m 2 „+m,F„2„+m 2U„3(Y) F„+m —
2 „+m 2[ W„2 „+m 2U„3(Y)+ U„4(Y)],

Z3 Wn +m 2 n +m, [F„2„+m,U„3(Y) —U„4( Y)]—W„+m 2 „+m 2W„2 „+m,U„3(Y)

Z4= W„+m 2 „+m,F„2„+m 2U„3( Y) —W„+m 2 „+m 2[W„2 „+m 2U„3(Y)+ U„4( Y)) .

(18d)

(18e)

(18f)

(18g)

(18h)

(18i)

(18j)

III. NUMERICAL RESULTS FOR LDOS

Many physical properties of a system are associated
with the Green's function of the system. For instance,
the electronic LDOS at site i is given by

p; (E)= ——ImG;, (E+i0+ ),1
(19)

where Im denotes the imaginary part of a complex quan-
tity. As discussed above, the LGF of generalized Fi-
bonacci lattices can be calculated in terms of the
2n(n+m —1)+1 basic RG transformations introduced
in Sec. II. Here the off-diagonal tight-binding model is
studied, which has the parameters E' E'p 6'y cp 0
and V~/V„=1. 5 and, as typical examples, we present
the electronic LDOS at several sites of the generalized Fi-
bonacci lattices with (m, n)=(1, 1), (1,2), (1,3), (2, 1),
(2,2), and (3,2).

When m = 1 in particular, although the forms of
T, , T2, . . . , T2n[„+m,], are applicable to the family of
1D generalized Fibonacci lattices with m =1, eq. (17d)
should be removed. The reason is that the sites of type 6
do not exist in these generalized Fibonacci lattices. As a
matter of fact, it can be easily verified that, similar to the
case concerning the key sites (see Sec. IIA). Equations
(17a)—(17c), (17e), and (18a)—(18j) are still applicable to
this family of the generalized Fibonacci lattices. As dis-
cussed above, any site can be transfered to the key site of
a certain new sublattice, therefore we can study the LGF
at this site in terms of the technique developed in Sec.
II A for dealing with the key sites.

Figure 3(a)—3(f) are the LDOS at the P-type key sites 0
of the above generalized Fibonacci lattices, respectively.
It can be seen from Figs. 3(a) —3(c) that the LDOS are
multifractal, which are self similar and exhibit hierarchi-
cal structures. We have also numerically calculated the
LDOS at P-type key sites of several generalized Fibonacci
lattices with m = 1 and n ~ 4, and found that the LDOS
are multifractal as well. These results are consistent with
the numerical results obtained by means of the
dynamical-map technique. ' When m%1, the situa-
tion becomes complicated. For the generalized Fibonacci
lattices with (m, n) =(2, 1) and (2,2), the LDOS shown at
the P-type key sites in Figs. 3(d) and 3(e) are multifractal,
except for those in the vicinity of E=O. One sees that
each LDOS has a smooth part in the regions near E =0,
which means that the electronic states are extended here.
However, the LDOS at the P-type key site of the general-
ized Fibonacci lattice with (m, n)=(3, 2) has a smooth
part in each of the regions in the vicinity of E=+ l. 5 [see
Fig. 3(f)].

In order to compare the LDOS at different sites, we
employ the generalized Fibonacci lattice with
(m, n ) = (2,2) and present its LDOS at sites —1, 1, 2, and
3 in Figs. 4(a) —4(d). It can be seen that the LDOS at
these sites and that at the P-type key site 0 are different
from one another in regard to their amplitudes. This im-

plies that at different sites the local electronic properties
sensitive to their amplitudes of the LDOS are much
different from each other. Besides the above difference,
the LDOS at different sites have yet common features.
For instance, the LDOS at sites —1, 1, 2, and 3 have the
same structure as that at the key site 0. From Figs.
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FIG. 3. the LDOS (arbitrary units) at P-type key site of some generalized Fibonacci lattices. V„=1, Vs =1.5, and
=E =Ey=6 =0 (in units of V~). (a) (m, n )=(1,1); (b) (m, n)=(1,2}; (c) (m, n)=(1,3); (d) (m, n)=(2, 1); (e) (m, n)=(2, 2); (f)

(m, n) =(3,2).



X. H. YAN, J. X. ZHONG, J. R. YAN, AND J. Q. YOU

2i
(b)

Q)0a I—
Q)
Ga I—

0 I

E

I
-2 2

(c)

V)0a I—

I-2 t
0
E

I-2 1 I I-I 0 I

E

FIG. 4. The LDOS (arbitrary units) at several nonkey sites of the generalized Fibonacci lattice with (m, n)=(2, 2). V& =1,
Vs =1.5, and e =es=e~=eg 0 (in units of V„). (a) nearest-neighbor site left to the P-type key site; (b) nearest-neighbor site right to
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4(a) —4(d), it can be seen that each LDOS has a smooth
part in the vicinity of E=0, analogous to that at the key
site 0 as shown in Fig. 3(e). In addition, it can also be
seen that the LDOS shown in Figs. 4(a) —4(d) have the
same multifractal structure as that at the key site 0.

IV. SUMMARY

We present an exact renormalization-group approach
for the study of the local electronic properties at any site
of generalized Fibonacci lattices associated with the
aperiodic sequences as produced by the inflation rule:

I A, B)~I 2 "B,A I in which m and n are positive in-

tegers. The renormalization group consists of
2n(n+m —1)+1 basic RG transformations, which can
be used to determine the LGF and the LDOS of the gen-

eralized Fibonacci lattices. The LDOS of some general-
ized Fibonacci lattices are numerically calculated for the
off-diagonal tightbinding model. It is found that the
LDOS of the generalized Fibonacci lattices with ~ =1
are self similar and exhibit heirarchical structures. As for
the generalized Fibonacci lattices with m %1, the LDOS
have smooth parts in certain energy regions, which im-

plies that there are extended electronic states in these en-

ergy regions.
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