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Using renormalization-group techniques, I derive a general scaling form of the chain-length distribu-

tion for the equilibrium-polymerization model of des Cloizeaux [J.Phys. (Paris) 36, 281 (1975)]. The re-

sult allows more freedom than was assumed in some previous work. This disproves arguments suggest-

ing that in semidilute polymer solutions there exists a phase related to some anomaly of the zero-

component Geld theory. The scaling function of the chain-length distribution is calculated to Srst order

in e. It varies with the overlap of the chains and, in general, differs somewhat from a Schultz distribu-

tion. No anomaly related to the semidilute limit is found. Some rather nontrivial aspects of the result

are well understood in terms of de Gennes "blob" concept.

I. MOTIVATION

As is well known, the large-scale behavior of
sufficiently dilute solutions of long flexible molecules can
be explained' by use of renormalization-group techniques
as applied to simplified models. These models ignore all
chemical microstructure except for chain connectedness
and excluded volume, i.e., they include a local repulsive
pseudopotential among chain segments. Typical solu-
tions are polydisperse, which means that they contain a
smooth distribution of chain lengths n. We may describe
such a system by a grand-canonical ensemble of model
chains, characterized by a chemical potential p(n) conju-
gate to the concentration c (n) of chains of length n The.
special form

p(n) =po+npi

defines an ensemble which is in chemical equilibrium
with respect to a fictitious polymerization reaction of
breaking and recombining chains. This "equilibriurn-
polymerization model" of des Cloizeaux, shows some
distinguishing simplification: Its perturbation expansion
order by order is identical to that of the standard
Landau-Ginzburg-Wilson (LDW) spin model, in the for-
rnal limit of vanishing spin dimensionality. Many results
of interest therefore can be obtained by simply translating
from the "magnetic" spin formulation to polymer
language.

Some years ago it has been claimed that the equilibri-
um ensemble shows some instability occurring for a sys-
tern of strongly interpenetrating chains. To elucidate the
issue it is appropriate to recall some basic results ' relat-
ing the polymer system to LGW theory.

The magnetic field Ao of the LGW model is related to
the fugacity of polymer chains:

h 2 ~o+~&
0

The critical temperature T, corresponds to the chemical
potential per segment p„of an infinitely long chain, and
the temperature T and the segment chemical potential p&

are related by

Tc p]c pi .

The total concentration of chains

c~= pc (n) (4)

ci = nc n

to the lowest-order (tree} approximation is found as

ci-Mo2 (7)

resulting in an expression for the (number-averaged}
chain length

cI Mo

c ho

In all these relations I ignored prefactors, which are not
important in the sequel.

It follows from Eq. (8) that the limit of infinitely long
chains corresponds to the magnetization curve. (See Fig.
1.) We may distinguish two limiting cases. Starting at
T & T, and approaching T, along a path infinitesimally
close to the axis ho=0, we deal with an extremely dilute
system cI-0-c of isolated chains. On the other hand,
approaching the magnetization curve along a path
Mo=const) 0, we are concerned with a system of finite
segment concentration cl)0. For X large enough, the
chains then must interpenetrate strongly, the degree of
interpenetration being measured by the "overlap"

s-c Rp 6

Here RG is the radius of gyration of an isolated chain and
d denotes the spatial dimension of the system. With the

obeys

c -hoMo,

where Mo is the magnetization per spin of the LGW
model. Finally the segment concentration
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FIG. 1. Phase diagram illustrating the mapping from mag-
netic to polymer variables. Dashed or dotted lines are lines of'

constant chain length, or segment concentration, respectively.
Thin lines correspond to constant overlap. Chain length and

overlap increase from right to left, both being infinite on the
magnetization curve. Segment concentration increases from
bottom to top.

well known relation Ro-N" (v=0. 6 for ti =3), which
holds under good solvent conditions, we find

N d Nvd —1

p I 7 (10)

as N~~, with eI fixed: For large N, the overlap gets
large also for small segment concentration. This is the
so-called "semidilute" regime, which corresponds to the
neighborhood of the magnetization curve close to T, . I
want to stress that in all these considerations I assume
that the thermodynamic limit is taken first, the limit
ho~0 being taken afterwards. Thus I do not consider
finite-size problems. The number of chains in the system
is infinite, each chain occupying a vanishing fraction of
the total volume.

So far I have presented the conventional picture of the
equilibrium-polymerization ensemble. This picture has
been challenged by a claim that some singularity is
found for a ftnite value of the overlap, corresponding to
nonuanishing ho. It was suggested that this singularity
signals the transition from an overlapping phase as de-
scribed above to another, so-called "dense" phase, found
in a parameter region corresponding to some neighbor-
hood of the magnetization curve. The distinguishing
feature of this latter phase is presumably the existence of
an infinitely long chain which /His

aconite

fraction of the
Uolume. This claim, if true, would be of some interest
from a practical point of view, since the model has been
used to explain features of equilibrium polymerization
and of macromolecules still able to undergo polymeriza-
tion reactions. (See Ref. 6 and references given therein. )

It is even more interesting from a principle point of view,
postulating a most subtle instability of field theory in the
limit of vanishing spin dimensionality. Since such formal
limits are used in a variety of problems like physics of
disordered media or defect lines in liquid crystals, this
claim clearly deserves some detailed analysis.

Now, for dimensions d &2 the arguments originally

given for the existence of a dense phase have been
disproven. ' Neither the free energy nor the scattering
functions show any anomaly. All quantities vary smooth-
ly in all the parameter regions ranging from the limit
of isolated chains to the semidilute limit of infinite
overlap or, equivalently, from T )T ho =Mo =0 to
T & T„ho=0,MOTTO.

It should be noted that special effects occur for d =2.
This could have been foreseen, since for d =2 a non-self-
avoiding random walk fills the volume. Indeed, it is
found that also for self-avoiding chains there is a transi-
tion to a situation where a single chain fills a finite part of
the volume. This dense phase, however, occurs for ho =0
on the magnetization curve. Even for d =2 this
phenomenon therefore is not related to the instability
postulated in Ref. 4, which occurs for ho )0.

Recently the controversy has been raised to the next
higher level by the claim' that the transition to a dense
phase can be seen in the chain-length distribution. A
scaling ansatz for c (n) has been used to argue that an
infinitely long chain indeed is created spontaneously
above a certain degree of interpenetration. Recent
Monte Carlo simulations, "however, show no sign of that
instability. Using the scaling ansatz of Ref. 10, the au-
thors interpret this as indicating a special value of some
exponent occurring in the scaling ansatz. Furthermore,
Wheeler and Petschek' recently derived a rigorous
bound on the chain-length distribution, which, for finite
chain fugacity, i.e., finite ho, excludes the possibility of an
infinitely long chain.

There still remains, however, the question whether the
scaling ansatz used in Refs. 10 and 11 is correct to begin
with. The relevant part of that ansatz is best formulated
in terms of the reduced-chain-length distribution p(y),
which is defined via the equation

r

cz n n
c (n)= —p —,y= —.

N
' N

(11)

According to Ref. 10 [compare Eq. (7)], the ansatz

p (y) =const Xyr ' exp( —const Xy) (12)

p(y)-e ~, as s~~, (13)

then the argument of Ref. 10 would break down. Indeed,
this is the behavior expected according to more conven-
tional ideas. Its physical basis' is screening. " An iso-
lated self-repelling chain swells in order to diminish its
interaction energy, the swelling reducing the average seg-
ment density within the coil. Now consider a semidilute
solution and imagine the chains divided into subchains of
length nz ((n, each subchain being swollen due to the
excluded-volume interaction. The average density due to
the segments forming a subchain scales as n~lnz". A

holds independently of the overlap. Here y & 1 is some
standard critical exponent. The form (12) is known to be
rigorously correct in the limit of isolated chains. On the
other hand, it is also known that for the equilibrium en-
semble p(y) depends on the overlap. If in the limit of
large overlap p (y) would reduce to a simple exponential
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critical value n~ of n~ is reached if this density is of the
order of the total segment density in the solution:

+1—vd
ng cI (14)

A decomposition into swollen subchains of size nz & nz is
not favorable, since we lose entropy without gaining ener-

gy by decreasing the locally measured total segment den-
sity. Beyond subchain size nz the excluded volume in-

teraction thus is ineffective or "screened. " In semidilute
solution conventional theory therefore envisages the
chain as a sequence of swollen subchains, so called
"blobs", the interaction among blobs being negligible.
For an equilibrium ensemble of noninteracting chains the
reduced-chain-length distribution follows Eq. (13), how-
ever.

These considerations lead to the following prediction
for the shape of p(y) in the semidilute regime. (See Fig.
2.) Chains small compared to the size nt't of a blob are
fully swollen, which leads to a distribution consistent
with Eq. (12):

p(y)-yr ' for y « =y'«1 .
)le

N
(15)

p(y m)

1,0-

0, 5—

FICx. 2. Semilogarithmic plot of e"p(y, w) for w =0, 10
10, 1.

Indeed, these chains are so small that they slip through
the holes' of the transient network made up from the
chains of average size, without being seriously perturbed
by the interchain interaction. They thus essentially
behave as isolated chains. For y-y" the behavior (15)
crosses over to the simple exponential (13), which is fully
developed for y —1»y*. For extremely long chains in
the ensemble we expect to see a third regime' not yet ad-
dressed above: For finite N the screening of the blob in-
teraction is not complete, but there survives a small
repulsion of strength —I /N For extre. mely long chains
this repulsion again swells the coils, leading to a behavior
of the form (12), with some rescaled variable y. For d =3
the crossover to this new behavior is expected to occur
around n -N »N. It should, however, be stressed that
for long chains in the semidilute regime the bulk of the
distribution p (y) follows Eq. (13).

This argument is heuristic and certainly not capable of

identifying a possible singularity. I therefore here use the
renormalization group to derive the general scaling form
of c~(n) or p (y), equivalently, explicitly showing that the
ansatz (12) is quite restricted and cannot be justified on
general grounds. I then use renormalized perturbation
theory and e expansion to work out an approximate form
of p(y). Even though the e expansion is known to be
only asymptotic, its higher order behavior is well con-
trolled, ' and low order results typically compare very
well to experiment. ' Furthermore, a minimal require-
ment for any scaling ansatz is its consistency with the e
expansion. It is found that the ansatz (12) for general
overlap is inconsistent with the e expansion, and indeed
in the limit s~~ the result reduces to Eq. (13). The e
expansion thus supports the conventional picture. Fur-
thermore, for s large, but not infinite, the e expansion also
is consistent with the discussion of the extreme tails as

y ~0 or as y ~ 00, as given above.
The scenario of Ref. 10 goes beyond the spin-polymer

analogy, in that p (y) cannot be calculated from the LGW
model in its standard form. However, using the general
formalism of Ref. 17, we easily can calculate p (y) in the
loop expansion. I here present a detailed discussion of
the results. The calculation makes extensive use of re-
sults given in Refs. 8 and 17, which are not rederived
here. Equations taken from these references will be re-
ferred to as Eqs. (I. . . ) (Ref. 8) or Eqs. (II. . . ),

' respec-
tively.

II. SCALING THEORY OF THE
CHAIN-LENGTH DISTRIBUTION

where the following notation is used.
~: momentum scale of the renormalized theory.S: renormalization factor of the chain length,

ng=S n (17)

[For the relation of S„ to the renormalization factors of
the LGW model, see Eq. (II 3.3).]

h (t): renormalized Laplace transform with respect to
n of exp[@(n)]:

M(t)=
d lnZ,2mi

a "0 fih (t)

where Z is the grand partition function and Q denotes
the volume of the system.

For the equilibrium ensemble (1) h (t') takes the form

hh'(t') =
i —t' '

where h or t are the renormalized magnetic field or the
renormalized reduced temperature of the equivalent
LGW model, respectively, both made dimensionless by
extracting appropriate powers of a. They are related to

Equations (II3.13) and (II 3.15) establish the general
expression

dt's „„,, M(ti)
c~(n)=~ S,f .e " ' f .e h (t'),2ni. h (t, ) 4mi.
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p(n) by

h =Z~ 2(4m) I " e'
[compare Eq. (I 2.16)], or

t =(p„p—, )S„' .

(19)

(20)

malized variables are functions of A, , the functional
dependence being given by the renormalization-group
equations. We thus find the nonlinear scaling law

h A,ldc (n)=AS, „(A) , 8(nz()t, ), t(A, ), h (A),g(A)),
2

Here I is the microscopic length scale of the unrenorma1-
ized model (giving essentially the size of the segments), Z
denotes the field renormalization factor, and p„ is the
chemical potential per segment of an infinitely long
chain.

With the form (18) the second contour integral in Eq.
(16) is easily evaluated. [I have to apologize for an error
in Fig. 1(a) of Ref. 17: The arrows giving the direction of
integration should be inverted. ] The result can be written
in the form

(23)

where the definition of the scaling function C( . ) is ob-
vious from a comparison to Eq. (21).

The "excluded volume limit" 1 c& ~0, N ~ ao,
s =l c&1V' arbitrary, is governed by the fixed point
g(A, )=—g' of the renormalization group. At g', the A,

dependence of all quantities is known rigorously:

h —„~, dt) nz'I 2c~(n)=a S„e f . e 'G(t„t,h, g),
277l

(21)
(24)

where G( )=M(t&)/h(t, ), and g denotes the renor-
malized coupling constant. For the equilibrium model
under consideration G( ) is given by the set of all dia-
grams contributing to the renormalized dimensionless
transverse spin correlation function in external field h
and at momentum zero, with the only modification that
the open transverse line has its own "temperature" vari-
able t, , different from the temperature t of all other lines.
Of course closed propagator loops are eliminated by tak-
ing the limit of zero spin dimensionality.

To write down the general nonlinear scaling law we in-
troduce the scaling parameter

(22)

and we recall that all renormalization factors and renor-

Here v or g are standard critical exponents, and the
quantities &, etc., are proportional to their unrenormal-
ized counterparts, with nonuniversal but constant pro-
portionality factors. Using these equations and fixing A,

by

n„(A, )=1

we find the scaling law

I c (n)=constX tt r ~p~(h t f Q «d+r)
2

7

(25)

(26)

where y=v(2 —rt). Equation (26) can be written in the
equivalent form

2

I c (n)=constX & 'C""(6'f '" + ' t h '" + ') . (27)

p (y) =p(y, s ), (28)

where

I should stress that Eq. (23) is a rigorous result of the re-
normalization group, holding for all A, , up to corrections
of order -A, . To extract the scaling form (26) or (27) we
therefore can use the simple condition nz(A, )=1, even
though this choice is not appropriate for the actual calcu-
lation of the scaling functions C' or C" in all the pa-
rameter regions of interest. In the next section I will re-
place condition (25) by the more complicated choice (30),
which incorporates the screening. It is easily checked
that these conditions are completely equivalent as far as
the scaling form is concerned.

Starting from Eq. (27), it is not hard to derive the scal-
ing form of the reduced-chain-length distribution. The
calculation being straightforward but lengthy, I relegate
it to the Appendix. I find the simple result

s =const Xs =s(t A '""+r') . (29)

This shows that p (y) in general does depend on the over-
lap. I want to stress that p(y, s) is a universal function,
independent of the technical details of the renormaliza-
tion scheme. Only the scale of s is not universal.

Let us now consider the scaling ansatz of Ref. 10 in the
light of the results presented here. Equation (27) has the
same structure as Eq. (5) of Ref. 10, except that in this
work a simple exponential form is postulated for the 8
dependence of C *. In terms of p(y) this leads to the
form (12), independent of s. It should be clear that this
ansatz is consistent with our result, but the general scal-
ing form established here is much richer than the postu-
late of Ref. 10. General arguments restricting the form
of the scaling functions 8" or p are lacking, except for
the rigorous bound established in Ref. 12 and the qualita-
tive arguments based on the blob picture. I therefore
proceed to calculate p in the loop expansion.



46 CHAIN-LENGTH DISTRIBUTION IN A MODEL OF. . . 6065

III. ANALYSIS OF THE
REDUCED-CHAIN-LENGTH DISTRIBUTION

na =n/(N/Na) . (33)

1
1 = +2gclR .

NR

Here XR is the renormalized average chain length

(30)

I use the formalism of Ref. 8, fixing the scaling param-
eter A, by relation (I 4.15):

clR

nR
(34)

Since the crossover from g =0 to g =g' is of no in-
terest for the problem at hand, I restrict the analysis to
the excluded-volume fixed point g*. Introducing the no-
tation w = I /Nz we can use Eq. (30) to express clz and

NR =S„N,
and clR is the renormalized segment concentration

(31) in terms of the scaling variable w, which is related to the
overlap s by Eq. (I 4.17):

clR —~ S„cl .—d (32)
(1—w}w' " =consts . (35)

The rationale behind the choice (30) is to take the length
scale a '=l/A, [cf. Eq. (22)] of the renormalized theory
to be of the order of the density correlation length gd in
the solution. Indeed, the right-hand side of Eq. (30)
equals ada. /d to lowest order approximation. In terms
of the blob picture gd can be identified with the size of
the blob, so that each renormalized segment effectively
represents one blob, and NR gives the number of blobs in
an average chain. The number of segments per blob is
N/Na, and na gives the number of blobs in the special
chain considered, this interpretation following from Eqs.
(17) and (31):

p(y, s)=P(y, w(s)} . (36)

It is a standard calculation to determine P(y, w) to first
order in a=4 —d. I sketch the essential steps in the Ap-
pendix. I find

This relation easily is derived from Eqs. (24) and (34).
The dilute limit s —+0 is attained for w~1, whereas the
semidilute limit s ~ 00 is reached for w —+0. The
reduced-chain-length distribution naturally is found as
function of the scaling variables y =na/Na=n/N and
w, a presentation which by virtue of Eq. (35) is equivalent
to the form (28),

P(y, w)=exp ~ —y 1 —— +—(w —2) +wyE„+w lny —(1—w)e~ E&
— +O(e )

e wlnw e wlnw /'u 3' 2

8 1 —w 8 1 —w w
(37)

where yE„denotes Euler's number, and E, (x) is the exponential integral

E,(x)=f ds
x S

(38)

(39)

This most economically is checked by calculating the Laplace transform

p(x, w)= f dye "p(y w)
0

Before analyzing this result in various limits I check the normalization. By construction P(y, w} must obey the relation

J, dy P(y w)=1= I dyy p(y w) .

1 ——w ln(1+x)+ lnw—E 2—w lnw

8 1 —w (1+x)(1—w)
+—w(l —w) +0(» ) .

8 1 —w(1+x) (40)

Expanding with respect to x, I find

tl tll

P(x, w)=1 —x+ x + x +O(x ),
2 6

where

(41)

p =2+- W

4 1 —w
1+ +O(e )

1 w
(42a)

p
'"=—6——e 3 —5w+(4 —6w) +O(e ) .lnw

(1—w} 1 —w
(42b)
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p (y)= (oy) 'e
I'(o )

(43)

where I denotes the I function. It is easily checked that
these distributions obey the relation

P."'=—P."(2P."—1} . (44)

The results (42) obey this relation only in the dilute
(w —+1) or semidilute (w ~0) limits. In general the equi-
librium distribution P(y, w) is not in the class (43).

I now consider the limiting behavior in w of p(y, w),
taking y )0 fixed. In the dilute limit w —+1 Eq. (37)
yields

P(y, 1)=exp —y 1+—
8

The first two terms in Eq. (41) demonstrate the correct
normalization. Equation (42a) to order e coincides with
Eq. (I 5.26), derived from the density autocorrelations, a
result which holds by virtue of an exact sum rule.

The results for p
" and p

"' allow for another check of
interest. Often it is assumed that polydispersity takes the
form of a "Schultz distribution"

ansatz of Ref. 10, which assumes that P(y, w) for all over-
lap is given by Eq. (46). Being inconsistent with the e ex-
pansion this form cannot be correct. Rather in the limit
of large overlap p(y, w) reduces to the form predicted by
the heuristic blob model. Since all the argument of Ref.
10 is based on the assumption p(y, w)—:pr (y), the predic-
tion of a dense phase is unfounded. I note in passing that
the result (37) is consistent with the bound established in
Ref. 12.

Above we found that P(y, w) cannot be represented by
a Schultz distribution (43) with some effective exponent
o(w). Rather the behavior is more complicated, and
indeed our result is consistent with the power law

p(y, w) -y ~ '
y ~0, independent of w )0. Inserting

into Eq. (37) the asymptotic behavior

E, —=E, (nz )
— ln—nti —yE„+O(ntt } (49)

we find

E' w inn 2p(y, w) =exp —lnntt +yE„— +O(nR, e )
8 1 —w

(50)

+—(I+yE„+lny)+O(e )
8

(4 } which can be interpreted as approximating

e X

E (x}-
1

X
as x~~ (47)

to find the simple result

P(y, 0)=e '=pi(y) . (48)

We now are in the position to again discuss the scaling

By virtue of the well known expansion y = 1

+e/8+0 (e ) this is consistent with the rigorous result

yy
P(y I ) =u (y) =

r(r) (46)

which derives from the fact that G( ) [see Eq. (21)] in
the isolated chain limit takes the form

G(t, , t, O, g')=constt, r .

In the semidilute limit m ~0 we use the asymptotic be-
havior

P(y, w)=a( )wng '[1 +O(n ti)] . (51)

To understand this result we recall Eq. (33): n„«1 im-

plies that we consider a chain much smaller than a blob.
As pointed out in the Introduction such chains feel no in-

teraction with the other chains. Their relative distribu-
tion therefore should follow the law (46). Note that this
result is completely analogous to the momentum depen-
dence of the spin correlation function of the LOW model.
For finite temperatures t &0 this function for small mo-
menta q, corresponding to large length scales, is a regular
function of q . However, for large momenta, correspond-
ing to small spatial distances, it develops the anomalous
power-law behavior characteristic of the critical point.
Similiarly here p (y) is a regular function for chains of
average size, but exhibits the nontrivial singular behavior
for very small chains.

We can exhibit this behavior more directly. Indeed,
starting from Eqs. (21) and (A16) and using condition
(25): nz(k)=1, we find

A,

l "c (n) =const X & exp —y 1+—)h z y
P 8 2g*c,

2g Clg
1n 1+

+— {y(yE„—1)—2g*e«[1+in(y +2g*e«)]
g ClR

+exp(y+2g'e«)E, (y+2g*e«) j+O(e') ' . (52)
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With the present choice of A, , ci„ takes the form

c&„=const X sy (53)

er, can determine the region where this behavior is ex-
pected. The relevant chain lengths nz obviously obey

vanishing for y~0, s =const. In that limit we therefore
can expand the exponential integral to find the simple re-
sult

2

1 c (n)=constX& r
2

(54)

in keeping with Eqs. (15) or (51). This result is valid for
y « l,cr„«1, or n/N « i,cin" '«1, equivalently.
The latter condition can be written as

N—l c 7l «1,
n

(55)

which is easily interpreted. c N/n gives the number den-
sity of subchains resulting from dividing the chains into
elementary pieces of length n Equ. ation (55) states that
this fictitious system of subchains must have negligible
overlap, a criterion equivalent to the discussion given in
the context of Eq. (15).

We note that the choice (25), na (A, ) = 1 is not adequate
for a discussion of the region y —1 in a strongly overlap-
ping system el+-s~~. In that limit we again en-
counter logarithmically divergent terms in Eq. (52). We
can avoid this problem by combining Eqs. (25) and (30) in
the form

—w lnn„——
8 4 N~

implying nz ~Nz '. This is easily understood from the
fact that naive perturbation theory proceeds in powers of
g,sn', where in the semidilute region g,z-g/N. We
thus expect the expansion to break down for n'~ /N )) l.

To illustrate my results, I in Fig. 2 for selected values
of w have plotted e p(y, w), as given by Eq. (37), setting
a=1. In the semidilute limit w =0 this function reduces
to the straight line e~p(y, 0)—= 1. For 0 & w &&1 the tails
of the function drop down to zero, but the central part
over several decades of y closely follows the w =0 result.
If we approach the dilute limit w =1, the tails merge and
the plateau vanishes. [Note that for w =1, I used the ex-
act result (46).] On the side of short chains the plateau
starts around y -w. In keeping with our discussion this
corresponds to n~ —1, i.e., to chains consisting of a single
blob. For large chains the plateau ends around
y-0. 1/w, corresponding to na -0.1Na. Clearly in the
large overlap region the bulk of the chain-length distribu-
tion follows the simple exponential law.

IV. CONCLUSIONS

11= +2g*c» . (56)

With this choice of A, we find a smooth crossover from
the power law (54) to the simple exponential behavior
(48). Combined with Eq. (52) this gives the optimal rep-
resentation of c~(n) or p(y, s), based on a one-loop calcu-
lation. Since, however, Eq. (56) has to be evaluated nu-
merically and since accurate data on p (y) are missing, I
do not pursue this matter further.

To complete the discussion I treat the limit of extreme-
ly long chains. In the limit y ~~ Eqs. (37) and (47) yield

e wlnw
P(y, w) =exp —y 1 ——

8 1 —w

+—w lny +wyE„—(2—w)
w lnw

+0 e, —1 (57)

The term w lny again signals the occurrence of some non-
trivial power law, which can be understood as follows. '

For w )0 the screening is not perfect, the residual in-
teraction among blobs being of the order of g'w. For ex-
tremely long chains this interaction again builds up
excluded-volume correlations and thus leads to a distri-
bution of the form p(y, w)-y~ 'exp[ (bw)y]. Wi—thin
the present calculation we cannot correctly recover that
exponent. This needs another renormalization, tailored
specifically for the anomalously large chains. We, howev-

To summarize, I here have derived a general scaling
form of the chain-length distribution for equilibrium po-
lymerization based on the model of des Cloiseaux. This
form is much more general than assumed in some previ-
ous work. A first order calculation shows that the distri-
bution is not in the class of Schultz distributions and
clearly rules out the ansatz of Ref. 10 which also was
used in the interpretation of the Monte Carlo data of Ref.
11. The result, however, obeys a rigorous bound recently
derived. ' In the semidilute limit the result reduces to an
exponential distribution, modified by power-law prefac-
tors in the extreme wings. This is well understood in
terms of the blob concept.

I have restricted the explicit discussion to the
excluded-volume limit g =g'. Outside the limit we have
to take care of the A, dependence of the running coupling
constant g (A, ). This mainly will effect the tail of the dis-
tribution for short chains. With the choice n~(A. )=1,
g(A, (n) ) will decrease with decreasing n, which yields an
effective exponent y,Qn) —1 decreasing with decreasing
chain length.

All the work presented here presupposes the normal
thermodynamic limit. For finite systems we clear1y ex-
pect pronounced finite size effects for chains which can
span the linear size L of the container. In particular for
t &O, hL ~ 1 the character of the chain-length distribu-
tion might change completely. These effects possibly can
be calculated by the methods of Ref. 18. This, however,
is a much harder problem.
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APPENDIX

Scaling form ofp (y)

From Eqs. (A3) and (A6) we can construct an expression
for the overlap

I start from Eq. (27}written as

ldc (n)=a& y )f 2'~~(u, v),

where I introduced the notation

(A 1)
s= l'—c 8'=b

a

f du uyC "(u,v)

f du uy C**(u,v)
vd —1

(A7)

2 /( vd + y ) t f——2 /( vd +y )

and a is some nonuniversal constant. Summing over n, I
find

l c =—h' dRny 'C"(uv)
b

which formally can be solved for

v =v(s) .

The variable u can be rewritten as

(A8)

a f 2vd/(vd+y) du u y —l(ye+(u v)
b

(A3)
u =—8'f ' "+ =yu(v(s)) . (A9)

where b is a nonuniversal constant relating 8' to n:

8'=bn .

Similarly I find

(A4)

Substituting these results into the expression for p (y) we
find

p (y) =p(y, s )

l c = f dR'ff yC "(u, v)I

du uyC'"(u v) .
b2

Equations (A3) and (A5) yield the expression for N,

QQ~ u, U

g —f —2/(vd+y)

f du uy 'C*'(u, v)

f —2/(vd+y) —
( )

(A5)

(A6)

=y 'C'*(yu(s), v(s))

f du uyC "(u,v(s))
X y+1f du uy 'C"'(u, v(s)}

First-order calculation of P(y, u) )

To one-loop order C( ) [Eq. (23)] is found as

(A 10)

C(n„, t, h2, g')=e 2' t&+g*cIR
1+

ti+g~IR
(Al 1)

where D is the contribution of the second diagram in Fig. 10 of Ref. 8, with the only modification that the solid line
represents a propagator of mass t

& +gcIR.
Taking all counterterms into account and shifting t, +gcIR ~t„I find

R 1 ydk

tl (2~) k (k +t )

dt, e"~'1
+g.2gct, g . , f2mit 2)

. (2~)d +2gct~ +k ( k + t, )
R

—SdI, (A12)

where

S =2(4m. ) I '(d/2),
1 1I, =—+—+O(e) .

2

Evaluating the integrals I find
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1 +2gcIR
NR

1 1
X (irma +yE„—1) 2—gcat 1+in

N
+2gcIR

1 1
+exp nR +2gciR E, nR

N
+2gc

R

1
g4'd —gci„n„ 1 +ln +2gce

R

I eliminate t +gcIR with the help of the equation

(A13)

1
+gclR NR

1+ g 1—d

2
1

+2gcIR ln +2gcIR + 1
1

NR

1

2g

lnNR 1 1+ +2gcIR ln
N

+2gc
NR R

(A14)

With the choice (30) this equation reduces to Eq. (I 5.5). At the fixed point

g'=I„'—[1+O(e)] (A15}

the final result for the scaling function C can be written in the form

8(n at, h, g') =exp
ntt e ln(1+2g'ctttNa }1+—
NR 8 2g*cIR NR

1+
8 1 +2g cIR

R

1
(lnna +yE„— )

R

—2g'cd 1+in
N

+2g cIR
1

R

+exp (1+2g'cittNtt
R

XE, (1+2g 'catt Nz )
R

+O(e ) (A16)

To derive the result (37) for P(y, w) I use condition (30):
1 = 1/Nz +2g 'c,z together with

1

N

2g c~z =w(1 —w},

g'h =w (1—w} 1+———2 — 2 e e wlnw
8 8 1 —w

the latter relation resulting from Eqs. (I 4.19), (I 5.4), and
(I 5.8).
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