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Inclusion problem in a two-dimensional nonlocal elastic solid
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We have examined the problem of incorporating an inclusion in a two-dimensional linear elastic solid

that includes the nonlocal interactions via strain-gradient contributions, and determined an analytical

solution for the strain field that minimizes the elastic energy. We have effected this analysis by

representing the presence of the inclusion by an external stress field which the elastic solid relaxes

around in order to accommodate the inclusion. This formulation of an old problem is extremely general,

and is to be contrasted with the solution determined by Eshelby which requires the knowledge of the
solid's elastic Green's function, an impractical requirement for either systems including nonlocal interac-

tions, or anisotropic, or nonlinear elastic materials. One result that follows from our analytical solution

is that we can say with certainty that the effect of the nonlocal interactions is restricted to at most a few

angstroms near the parent-phase/inclusion interface in almost all materials. An analytic solution is

presented for graphite, which is of special interest because it forms an exception to this rule.

The incorporation of any foreign object into a solid
leads to a disturbance of the solid's structure. The dis-
placement pattern representing this perturbation is well
studied, and it is known' that the decay of the displace-
ment pattern is algebraic, and that this leads to long-
ranged interactions between the inclusion and other re-
gions of the crystal. It is well understood that the long-
ranged nature of this interaction is important in a variety
of situations. For example, Kawasaki and Koga have
examined the dynamical evolution of a system towards
equilibrium in the presence of such interactions. Ohta
has focused attention on the elastic misfit arising in
order-disorder transitions, and shown how the long-
ranged elastic interaction radically affects the product
state.

The main focus of this paper is to reformulate the
Eshelby inclusion problem in a manner that allows for
more general energy functionals, for example, mean-field
Ginzburg-Landau free-energy densities that include non-
local interactions between different coarse-grained cells.
We shall only consider the nonlocal elastic interactions
that arise in the form of strain-gradient contributions to
the elastic energy density. Besides being a purely formal
exercise, this formulation will eventually allow us to ad-

dress the problem of defining the martensitic nucleus via

a nonlinear, nonlocal elastic energy density which
reflects the nonclassical character of this nucleation pro-
cess. This is an important unsolved problem in the
theory of solid-solid phase transitions. The considera-
tions associated with the nucleus will appear as later pa-
pers in this series.

Let us begin by restating the solution to this problem
that was completed several years ago by Eshelby. ' In his
formulation the inclusion is created by a series of hy-
pothetical manipulations of an elastic solid. First, a por-
tion of the solid (the future inclusion) is removed from
the host lattice, and undergoes, a uniform, homogeneous
strain. The inclusion at this point has zero total stress,
and this deformation strain is called by Eshelby the

"stress-free strain. " This inclusion then has surface
forces applied to it such that it returns to its original
shape, acquiring an internal stress field in the process. It
is reinserted into the host lattice, and "welded" across
the interface so that sliding of the inclusion relative to the
host lattice is not possible. The system then relaxes. In
Eshelby's formulation, this relaxation is computed by
solving the equations of elastic equilibrium in the pres-
ence of body forces exerted by the stressed inclusion on
the host lattice. These forces are of course equal and op-
posite to the forces required to bring the inclusion back
to its original shape, and are exerted on the system at the
interface between the inclusion and the host lattice.

This paper demonstrates an equivalent formulation of
the inclusion problem in terms of an externally applied,
localized stress field. This stress field is applied to the re-
gion of the inclusion such that, in the absence of the re-
straining host lattice, the inclusion would acquire
Eshelby's stress-free strain. The elastic energy is then
variationally minimized in the presence of this stress
field. This much more general formalism allows us to in-
clude different types of terms in the energy functional in a
natural way. In this paper, we concentrate on the effect
of the nonlocal, or strain gradient, terms. These terms
are described at length in Ref. 7, and one instance in
which they arise is in systems for which bond-bending
forces are present. It is of importance in the nucleation
problem to know, in the presence of the smearing-out
effect of the gradient terms, whether the boundary be-
tween the inclusion and the host lattice is detectable.
Specifically, we wish to know if the boundary is smeared
out over length scales comparable to the size of the in-
clusion itself, which would be an important qualitative
feature of such nuclei.

The energy functional for the problem under study is
bilinear in both the independent strain components and
the strain gradients. It describes a linear, isotropic, two-
dimensional solid. The elastic energy per unit area of this
system is given by
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With displacement field components u;, the quantities
u;, =

—,'(u; +u; ) are the symmetric strain components, j1,

and p are the Lame coeScients, o.; is an externally im-
posed stress field, and the g,tk are the rotation-
independent linear combinations of the gradients of the
symmetric strain given by

0ijk uij, k+uik j ukj, i (2)

Strain gradient terms of this type reflect the nonlocal
character of the interactions included in the elastic ener-

gy functional, and are present to some degree in all solid
systems. The particular terms included in Eq. (1), with
coeScients d, and d2, are the gradient terms allowed un-

der the enforced isotropy of the system.
We undertake the examination of the response of the

system to an inclusion by postulating an external stress
field cr, , which is a uniform dilation within a circle of ra-

X
u = b(r),—1 u = b(r) .—2 (3)

In order to make the algebra in this paper accessible to
the reader, we also include the strains and strain gra-
dients in terms of b (r):

dius r0 and zero outside. In the absence of a constraining
matrix, the stressed region would respond to this field by
uniformly expanding or contracting to a new radius r'.
Such an object corresponds to the removed, deformed in-
clusion of the Eshelby formulation, and the acquired
strain is the stress-free strain. That is, the inclusion
would relax until the total stress is zero. In our case, the
response of the system is obtained by variationally
minimizing the total elastic energy of the full system in
the presence of this externally applied stress field,

By symmetry, the displacement field of the solid will be
everywhere radial. This reduces the problem to that of
finding a single function, the radial displacement function
b (r). We shall express the quantities in Eq. (1) in terms
of b (r). The displacement field is given by

X X 2
Xy Xy

u» = y b(r)+ b'(r), u22= b(r)+ b'(r), u12=u2, = —
&

b(r)+
2

b'(r);
r r
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Then, substituting Eqs. (4) and (5) into 7, the various
components of the energy density expressed in terms of
b(r) become

b2+b 2

r 2

+d) b" + — ——b'
r2 70

2

o(r) b+b'——.1

r

where cr(r) is the radial profile of the purely dilational or
compressional external stress. Due to the radial nature of
the deformation, the d2 gradient term of the general elas-
tic energy density, Eq. (1), does not contribute.

The total elastic energy of the system is then given by

2 0

=2m dr —Ar —b+b' +pr —b +b'1 1 2

0 2 r r2

2
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1 r2 70
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the integral of the circularly symmetric energy density V
over the whole system, which we take to be an infinite
plane. The energy is a functional of the function b (r),

E=2~frdr V
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The problem of finding the two-dimensional con-
figuration of the system has therefore been reduced to a
well-posed, one-dimensional variational problem. It is
necessary to variationally solve' for the function b (r} on
the interval [O, oo) with cost function F=rP, the in-

tegrand in Eq. (7).
The circular inclusion is modeled by choosing the ap-

propriate stress term in the cost function. We take the
external stress to be a radial step function, with values

T

cro for r &ro

0 fo

The differential equation for the displacement profile
b (r) is obtained from the Euler-Lagrange equation using
the cost function F,

d d'
Fb Fb+ 2Fb =0

s
dr dp~

giving rise to the differential equation

b~ » —b-- &»—b—4 ttt 2 3 tt g

T r2 r r3

db(r), b'(r), F&., F& F&—-, continuous at r=ro,
(14)

6=0, lim rb "(r)=0, for x =0, x= oo .
I'~X

With the given cost function, Eq. (7), the first corner
condition gives

tional analysis, ' there are two corner conditions which
apply —the quantities F&- and F&. (—dldr}F& ~ must be
continuous at ro. The effect of the inclusion must be re-
laxed to zero at infinite distances, so that b( ~ }=0. Fur-
ther, for a purely dilational or compressional distortion,
obviously the displacement of the center of the distortion
is zero, and thus b (0)=0. This variational analysis also
provides us with the so-called "free-boundary condi-
tions, " which allow the slope of b at zero and infinity to
take the value which minimizes the total energy. This
condition imposes the constraint that the quantity rb "(r)
be zero at the boundaries.

In summary, the eight conditions which fix the con-
stants in Eq. (13}are

with

q =

3 0+ — b = 5(r ro ), (10)—
r r 2d&

A, »2p
2d ]

Fb"=2d )
rb" (isa)

d ]
6d,

F&, F&„=(——,'A. +p)(2rb')+ A,
—

2
b

T

so that continuity of Fb- clearly implies continuity of b".
The second corner condition gives

The quantity q has dimensions of inverse length, showing
how the gradient term coei5cient d& controls the length
scale in this problem.

This high-symmetry special case represented by Eq.
(11} can be solved analytically. The homogeneous
(oo=O) case has four linearly independent solutions

6d)+ b' oor (2d—, rb")—. (15b)
T dx

Since all but the last two terms are continuous, this con-
dition reduces to

qr, —,Ii (qr), K i (qr),
1

(12)
( cror 2dib"—2d—, rb'")~„'—=0 .

0
(16)

b(r}= '

1
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+c4 Ki(qr), r (ro
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+c4+K, (qr), r ) ro.
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where I, and E& are modified Bessel functions of order 1.
Within the regions [O, ro] and [ro, ~ ), the function b(r)
will be some linear combination of these four functions,
the precise combination being determined by the bound-
ary conditions. There are therefore eight parameters re-
quired to specify the solution, which will be labeled ac-
cording to the following convention:

However, since b" is also known to be continuous, and
the stress field has a discontinuous jurnp of magnitude o o

at ro, we thus have

b ltl
b

lit 0'p

' =2d
1

(17)

for the discontinuity in the third derivative of b at ro.
Physically, these corner conditions correspond to in-
tegrating the differential equation, Eq. (10}, through the
5-function source term at ro.

From the above relation it is possible to solve for the
constants in Eq. (13). We have examined the implications
of these relations for the constants c

&

. . . c4 and
c&+ . c4+ and determined that the boundary conditions
give

The cost function F must be integrable, and since it
contains the second derivative of b, both b(r) and b'(r)
must be continuous at ro. Furthermore, from the varia-

C) —C3 =Cp C4 0+ —+ — —R

and that the continuity equations at ro give

(18}
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where Io =Io(qro), Ko =Ko(qro ), I, =I, (qro ), and

K& =K, (qro ). These equations can be solved numerically
for given combinations of cro and d, , and the results sub-

stituted into the appropriate part of Eq. (13), thus giving
the displacement field due to the inclusion.

In order to examine the implications of the nonlocality,
we have substituted ihe elastic constants and gradient
constants of example systems into the above equations.
We have applied our two-dimensional formalism to these
three-dimensional crystals since we simply wish to obtain
the characteristic length scale of the interfacial region for
such inclusions. To be specific, the two-dimensional in-
clusion problem is the first nontrivial problem involving
the effects of accommodation (one-dimensional domain
walls do not involve this restriction), and so we content
ourselves with a formal solution to this problem. This
thus gives a qualitative description of the inclusion
profile.

For the case of bcc La, the relevant elastic constants
and gradient constants can be deduced from the phonon
dispersion relation" of the T, branch in the [110j direc-
tion. This branch was chosen because the gradient
coefficient is positive, and because this is the shear in-
volved in the martensitic bcc to hcp transformation
which we ultimately wish to describe. The phonon
dispersion relations for both longitudinal and transverse
phonons, in the presence of gradient couplings, are of the
form co =a, k +azk, where a& depends only on the
elastic constants of the system, and az depends only on
the gradient coefficients. The La system has a charac-
teristic length scale Qaz/a&=1/q of =1 A, compared
to a lattice constant of =4 A. This result suggests that
gradient effects in cubic systems are very small, and that
the interface between the transformed region of a
product-phase nucleus and the host lattice should have a
characteristic length scale smaller than the unit-cell
length. In the exterior region, the Bessel function K, (qr)
decays rapidly to zero with the same characteristic length
scale 1/q, so that at distances large compared to this
length scale, the displacement field is dominated by the
algebraic 1/r term.

We have also examined this solution for a system in
which the length scale is large compared to the unit-cell

size. This effect may be expected in weakly first-order
structural transitions where the elastic constant of a soft
mode, corresponding to a&, is small, but the gradient
coeScients, corresponding to az, are not. A long length
scale is also realized in graphite, due to the relative
strength of the bond-bending forces in the hexagonal
planes in comparison to the c44 elastic constant corre-
sponding to a shearing of the planes. This unusual
characteristic of the lattice gives rise to anomalies in the
specific heat of graphite. ' The length scale can be es-
timated from the thermodynamic data. The authors in
Ref. 12 have found that a crossover in the behavior of the
specific heat occurs at 10 K. Assuming that at the energy
corresponding to this temperature, the elastic term a, k
and the gradient term azk contribute equally to the pho-
non energy, and given the value of the a

&
elastic constant,

one can compute the ratio az/a& and thus the length
scale. For representative data for graphite, the resulting
length is 33+9 A. corresponding to several lattice con-
stants. Figure 1 shows the radial displacement function
for a homogeneous circular system with a length scale
1/q of 33 A, an inclusion diameter of 100 A, and a stress
field strength of 9.2X10' dyncm . This stress corre-
sponds to a nongradient radial strain of 0.02, using the
value of 2. 3 X 10' dyn cm for a, from Ref. 12.

These two analyses indicate that the length scale is a
good indicator of the extent to which the inclusion/host
interface is modified by gradient effects. Gradient forces
may be expected to be important in layered systems
which resist bending, as demonstrated by graphite, but
will be of considerably lesser importance in cubic systems
unless the elastic constants are anomalously small.

In light of the length-scale results for cubic systems, it
is instructive to examine the short-length-scale limit of
Eq. (10), which is obtained by multiplying by d, and then
taking the limit d

&
~0. The resulting equation is

2.0

o~
1.0

0.0
0 50 100 |50 200 250 300

FIG. 1. Radial displacement function u (r) for a two-

dimensional, isotropic solid with elastic parameters consistent
with those of graphite, subject to a circular dilational stress
field. The magnitude of the stress is chosen to yield a 2% ex-

pansion of the inclusion in the host lattice in the absence of gra-
dient forces. The dashed curve is this nongradient elastic
response, and the solid curve is the response of the system with

an additional gradient effect giving rise to a characteristic inter-
facial length scale of 33 A.
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b' b
(A, +2)tt) b—" ——+—=ao5(r —ro)

r

with two linearly independent solutions for the homo-
geneous case,

(21)

The solution to the inclusion problem is therefore given,
including the continuity constraint on b and the discon-
tinuity in b' at ro, by

&o

)
2(A, +2@)

b(r)=
0oro 1

2(A, +2@) r

(22)

pV u+(A, +p)V(V u)= —f, (23)

where u is the displacement field and f is the body force
field generated by inserting the inclusion into the solid.
This force field will, for this problem, be radially directed,
and confined to the boundary of the inclusion. Thus the
body force may be written

f=o o5(r —ro)r, (24)

where we have written the amplitude as 0 o to correspond
with the notation of the preceding text. Physically, the
force exerted by the inclusion on the matrix is the change

We can now show that this particular version of the
problem corresponds exactly to a special case of the prob-
lem studied by Eshelby. His formulation starts from the
equation for elastic equilibrium, given here in terms of
the I.arne constants,

in the stress field at the boundary of the inclusion prior to
insertion, so that the amount of compression in fact
determines the stress. This underscores the equivalence
of these two approaches to the same problem. Writing
the displacement field u in terms of the radial displace-
ment function b(r) and substituting it and Eq. (24) into
Eq. (23), the resulting difFerential equation is

(A, +2)tt) b"— —+ =oo5(r ro),—
b' b

r r
(25)
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which is identical to Eq. (20).
The external stress field formulation of the inclusion

problem is formally identical to the Eshelby method of
solution of the equations of equilibrium. While the
Eshelby model is well adapted for differing inclusion
geometries, the stress field model is better adapted for ex-
ploring the implications of different types of terms in the
elastic energy functional. In particular, we have shown
here that the effect of adding gradient terms to the energy
is to smear out the inclusion/host interface over a
characteristic length scale obtained from the ratio of the
gradient coefBcient to the elastic constant. We have also
shown that the gradient effect is generally small for real
cubic systems, but that it can be quite large for systems
with unusual elastic properties. In a later publication, we
shall be examining a further generalization of this prob-
lem which includes nonlinear terms in the energy func-
tional in order to represent actual martensitic nuclei.

'J. D. Eshelby, Proc. R. Soc. London Ser. A 241, 376 (1957).
~K. Kawasaki and T. Koga, Prog. Theor. Phys. Suppl. 99, 339

(1989).
T. Ohta, J. Phys. : Condens. Matter 2, 9685 (1990).

4For a discussion of this problem, see the papers in Lattice Dy-
namics, edited by P. F. Wallis (Pergamon, Oxford, 1965).

5See papers in Mater. Sci. Eng. A 127, 1 (1990).
G. R. Barsch and J. A. Krumhansl, Phys. Rev. Lett. 53, 1069

(1984).
R. A. Toupin and D. C. Gazis, Lattice Dynamics (Ref. 4), p.

597.
sL. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed.

(Pergamon, Oxford, 1986).
G. R. Barsch and J. A. Krumhansl, Met. Trans. 19A, 761

(1988).
'oI. M. Gelfand and S. V. Fomin, Calculus of Variations (Pren-

tice Hall, Englewood Cliffs, NJ, 1963).
W. Petry (unpublished); A. Heiming, W. Petry, and J. Tram-
penau, J. Phys. (Paris) IV Colloq. [Suppl. to J. Phys. (Paris)
III] 1, C4-83 (1991).
J. C. Bowman and J. A. Krumhansl, J. Phys. Chem. Solids 6,
367 (1958); see also K. Komatsu, ibid. , 6, 380 (1958); J. A.
Krumhansl and H. Brooks, J. Chem Phys. 21, 1663 (1953).


