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Empirical N-body potentials, such as the embedded-atom potentials [M.S. Daw, and M. 1. Baskes,
Phys. Rev. B 29, 6443 (1984)]; have recently been used to describe the atomic interactions in hexagonal
close-packed (hcp) structures and are in principle suited to describe the interactions in less symmetric
structures. But together with the decreasing symmetry in the lattices studied, the relations used to fit the
potential parameters to elastic constant data are not valid anymore. In noncentrosymmetric lattices the
elastic constants are composed of a homogeneous and an inhomogeneous contribution, but the latter
contribution is usually not taken into consideration. In this paper a rigorous derivation of the expres-
sions for elastic constants from the embedded-atom total-energy function is given. These expressions
have been applied to potentials previously derived for hcp metals, showing that the inhomogeneous con-
tribution for most of these potentials should not be neglected. Furthermore we will argue that the Ra-
man frequencies can be used as empirical data to fit the relative magnitudes of the homogeneous and in-

homogeneous contributions to the elastic constants.

I. INTRODUCTION

Semiempirical atomistic simulations have become an
important tool in the study of the structure and proper-
ties of materials. The atomic interactions are described
with a semiempirically fitted potential function. Pair po-
tentials have been popular in describing metallic bonding
because of their computational simplicity. But they
suffer from two major shortcomings. First the vacancy
formation energy for a given potential is always the same
as the cohesive energy, and second the elastic constants
always satisfy the Cauchy relation C;;=C,,.! These
problems can be overcome by including a volume-
dependent energy term,' introducing many-body interac-
tions, but this term is poorly defined near extended de-
fects and surfaces.

Daw and Baskes” developed an alternative model
known as the embedded-atom method (EAM), based on
density-functional and effective-medium theory.’ > As
with pair-potential models, the energetics of an arbitrary
arrangement of atoms can be calculated quickly, but the
ambiguity of the volume dependence is avoided, while in-
cluding many-body interactions. Finnis and Sinclair®
developed independently a model (FS) which is
mathematically equivalent to the EAM, but has been de-
duced using the second-moment approximation to the
density of states in the tight-binding method.” Ercolessi,
Tosatti, and Parrinello® have used the same approach and
refer to their work as the “glue” model. We will refer to
these potentials as N-body potentials.

Since their development, N-body potentials have been
successfully applied in a number of studies in transition
and noble metals, including, for example, analysis of sur-
face relaxations and reconstructions,>’” % studies of
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point defects, grain boundaries, struc-
tures of liquids,20 surface self-diffusion,?! structural trans-
formations,?? and bulk and surface phonons.?* 2

The FS potentials have originally been constructed for
body-centered-cubic (bcc) metals®2® but they have been
applied to face-centered-cubic (fcc) noble metals and Ni
too.!? Conversely, the EAM has mostly been used in
studies of materials with close-packed cubic structures
(fcc metals and L1, ordered alloys) and recently it has
been extended to bee metals?” ~ 2 giving a fairly success-
ful description of many physical properties. Recently,
both the EAM and the FS method have been applied to
hcp transition metals?> 3% 32 and attempts are being made
to describe the atomic interactions in silicon in the frame-
work of the EAM.?*** So, an important feature of the
N-body potentials is that they can be used, at least in
principle, as an empirical scheme for the description of
atomic interactions in less symmetric structures.

In the process of developing an interatomic potential
for a particular material, elastic-constant data are com-
monly used as experimental input. But with the decreas-
ing symmetry in the lattices studied, the relations for the
elastic constants derived before>®!? do not hold. As we
will show, they were derived using the method of homo-
geneous deformations, which has never been explicitly
mentioned. In noncentrosymmetric lattices this method
cannot be applied straightforwardly. Born and Huang®
pointed out that in noncentrosymmetric lattices the elas-
tic constants are composed of two terms. The first term
is related to a homogeneous strain in the system, while
the second term arises due to the possible relative dis-
placements of different sublattices when a macroscopic
homogeneous strain is applied. Wallace® and Martin®"38
analyzed the elastic constants in detail and showed that
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the influence of sublattice relaxations for hcp and dia-
mond crystals cancels out for pair potentials. For
many-body potentials, however, they showed that this
contribution does not cancel out and has to be included
in the evaluation of the elastic constants. However, most
authors developing potentials for hcp metals did not dis-
cuss the occurrence of the second term,??3%32 or did not
evaluate it, but stated that it was negligible.’! Further-
more, in Ref. 34 it was shown that for a diamond cubic
material, simulated with an angular modified EAM po-
tential, the inhomogeneous contribution to the elastic
shear constant is significant, clearly indicating the need
for a more rigorous analysis of the inhomogeneous con-
tributions to elastic constants in N-body potentials.

Thus, whereas pair potentials are mainly applied to
metals with cubic lattices, the field of application of the
N-body potentials is recently being extended to describe
structures with increasing complexity. At the same time,
however, the basic equations used to calculate elastic
constants have not been modified to cope with these
structures. But very often the elastic constants are the
main experimental data used in the process of fitting the
model parameters to the properties of the metal. And
they play an essential role in determining if the model can
simulate the behavior of the material adequately.

The aim of this paper is to derive expressions for the
elastic constants for crystals with arbitrary symmetry
from the EAM potential functions. We will discuss the
approximations made to arrive at these expressions and
review the derivation of the elastic constants for a general
many-body potential. We will follow the discussion of
Wallace,® starting in Sec. II with the thermodynamic
definition of the elastic constants, introducing the
different strain parameters. Then we introduce the gen-
eral crystal potential expansion and give a summary of
the derivation of the elastic constants from this expan-
sion.

In Sec. III we derive the potential-energy coefficients
for the EAM potential, substitute them in the equations
for the elastic constants, and derive simplified expres-
sions. The EAM was chosen because it provides a frame-
work for the application to alloy systems, and it gives a
possibility of fitting the embedding function to a larger
range of electron densities,*® instead of one equilibrium
electron density. But the extension to the FS model is
straightforward.

In Sec. IV we discuss the application of these expres-
sions to hcp metals. We will show that neglecting the in-
homogeneous contribution to the elastic constants is not
always justified. We conclude this paper with a discus-
sion of the main points.

II. DEFINITION OF ELASTIC CONSTANTS
Thermodynamic definition

When we consider the crystal to be a homogeneous, an-
isotropic elastic medium, the homogeneous strains due to
a uniform stress can be described with the nine indepen-
dent displacement gradients u;;=du,;/dX;. Here u
denotes the displacement vector of a small element of

mass, X and x are the initial and final positions of this
element, respectively, and i,j are Cartesian coordinates.
The displacement gradients give a complete description
of the deformation of the crystal, including the rotational
component. This rotational component, however, can be
avoided by applying a symmetrical stress. Therefore, the
Lagrangian strain parameters are introduced,

1
77‘,}_:E u,-j+uﬁ+§k:ukiukj , (1)
which are rotational invariant. They define the change in
length of a vector, AX, due to the homogeneous deforma-
tion

IAx|2—|AX|2=2Z17,-jAX,~AXj ) )
i

The equilibrium thermodynamic definition of the elas-
tic constants follows now by expanding the thermo-
dynamic state functions in powers of the Lagrangian
strains. The internal energy U, for example, can be con-
sidered as a function of the configuration and entropy, S,
so that

U(x,S)= U(Xﬂ']ij,S)
=UX,9)+V 3 Cin,;
i

VI Coumgmut s 3)
ijkl

defining the adiabatic elastic constants C5, where V is the
volume of the system. Similarly, the expansion of the
Helmholtz free energy, F, in powers of the Lagrangian
strains, defines the isothermal elastic constants CT. The
first-order elastic constants are equal to the stresses ap-
plied to the system, C;;=7;, and the condition that the
applied stresses are zero, 7;; =0, provides a logical equi-
librium condition for the crystal.

It is useful to consider also the expansion of the ther-
modynamic state functions in the displacement gradients,
which give a full description of the distortion of the crys-
tal. The expansion of the internal energy

UX,u;, S)=UX,$)+VI Ajuy
ij
+%V2 Agk,u,-juk1+ tet (4)
ijkl
defines the so-called adiabatic wave propagation

coefficients A5. By substituting the Lagrangian strains,
Eq. (1), in the expansion, Eq. (3), the relation between the
wave propagation and elastic constants is easily found to
be

A4;=C;, (5)
A =Cidi +Cijpy » (6)
where 8, is the Kronecker delta. The elastic constants
have complete Voigt symmetry, i.e., they are invariant
for interchanging the indices i and j, or the pairs ij and

kl. Therefore each pair of Cartesian coordinates can be
replaced by a single Voigt index a.



6022

The crystal potential energy

We will now consider the crystal to be a finite array of
interacting atoms in the presence of externally applied
forces, neglecting surface effects. We will denote the
equilibrium positions of the atoms by R(Mpu)
=R(M)+R(u), where M labels the unit cell and pu the
atom in the cell. The total potential energy of the crystal,
®, is presumed to be a function of the configuration only.
We can now expand the potential energy in the displace-
ments of the atoms from the initial position, U(Mu),

My i
> 2P (Mu,Nv)U;(Mp)U;(Nv)

MNuv ij

LS S o, (MuNv,Pm

+ -
3! =
" MNPuvm ij

XU(Mu)U(NVU(Pm)+ -~ .
¢))

Here ®, is the potential energy for the equilibrium
configuration and the potential-energy coefficients
O, (Mpu), (I)ij(M,u,NV), ..., are obviously derivatives of
the potential, evaluated at the equilibrium configuration,

®,(Mp)=3d/3U,(Mp) , 8)
@, (Mp,Nv)=3® /3U,(Mp)dU,(Nv) . 9)

External forces enter these equations only implicitly,
since they determine the equilibrium configuration
R(Mp), around which the potential ® is expanded. Now
explicitly consider a force f(Mpu) applied on atom Mpu.
For a virtual process in which the crystal is deformed
while the external forces are held constant, the work
done by the external forces on atom My is

W(RMp))=73 fi(Mu)U,(Mu) , (10)
so that the expansion of the system potential,

Y(R(Mu))=d(R(Mp))— W(R(Mpu)), in the displace-
ments is

V=W,+ 3 3 [®,(Mu)—f,(Mp) U (Mp)

Mp i
+1 3 3 O;(Mp,Nv)U(Mp)U,(Nv)+ -+ -
MNupv ij

Equilibrium, invariance, and stability

For the system to be in equilibrium, the total force
oV /0U;(Mpu) on each atom must vanish:

D, (Mu)—f,(Mp)=0, YM,u,i. (12)

The macroscopic equilibrium condition requires the to-
tal applied force and the total applied torque to be zero
[with the help of Eq. (12)]:

S f(Mp) = &,(Mp)=0, Vi; (13)
My Mu
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and
SfiMp)R;(Mu) (14)
My

is symmetric in 7,jVi,j since the collection of atoms
representing a crystal should not experience a net force
or torque as a result of the interactions among the atoms.

The invariance conditions require the total system po-
tential to be invariant under translation or rotation of the
entire system of atoms and external forces. Wallace®
showed that these conditions put the following con-
straints on the second-order potential coefficients:
translational invariance

SO, (Mu,Nv)=0, VM,u,ij (13)
Nv

and rotational invariance

> P, (0p, Nv)R (Nv)+ P, (0u)d , (16)
Nv

is symmetric in j,kVu,i. The equilibrium and invariance
conditions place restrictions upon the potential-energy
coefficients, and these conditions must be satisfied by any
physically acceptable model for the interactions among
the atoms in a crystal.

Stability requires that the system potential ¥ for the
equilibrium configuration of atoms plus external forces is
at a minimum with respect to arbitrary small displace-
ments of the atoms from equilibrium. This condition is
satisfied if the homogeneous quadratic form in the expan-
sion, Eq. (11), is positive definite, i.e., positive for any
value of the displacements U,(Mpu),

(@, (Mu,Nv)]>0 . (17)

Strain expansions of the potential

For simplicity, the external forces will be restricted to
surface forces, representing arbitrary mechanical stresses
applied to the crystal, so that

Fi(Mp)=®,(Mp)=0, YM,u,i (18)

in the interior of the material.

In the following, the calculations are the mechanical
analog of the thermodynamics of the preceding section.
The potential energy can be considered to be an approxi-
mation of the thermodynamic state functions, namely the
potential approximation. In this approximation the
equivalents of the stresses and elastic constants are given
by strain derivatives of ®.

The displacement of the atoms from the initial equilib-
rium configuration, for a homogeneous deformation, does
not have to be strictly homogeneous. The atoms in the
different sublattices can undergo a displacement relative
to the lattice, a sublattice displacement S(u). Therefore
the displacement of the atoms under a homogeneous de-

formation u;; can be expressed as

U (Mp)=S,(u)+ 3 u;R;(Mp). (19)
J

Now substitute the atomic displacements in the
potential-energy expansion, Eq. (7), and eliminate the
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sublattice displacements, being dependent variables, in
favor of the displacement gradients

P=P,+V Y Z,»ju,.j+%Vz Z,-jk,uijuk,-i- s (20)
ij ijkl
This equation defines formally the mechanical analog of
the wave propagation coefficients 4 in terms of the
potential-energy coefficients. Similarly the crystal poten-
tial can be expanded in the 7,;,
q’:q’o'*'VzCijTlij"‘%V CiMijMat - (21)
ij ijkl
defining the mechanical equivalents of the elastic con-
stants. However, an expression like Eq. (19) for the La-
grangian strains is not so easily established. It is more
convenient to derive expressions for the A4 coefficients
and calculate C with the aid of Egs. (5) and (6). Hence-
forth in this paper, terms of higher order than quadratic
in the strain parameters will not be considered.

Wallace®® performed the expansion of the crystal po-
tential in the displacement gradients and we will shortly
discuss his derivation. After substituting the atomic dis-
placements for a homogeneous deformation, Eq. (19), in
the displacement expansion of the potential, Eq. (7), we
find

My i J

+1 3 3o (Mu,Nv)

MNuv ij

X |8 (p)S;(v)+28;(p) 3 uy R (Nv)
k

+X uguy R (Mu)R,(Nv) ¢ . (22)
kl

The 3, in the first term involving S;(u) in Eq. (22) is the
same for all atoms in the interior , so it may be evaluated
at R(Ox)=0 and multiplied by N, to account for the

2w

>3 P Mu)S;(Mu)=Ny 3, 3 &,;(0u)S;(0u)=0, (23)
My i pnoi
since ®;(0u)=0. Since this term vanishes, the sublattice
displacements do not influence the stresses and the S;(u)
need to be determined only to first order in the u;;.
Solving the sublattice displacements to first order in u;;
by requiring that the net force on each atom is zero re-
sults in a set of inhomogeneous equations for the S;(v);

> 3 D,;(0u,Nv)S;(v)
Nv j

=—3 3 Q,;(0u, NV)R (NV)uy . (24)
Nv jk

Translational invariance, Eq. (15), leads to solutions
S(v)=T, with u jk =0. These correspond to a general dis-
placement T of the lattice. This ambiguity can be re-
moved by setting the sublattice displacement at zero for
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any desired sublattice o, S(o)=0. Then the homogene-
ous equations are considered only for p,v#*o and the
(3n —3)(3n —3) matrix of coefficients 3 y®;;(0u,Nv) is
no longer singular and may be inverted by a real sym-
metric matrix T,

> Tiilmp) 3 ©,;(0u,Nv)=8,8,,, mu,v#o . (25)
ui N

For convenience, set I';;(u,v)=0 for u,v=0c. With these
equations the inhomogeneous equations are solved for
S; (), u#a, to give

Si(w=—3 3 T;(uv)®;0v,NmR(Nmluy ,  (26)
Nvr jkl

and S;(0)=0. The solution for the sublattice displace-
ments can be abbreviated by introducing the coefficient

X; (@)= —NE 21 Ly (p,v)®@;(0v, NT)R, (N7) . 27

Then the S;(u) are related to the strains u;; by

S;(W=23 X, j(wuy . (28)
Jk

Elimination of the sublattice displacements from the ex-
pansion, Eq. (22), and comparison with the expansion of
® in powers of u;;, Eq. (20), gives the A coefficients,

ij?
Mp

A=V 3 @u(Mp,Nv)R;(Mp)R;(Nv)
MNuv

+Ny S S @, (0u,Nv)

Nuv m

XRI(N'V)XM’,']'(,U') > (30)

where V is the volume of the system and N, the number
of unit cells in the system. The 4; ki coefficients are com-
posed of two terms. The first term is related to the homo-
geneous strain in the system, while the second term arises
from the possible sublattice displacements when a homo-
geneous strain is applied. The sublattice displacements,
and with it the second contribution, will disappear for
lattices with inversion symmetry, this can be seen by
writing the right-hand side of Eq. (24) for the S;(v) as

~3 S 0 NVR (N —Re(p)luy , (D)
Nv jk

where the added term in R, (u) vanishes by translational
invariance. The SN counts atoms at
+[Ri(Nv)—Ry(u)], for which ®,;(0u,Nv) is the same
by inversion symmetry, and hence the sum vanishes for
any j,k,l. Therefore all S;(u) vanish.

Now with Egs. (5) and (6) expressions for the elastic
constants can be derived. After evaluating Eq. (29) in the
interior of the crystal, the first-order elastic constants fol-
low,

C‘,-j=Vc_12q’i(0l‘)Rj(0ﬂ) s (32)
m
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where V=V /N, is the volume per unit cell. To elimi-
nate surface effects from the first term in Eq. (30), take a
combination symmetric in j,/, and define this combina-
tion as

J
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A =5 A+ Aey) - (33)

With this definition

Auj =2V | =S (0w, Nv)[R,(Nv)—R ()[R {(Nv)—R,(p)]

Nuv

+ 2 2 (Dmk(o.u»NV)[Rl(NV)Xm’ij('u,)+

Nuv m

And with this definition, expressions for the 4 and C
coefficients can be derived,

A=Ay + Apy— Ay — Cydj +C8,5
Cijra=Auji+ Ay — Ayjpg — Cydy — Cy8j +Cpi8,;
(36)

(35)

III. THE EAM INTERATOMIC POTENTIAL

EAM potential-energy coefficients

In the preceding section expressions were derived for
the (mechanical approximation of the) elastic constants,
starting with the assumption that the potential energy
can be described with a function of the atomic coordi-
nates. We will now apply this formulation to the EAM.?
In the literature, expressions for the elastic constants, de-
rived from the EAM potentials, have been given.>%!2
However, these expressions were always restricted to
crystals with lattices which satisfy inversion symmetry.
The formulation given in Sec. II is valid for all Bravais
lattices with an arbitrary number of atoms per unit cell.

In the EAM the energy of each atom is computed from
the energy needed to embed the atom in the local electron
density as provided by the other atoms of the metal, sup-
plied with an energy contribution due to the core-core
overlap. The electron density is approximated by the su-
perposition of atomic electron densities, while the core-
core overlap is assumed to be a pair potential with a
Coulombic origin.

Computationally, the EAM can be evaluated with

J

RyNV)X, ()] | (34)

[
about the same amount of work as for simple pair poten-
tials. Therefore, it is feasible to perform large-scale com-
puter simulations for a wide variety of phenomena and
the EAM provides a powerful technique for atomistic
calculations of metallic systems. Finnis and Sinclair®
developed independently a model (FS) which is
mathematically equivalent to the EAM but which has a
different physical interpretation.

The basic equations, defining the potential energy, of
the embedded-atom method are

=3 f(p"Mp)+13 3 ¢ (R(Mu,Nv)), 37
My My Nv#Mpu

pPiMu)= ¥ pJ R(Mu,Nv)), (38)

Nv#EMu

where p (R (Mu,Nv)) is the electron density at location
My due to atom Nv, p®(Mpu) is the total electron density
at location My, due to all surrounding atoms,
fu(p(Mu)) is the embedding function defining the ener-
gy to embed the atom My in the electron density p“, and
@R (Mp,Nv)) is the pair interaction between atom
Mup and Nv. The functions p, (R(Mu,Nv)) and
@,(R (Mu,Nv)), which are functions of the interatomic
distance

R (Mu,Nv)=|R(Nv)—R(Mp)| (39)

only, will be abbreviated as p/(Mu,Nv) and
@, (Mp,Nv). Furthermore, we abbreviate f,(p“(Mp))
as f,(Mp).

The first-order potential-energy coefficients ®;(Mpu)
are

R,(Mu,Nv)
. j— ’ ’ ’ ’ l ’ ’

D,(Mp) Nngu {fu(Mup (Mu,Nv)+f (Nv)p,(Nv,Mu)+ 2[(p’“,(M‘u,NV)-f-(pm(Nv,M,u)]}—~—R (M Nv)

=— 3 [H'Mp,Nv)+H'(Nv,Mu)IR;(Mu,Nv) , (40)
Nv#Mpu
where
1

4 = 4 ’ 1 —— 41)

H'(Mp,Nv)=[f,(Mp)p,(Mu,Nv)+ 3@, (Mu,Nv)] RMLNY) (

The second-order potential coefficients ®;;(Mp, Nv) with (Mu7#Nv)
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. _ P
(M NY) = 3R (MuaR (Nv)
R;(Mu,Nv) R, (Mu,Pr)
=— L Muy,Pr)————— , (42a)
fu (M”)p”(M”’N")R(My,Nv) PTEM”P”( wPmI% R M. Pr)
R, (Nv,Mpu) R;(Nv,Pw)
—_ n ’ - ’ N P - , (42b)
f"(NV)p“(NV’M“)R(NV,My) P7§Nv PN, 7T)R(Nv Pr)
Prp P M) L ETME) o gy RPN (42¢)
_ —_ c
o PP M) R by P R (P V)
H M, o)+ HP (N, M | R O 7Y (424)
[ Ay VK R(Mp,Nv) ’
R,(Mu,Nv)R(Mu,Nv)
—[H'(Mu,Nv)+H'(Nv,Mp)] |8, —— . , (42¢)
LH(Mp, Nv)+ H'(Nv, M) | 8y R (M, Nv)?
where
H"(Mu,Nv)=f,(Mp)p,(Mpu,Nv)+ TPuMp,Nv) , (43)
and the self-coupling coefficients ®F;(Mu, Mp), which have to be calculated separately,
P
5. Muy)=
@M MB) = 3 (MuaR (Mp)
£o(Mp) (Mp,Nv)— RAMpNY) - gy, pory AP
= v 4 V)i ar.. no m ’ m ——__
wi Nngyp # R(Mu,Nv) P#M#P K R(Mu,P)
" " (NvIo (Nv. M )Ri(Nv,Mu) (N M )R (Nv,Mpu)
NVEM“f” VPRV R R (Nv, Mp) Pr R R(Nv, Mu)
R,(Mu,Nv)R,(Mp,Nv)
+ 3 [H"(Mu,Nv)+H"(Nv,Mu)] 5
NvEMp R(Mu,Nv)
R, (Mu,Nv)R;(Mu,Nv)
+ 3 [H'(Mpu,Nv)+H'(Nv,Mu)] |6;— > (44)
NvE=Mp R(Mu,Nv)
[
The expression for the elastic constants can be found by ;4\,(]}()1= —1vct' S @, (0u,Nv)R ;(Ou, Nv)R;(Op,Nv) ,
substituting the potential-energy coefficients in the equa- Nuv
tions derived above. By using the symmetry properties of 47)

the crystal, however, the equations can be substantially
simplified.

Evaluation of the elastic constants
for homogeneous deformation

From Egs. (30) and (36) it is clear that the second-order
elastic constants are a superposition of two contributions,
due to the homogeneous and inhomogeneous parts of the
deformation.

due to the homogeneous deformation of the lattice and
(2) — 7(2)
C ijkl — A ijkl

=Ve'S 3 @ (0u, NvIR/(NV)X,, (1), (48)
Nuv m

expressing the contribution of the sublattice displace-
ments to the elastic constants.

For primitive lattices or lattices which exhibit inver-
sion symmetry the sublattice displacements are zero and
we can bypass the formal theory. The elastic constants
can be calculated directly by deriving the Lagrangian
strain expansion of the potential with zero sublattice dis-

U, (Mp)= zu,j J(Mp) for S;(u)=0, (49)

Copr=C il +C 45)
where - placement. The homogeneous deformation is
- — A( A N -~ ~ ~
c S}k)l - Aiklj)l + A}kli)l - 1(]}()1 - lesik - Cilsjk +Ck18ij >
(46)
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and according to Eq. (2) the squared distance between the

ions

IR(IMp)+U(Mp)—R(Nv)—U(Nv)|?
=|R(Mu)—R(Nv)|?

+23 1;R,(Mp,Nv)R ;(Mu,Nv) . (50)
ij

It is convenient to consider p and ¢ as a function of the
distance squared, and use the notation

P Mu,Nv)=9, (Mu,Nv)+2¢ , (Mu,Nv) 2 n;R
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p=p(R?), p'=3p(R*)/3R?, p"=03%(R?)//dR?},
(51)

R?)/3(R?)* .
(52)

7=@(R?), §'=03¢p(R?)/3R? §"=3%p(R

With Eq. (50), which defines the relation between the
atomic displacements and the Lagrangian strains, we can
now expand the function §,,(Mp,Nv) defined above, in
powers of the strains 7,; as

Mu,Nv)R (Mu,Nv)

+2¢ ,,(Mu,Nv) 3, 77,-j77k1R,-(M;L,NV)R]-(M,u,Nv)Rk(M;L,NV)R,(M/.L,NVH- R (53)

ijkl

and similarly for p,(Mpu,Nv). Furthermore, the embedding function can be expanded in powers of the deviation of the

equilibrium electron density,

’ A 2 ”n
f#(p+Ap)=fu(p)+Apf#(p)+—ZB—fP (p)+

Substituting these expressions in the EAM functions Egs. (37) and (3

(54)

8), and comparing this expression with the La-

grangian strain expansion of the crystal potential, Eq. (21), immediately gives expressions for the elastic constants,

Ci'=ve' 312p,(0u, Nv)f,; (0u)+5,,(0u, Nv)IR,(Ou, Nv)R,;(Ou, Nv) , (55)
Nuv
Cih=2vc! 22f” 0u) Y p (O, Nv)R,(Ou, Nv)R (O, Nv) 3 p (O, Pm)R,;(Op, Pm)R ;(Op, Pr)
Nv P
+ 3 [2p(0u,Nv)f,,(0u)+& /0, Nv) IR, (O, Nv)R ; (O, Nv)R (O, Nv)R (O, Nv) ¢ . (56)
Nuv

The functions in these definitions are a function of R %; rewriting these functions as a function of R results in the elastic

constants for homogeneous deformation,

R;(Op, Nv)R ;(Ou,Nv)

A1 ’ ' +1p' (0 , (57
Cl] VC %V[pv(O”’Nv)f‘u(O:u) z(pyv( /’L)NV)] R(O‘lL,NV)
CW —p-i " (O) (O N )Ri(O;L,Nv)Rj(Oy,NV) ' (O P )Rk(O,u,Pﬂ')R,(Oy,P'n')
W=V 2 0 %‘,pv H XY R (O, Nv) ,,zp” i R (Ou, Pm)
I v T
_ PO, Nv) 1 P O, Nv)
+ve! v(Op, Nv)— ————— | f* (Ou)+ — | @, (O, Nv)— —-—
c %[ py (O, Nv)—— O Nv) S0+ 5| (O, Nv)— — OLNY)
R; (O, Nv)R (O, Nv)R (O, Nv)R,;(Ou, Nv) (58)
R (Ou,Nv)? '
[
These expressions are the ones given before>®!? and are  coefficients 0,;(p,v)and Q; 3 (u),
generally used for EAM potentials. Their use, however, 59)
is restricted to homogeneously deformed crystals, i.e., 0,1, v zq)rj Op, Nv) (
those that do not exhibit sublattice displacements.
and
The inhomogeneous contribution to the elastic constants
Q; 5 (@)= @,;(0u, Nv)R;(Nv) , (60)

When the sublattice displacements are not zero, a
second contribution is superimposed on the homogeneous
elastic constants. This second contribution has to be cal-
culated by evaluating Eq. (48). To do this, introduce the

Nv

known as the second- and first-order inner elastic con-
stant matrices, respectively,38 so that we can write
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Xijp()=—3 3 Talu,v)Q 3 (v) (61)  derivatives,
v 1
0;(p,v)= 3 @;(0u,Nv)+38,,07(0u,0n) , (66)
where N
NvEMp
# Nv#Mu
d
. + @3, (0p1,04)R, (Op) . (67)
Ciu=Vec Q X, i
ke % % bt (B Ko i) First consider the three f'' contributions in Eq. (42) to
. 6;;(u,v). The first " contribution, Eq. (42a), reduces to
=—Vc 22Qm,k,(p)r,,,,,(u,v)ﬂ,,,,-j(v) . (63)

uv mn

Also the invariance conditions can be expressed as func-
tions of 6;;(u,v) and Q; ; (u). The translational invari-
ance condition, Eq. (15), can be written as a function of
eij(.u"v)’

> 0;(u,v)=0, Vu,i,j (64)
and the rotational invariance condition, Eq. (16), as a
function of Q; 4 (n),

Qi (1) + D, (0u)8y (65)

is symmetric in j,kVpu,i.

The elastic constants and the invariance conditions can
be calculated by evaluating the equations above, and the
only task left is to obtain expressions for Gij(/.t,v) and
Q; x(p) by substituting the second-order EAM potential
J

—fu(Opg;(p,v Eg.w,

after substitution in Eq. (66), where

R;(0u,Nv)

gi(p,v)= 3 pV(O,u,NV)W. (68)

N
Nv#0u

The second f" contribution, Eq. (42b), can be simplified
by using the inversion symmetry of Bravais lattices, i.e.,
for every N there must be a —N with R(—N)=—R(N),
resulting in

_f’v’(Ov)g,.(v,;L)Zgj(v,ﬂ) . (69)

The interactions in the third contribution, Eq. (42c), ex-
pand further than the atoms in the cutoff range of the
function p(R). This contribution can be simplified by
splitting it in two parts,

" (0m) PorOn) (P77'0u) (PN )Rj(P#,NV)
2fx0m ) 3 PO R o 2 PPNV R LN
P#Op Nv#Pm
(P, o) T s p )Rf(Pv’O”) (70
By 2 PP, 'uR(P o) PHPT O o |
Pﬂ'?ﬁ()/,l,
which can be written as
S from)g(mupg;(mv)—8,,82,(u,m)], (71)
where
R;(Om,Pu)R (0w, Pu)
2, ()= ' (Om, Pu)? - , (72)
A 2 pulOm Py R (O, Pu)?
O+ Pu
so that the 6,;(u,v) coefficients, for the EAM potentials, can be expressed as
0,1, v)=—f 1, (Ow)g; (1, v Zg, 1 m) = f(Ov)g(v,p) 3 g;(v, )
+zf;,'(O7r)[g,~(7r,,u)gj('tr,v)—Sw,gZ,-j(y,w)]
R,;(Op, Nv)R ;(Ou,Nv)
- H"(Op,Nv)+H"(Nv,0u) .
%" [ # Wl R (Ou,Nv)?
Nv#0u
S HOu N+ H (Nv,00)] |5, — SO NVROLNY | o e 000) (73)
- , YV v, — v ¥ ) .
> " u RNV @7 (0, 0p

Nv#0u
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In a similar way, an expression for Q; ; (1) can be derived,
‘Q'i,jk(:u'):_f;’;l(oﬂ)zhjk(:‘"")zgi(,u’ﬂ)
v m
=3 f7(0m) |g2;i(u, ™Ry (1) —g;(m, 1) [E hjk(ﬂ,v)—Rk(ﬂ)zgj(w,v)] }
R, (Ou,Nv)R ;(Ou,Nv)
— 3 [H"(Ou,Nv)+H"(Nv,0u)]— at . ‘; R, (Nwv)
Nv#0p R (Ou,Nv)
) , R;(Ou,Nv)R;(0u,Nv)
— X [H'(Ou,Nv)+H'(Nv,0u)] |8;— > Ry (Nv)+®3;(0u,0n)R, (0u) , (74)
Nv#0u R(O[J,NV)
where
b= 3, pllop Nv) e M)
i\ v % PAUH, NV R (0w, Nv) JNvV), @3)
Nv£0u
and the self-coupling coefficients can also be expressed in the variables g;(u,v) and g2;;(u,v),
D (0u,0n)=f,, (Mu) ¥ g:(p,v) 3 8;(, M)+ 3, £, (0v)g2,;(p,v)
R, (O, Nv)R;(Ou,Nv)
+ 3 [H"(Ou,Nv)+H"(Nv,0u)] 5
Nv£0Ou R (Ou,Nv)
, R;(Ou,Nv)R;(Ou,Nv)
+ 3 [H'(Ou,Nv)+H'(Nv,0u)] |6;— (76)

Nv=-0u

1V. DISCUSSION

In the preceding sections, expressions for the mechani-
cal approximation of the elastic constants were derived.
These expressions have been applied to the EAM poten-
tial, resulting in equations for the elastic constants which
are valid for all possible equilibrium crystal structures.

We discussed that the elastic constants for homogene-
ous deformation, Egs. (57) and (58), are equal to those
given before.>%!2 Their application is confined to crys-
tals which exhibit a purely homogeneous deformation,
which is generally only the case for centrosymmetric lat-
tices. The homogeneous second-order elastic equations,
however, possess a very comfortable numerical property.
They are sums of contributions from each interaction
term ®;;(Ou, Nv), in contrast to the inhomogeneous con-
tribution to the elastic constants, which involves the in-
version of the inner elastic constant matrix.

Since the elastic constants are routinely used in the
process of fitting the potential parameters, this linearity
of the homogeneous equations has obvious numerical ad-
vantages. When the potential functions are linear in their
parameters, the fitting routine can be linear. It is possible
to derive fairly simple analytical expressions to calculate
parameter gradients. Or when the interaction is limited
to nearest neighbors the equations defining the elastic
constants can be inverted, resulting in analytical expres-
sions for the embedding function or even potential pa-

R (Ou,Nv)?

f

rameters.’>*" This gives an explanation for the reluc-
tance to use the full equations for the elastic constants.
But since the elastic constants are very often used as the
main experimental input defining the interatomic forces
in the material, we find that the use of these simple equa-
tions is not justified and the inhomogeneous contribution
has at least to be evaluated to see if it is neglectable. But
one can question if it is justifiable to search for a neglect-
able inhomogeneous contribution. The sublattice dis-
placements, and the inhomogeneous elastic constants, are
related to the interatomic forces and may therefore play
an essential role in determining if the model can simulate
the behavior of the material adequately. To show the
influence of the inhomogeneous contribution, we will cal-
culate the magnitude of this contribution for some hcp
potentials previously published in the literature.

The inhomogeneous elastic constants in hcp

To calculate the magnitude of the inhomogeneous con-
tribution we will derive simplified expressions for this
contribution. The x, y, and z directions are along [1210],
[1010], and [0001], respectively (see Fig. 1). Due to the
symmetry of hcp crystals, the contribution of the atoms
in each neighbor shell to g;(u,v) [see (68)] cancels out, so
that g;(u,v)=0 (see Fig. 1).

Since g;(u,v)=0, the equations for 0;(u,v) and
Q; jx (1) substantially simplify:
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0;(,v)=3 [8,,—8,] 3 [H"(Op,Pm)+H"(Pm,0u)]
m P

Pr#0u

+308,,—8,] 3 [H'(Ou,Pm)+H'(Pm,0u)]
T P

Pr#0u

and

R;(Ou,Pm)R;(Op, Pm)

Q pp)=—3 [H"(Ou,Nv)+H"(Nv,0u)]
Nvou

— S [H'(Op,Nv)+H'(Nv,04)]
Nv£0p

Due to the symmetry it can be shown that 6,;(u,v)=0 for
i#j, and 0,,(u,v)=0,,(u,v), Yu,v. Also 6,(u,p)
=0,;(v,v)=—06,;(u,v) for u#v, Vi,j. And all elements
of Q; ;(n) are zero except for

Qs ()= Qe () =Q 1 ()=

so that the only nonzero elements of the inhomogeneous
contribution to the elastic constants, Eq. (63), are in
Voigt notation,

LD _FQ—F D= _FQ)
Cii=—C3=C3=—Cg

-Q,, W, 19

-1 Q’x,xy (,U, )2
(o}

=CW=
gxx(.u".u’)

) (80)

where u7o [see Eq. (25)], resulting in a simple expres-
sion for the inhomogeneous contribution to the elastic
constants of EAM hcp crystals.

In Table I the results of the calculation of the elastic
constants for the potentials given by Oh and Johnson,*
Willaime and Massobrio,?? Igarashi, Khanta, and Vitek,>!
and Johnson*? are given. We were not able to reproduce
their results for Ru(2).?!

Considering that a fit to the elastic constants within

vX

FIG. 1. View along the ¢ axis of a hexagonal-close-packed
lattice. al, a2, and a3 are the other hexagonal lattice vectors.
The solid and dashed lines indicate the two sublattice planes,
displaced a distance tc/2 along the c axis, in the hcp lattice.
The atoms in the first three neighbor shells of the center atom
® are indicated as follows: nearest neighbors (NN), @; second-
NN, 0; and third-NN shells, 0 and ® at +c.

R (Ou,P7)?
R;(Ou,Pm)R ;(Ou, P)
R (Op, Pr)
R;(Ou, Nv)R;(Ou,Nv)
Y R (O, N )
R (0u,Nv)
R;(Ou,Nv)R;(Ou,Nv)
5, — —— BV R (0w Nv) (78)
J R (Ou,Nv)

I

10% is generally accepted, the values in Table I show
clearly that neglecting the inhomogeneous contribution
to the elastic constants was not justified for most of the
potentials studied here. Only for the potentials for Mg,
Ti, Co, and Ru(l), defined by Igarashi, Khanta, and Vi-
tek®! and the Ti potentials of Johnson,*? can neglecting
this contribution, according to this criterion, be accepted.
And simply adding the inhomogeneous contribution as
done in the present paper generally makes the fit even
worse. Only the potentials J:Ti (Ref. 32) have improved

TABLE 1. The total second-order elastic constants C;;, C,,
Ces, and the inhomogeneous contribution C calculated from the
potentials defined by Oh and Johnson (Ref. 30) (OJ), Willaime
and Massobrio (Ref. 22) (WM), Igarashi, Khanta, and Vitek
(Ref. 31) (IKV), and Johnson (Ref. 32) (J). Expt. denotes exper-
imental values (Ref. 31). (%) and (— %) indicate the percentage
of the inhomogeneous contribution added to and subtracted
from the homogeneous component, respectively. The elastic
constants are given in Mbar.

Potential Ch(—=%) Cp (%) Ce (—%) CP
0J: Mg 0.607(6.9)  0.295(18.0) 0.156(22.4) 0.045
IKV: Mg 0.627(1.2)  0.265(2.8)  0.181(3.9) 0.007
Expt: Mg 0.635 0.259 0.188
OJ: Ti 1.660(7.8)  0.906(18.2) 0.377(27.0) 0.140
IKV: Ti 1.742(1.3)  0.887(2.7)  0.427(5.2) 0.023
J: Ti(l) 1.801(2.9)  0.831(6.9) 0.485(10.0) 0.054
J: Ti(2) 1.894(3.1)  0.796(8.2) 0.549(10.0) 0.061
Expt: Ti 1.761 0.869 0.446
0J: Zr 1.496(6.1) 0.803(13.9) 0.347(22.0) 0.098
WM: Zr 1.507(7.0)  0.880(14.8) 0.314(26.4) 0.113
IKV: Zr 1.376(11.5)  0.851(26.5) 0.263(40.4) 0.178
Expt: Zr 1.554 0.672 0.441
IKV: Zn 1.674(6.4) 0.491(31.8) 0.592(16.4) 0.116
Expt: Zn 1.791 0.375 0.708
IKV: Co 3.1102.00  1.709(3.9)  0.700(8.4) 0.064
Expt: Co 3.195 1.661 0.767
IKV: Ru(l) 54192.7) 2.021(8.0) 1.699(8.1) 0.149
Expt: Ru(l) 5.763 1.872 1.946
IKV: Hf 1.712(9.9)  0.931(25.1)  0.391(32.4)  0.187
Expt: Hf 1.901 0.745 0.578
IKV: Be 2.881(6.1) 0.494(61.6) 1.193(13.6) 0.188
Expt: Be 2.994 0.276 1.359
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after adding C 3.

But as stated before, instead of trying to find a neglect-
able inhomogeneous contribution, it might be worthwhile
to fit the total elastic constants. In their paper Igarashi,
Khanta, and Vitek®! found that their potentials were
partly successful in reproducing the Raman frequencies,
which are the phonon frequencies evaluated at q=0. But
Martin®® already showed that these frequencies can be
directly related to the inner elastic constant matrix,
which has not been included in their model of the elastic
constants. It may be expected that a better representa-
tion of the optical phonons can be obtained when the in-
homogeneous contribution to the elastic constants is in-
cluded in the fit, and even better when the inner elastic
constant matrix is fitted to the Raman frequencies. In this
case the Raman frequencies provide information about
the relative magnitudes of the homogeneous and inhomo-
geneous elastic constants, resulting in a better representa-
tion of the interatomic forces.

V. CONCLUSION

In this paper we discussed the potential approximation
of the (thermodynamic) elastic constants and derived ex-
pressions for the elastic constants for the EAM potential
in an arbitrary crystal system in a rigorous way. We
compared these equations with those given before>®!2
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and showed that the latter are in fact the equations for
the elastic constants for a purely homogeneous deforma-
tion, which restricts their use to primitive or centrosym-
metric lattices.

Among other data, elastic constants are routinely used
to fit potential parameters in order to obtain a good rep-
resentation of the interatomic forces in the model.
Despite their limitations several authors have applied the
homogeneous equations to fit the potential parameters for
hcp metals. Calculation of the total elastic constants for
these potentials shows that neglecting the inhomogeneous
contribution was not justified for all of these potentials.
These contributions should be included in the fitting pro-
cess to obtain a representation of the interatomic forces
in the metal. Moreover, fitting of the inner elastic con-
stant matrix to the Raman frequencies gives the possibili-
ty of including explicit information about the inhomo-
geneous contribution to the elastic constants in the pro-
cess of developing metals.
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