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We present a general multiple-scattering (MS) scheme utilizing complex potentials for the calculation
and interpretation of inner-shell x-ray-absorption fine structure for clusters of atoms in condensed
matter with application to the case of the molecules SF6, GeC14, and Br2. The method is based on the
solution of the Dyson equation with a complex self-energy of the Hedin-Lundqvist type for the single-

particle Green's function describing the propagation of the excited photoelectron through the system.
We also address the problem of the equivalence between two traditional approaches to this kind of cal-
culation: the scattering approach of Dehmer and Dill and the density-of-states (or MS) approach of Lee
and Pendry. The application of the theory to the calculation of the extended fine structure in the three
molecules shows that one can get amplitude agreement without introducing intrinsic loss reduction
effects, which seem therefore to be negligible. Some minor problems with absolute phase agreement still
remain in some cases.

I. INTRODUCTION

Since the papers of Johnson' for bound states and Dill
and Dehmer for continuum states, multiple-scattering
(MS) theory has been used as an interpretative tool for
understanding electronic structure of a large variety of
molecular systems because of the ease with which calcu-
lations can be carried out (even for large molecules). In
the practical application to actual calculations, the MS
method employs two important approximations: (a) the
Xa or statistical exchange approximation and (b) the
muffin-tin (MT) averaging of the potential needed for the
MS expansion of the wave functions. In this latter ap-
proximation the potential is spherically averaged in the
atomic and outer-sphere regions and volume averaged in
the interatomic (interstitial) region. The use of a constant
interstitial potential is certainly a serious approximation
and makes the results depend on the size of the intersti-
tial region itself. There is now enough evidence, drawn
from a variety of applications, that a "judicious" choice
of MT radii, tailored to the physical properties of the sys-
tem under study, does lead to physically acceptable re-
sults for bound states and continuum calculations in x-
ray-absorption spectra (XAS).

As shown in Ref. 4, the restrictions imposed by the
MT approximation can be lifted through a formulation of
the MS theory that takes into account both the nonspher-
ical nature of the potential inside the atomic spheres and
the fact that the potential is not constant in the intersti-
tial region. In this approach the structure of the theory
itself is unchanged, only the definitions of the atomic T
matrices and spherical wave propagators (see Refs. l and
4) are changed. This formulation has been implemented

in a computer code and work is in progress to assess the
effects of the departure of the potential from its approxi-
mate MT form both for bound and continuum states.
Since we conceive this paper as being methodological in
character with regard to the application of MS theory to
the study of electronic and structural properties of molec-
ular systems, we retain here the MT approximation. This
choice will make the discussion simpler, while keeping all
essential features of the MS approach. Preliminary cal-
culations performed in a MS non-MT scheme for the SF6
molecule have substantially confirmed the results ob-
tained here within a MT scheme.

The Xn approximation to the exchange correlation
(EC) potential can be easily eliminated (both for bound
and continuum calculations). For the continuum region
we use, in fact, the now well-tested Hedin-Lundquist
(HL) energy-dependent EC potential. We only need to
recalculate for each energy point the exchange-
correlation part of the potential, using the local density
p(r ) of the molecular system, and add it to the energy-
independent Coulomb potential to obtain the total poten-
tial [see Ref. 6(a) for a comprehensive account of this po-
tential and Ref. 7 for a short sumtnary of the real part].
For bound-state calculations of the final state instead we
use the more familiar Xa approximation.

The procedure followed in Ref. 8 for the study of K
edges of transition metal complexes was repeated in order
to calculate the bound-state contribution as well as the
continuum part of the spectra (up to 700 eV above
threshold) for SF6, GeC1~, and Br& molecules, as represen-
tative of the most usual coordination geometries. The
difference here is that we now use the T matrix or propa-
gating wave normalization instead of the more standard
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K matrix or standing wave normalization, as used in
Refs. 2 and 8. The advantage is twofold. One can use the
same concepts to describe not only the continuum part
but also the bound-state part of the spectrum, when
bound states, usually lying above the muffin-tin (MT) in-
terstitial level, are available for transition. This descrip-
tion, known as the extended continuum (MS-EC) ap-
proach treats the bound states as very narrow scattering
resonances ultimately leaking away from the molecular
region in a continuum state instead of decaying exponen-
tially as true bound states do. Since the resonances are
very narrow, their positions are little or not at all affected
by the change in boundary conditions so that in this way
the same single continuum calculation gives the energy
separation between the bound-state features and continu-
um features (as, for example, shape resonances). Howev-
er, the transition amplitude in the bound-state region
might be incorrect, due to the different normalization
procedures used for bound and continuum states, but this
can be remedied by performing actual bound-to-bound
transition amplitude calculations. In the case of free rnol-

ecules this approach eliminates the need for positioning
the bound-state features with respect to the ionization
threshold and actually is close to reality for molecules in
solution.

The second advantage is even more rewarding. By us-

ing a T-matrix normalization for the entire cluster and a
suitable normalization for the radial solutions of the
Schrodinger equation (SE) inside the various MT spheres,
one can relate the wave-function amplitude inside the
photoabsorber's atomic sphere to the scattering ampli-
tude via a generalized optical theorem. " Therefore it
becomes possible to connect the square of the wave-

function amplitude, which is proportional to the absorp-
tion coefficient through a smoothly varying atomic cross
section and contains all the structural information on the
local environment, to its imaginary part which is related
to the density of unoccupied states in the continuum and
can be expressed via a MS expansion' that can be used in

an efficient way in data analysis to extract bond lengths
and bond angles. "' This equivalence will make it possi-
ble to reinterpret concepts as shape resonances in terms
of MS paths followed by the final-state photoelectron on
its way out of the molecular region and will substantiate
the geometrical interpretation of these spectral features.
At the same time the MS picture, in conjunction with the
extended continuum approach, will provide a unifying
scheme of interpretation for the whole absorption spec-
trum and will elucidate the interplay between the geornet-
rical structure of the photoabsorbing molecule and its
electronic properties.

In this paper we report analyses of the XAS spectra of
the molecules SF6, GeC14, and Br2 following both points
of view: the scattering or wave-function amplitude ap-
proach and the density of states or MS approach. Pro-
vided that the one-particle potential is real, the two
points of view are mathematically equivalent and can be
used interchangeably in the interpretation and descrip-
tion of the various spectral features. We shall also indi-

cate the modifications needed for complex potentials. It
will turn out that the two approaches are no longer

equivalent in this case although they are related through
a Lorentzian convolution as discussed in Sec. III. On the
basis of many-body theory, a Green's-function approach,
which is more akin to the density-of-states formulation, is
more appropriate. We shall use the latter formulation for
a "first-principles" fitting of the single-scattering and
multiple-scattering (EXAFS) signals, where present, in

our molecules and show that by using a complex HL
exchange-correlation potential, this approach is able to
reproduce EXAFS amplitudes and phases without adjust-
ments. This finding opens the way to an a priori assess-
ment of amplitudes and phases, which could in this way
be fixed in a fitting procedure in order to determine with
some reliability Debye-Wailer factors and coordination
numbers in unknown systems. Needless to say, our entire
analysis has been carried out with spherical wave (SW)
propagators. It has in fact been shown' that the usual
plane-wave (PW) approximation to the SW propagators is
strictly invalid in the whole energy range of the absorp-
tion spectrum although deviations are more dramatic for

0

the low wave-vector values (k (5 A ). Therefore, in or-
der to assess the applicability of the theory, we have
chosen not to make approximations whenever possible.

II. THE SCATTERING APPROACH, THE
"EXTENDED CONTINUUM" SCHEME, AND THE

MS DESCRIPTION OF XAS SPECTRA

In the one-electron approximation the unpolarized
photoabsorption cross section for photons with energy co,

in Rydberg units of energy and lengths, is given by

o(~)=2 4~ 4m.

3 3L, m, mo

1/2

(2. 1)

II,. I,.
fk~(r, ) = g Bz '(A)f, '(r; ) Yz (r, ),

L

r;—:r —R, EI, , (2.2)

where /zan =(/k' )* is the time-reversed' scattering wave

function in response to an exciting free wave of angular
momentum L =(I,m ) and gz is a core-state wave func-

tion with angular momentum Lo ~ The factor 2 results
from the spin degrees of freedom and k =&8, E being
the photoelectron kinetic energy.

In the muffin-tin model both potential and solutions of
the SE are represented piecewise according to the parti-
tioning of molecular space into region I, the space en-

closed by the sphere I, of radius p, around each atomic
site at position R,-, region III, the space external to the
outer sphere surrounding all atomic spheres I, , and re-

gion II, the space in between the outer and atomic
spheres (interstitial region). In this way inside the atomic
sphere I, we represent P&~(r) (writing A for L), the

scattering function in response to an exciting wave of an-

gular momentum A, as
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where ft(r, )i.s the radial solution of the SE with angular
momentum l at energy E, which is regular at the origin
and is normalized as indicated below.

Since the core wave function is localized in the muffin-

tin sphere I; of the photoabsorbing atom, assumed to be
located at site i, we only need that part of the scattering
wave function t}'jz~ which is centered on I;, so that from
Eqs. (2.1) and (2.2) we obtain

4~
o (co) =2m.

3

2

A, L,m, mp

~BL'(A)~ ~(ft(r,. )YL(r,. )~r; Yt (r;) pt (r, )YL (r, ))~ (2.3)

where we have replaced the dipole operator r, referred to
the center of the laboratory frame, by r; =r —R;, due to
the orthogonality between the initial and final states. If
relaxation in the final state is taken into account, then the
Pauli principle ensures orthogonality.

II,.
The quantity BL ', giving the photoelectron wave-

function amplitude inside the sphere I;, in T-matrix nor-
malization is also to be interpreted as a total scattering
amplitude for all the waves incident on the atom located
at site i coming from everywhere in the molecular region.
They therefore satisfy a set of compatibility equations
given by

1/2

B '(A)+t/ g GLL.BL'(A)= t/JLAI z—
jL' 7r

(2.4)

where t&' is the scattering amplitude of the atom located
at site i for an incident wave of angular momentum L and
GLL ~ the amplitude of propagation from site i to site j of a
spherical wave of angular momentum L around site i and
L around site j, taking into account the distortion of the
free propagation caused by the presence of the outer-
sphere potential. As is well known "one has

W[Ji f/)
t/ =exp(5& )sin(5't ) =

W[ ibad+, f—
g]

= ( cotg5't i)— (2.4a)

where 5't is the 1th phase shift of the potential inside
sphere I;, —ih&+ =

n&
—ij& are, respectively, the Hankel,

Neumann, and Bessel functions and W[f,g ] is the Wron-
skian of the two functions f and g calculated at the
muffin-tin sphere radius p;. Also

GLL' GLL' g JLL "tl"JL"LIj ij i0 0 Oj

L"
(2.4b)

where GL'L ~ is the free amplitude propagator in T-matrix
normalization which is given in Ref. 4(a). It admits the
decomposition GL'L, =JLJL iNLL followi—ng the analo-
gous decomposition of the Hankel function referred to
above with JUL ~ and NLJL being defined in Ref. 2. The
second term on the right-hand side (rhs) of Eq. (2.4b)
represents the distortion of the free propagation due to
the presence of the outer-sphere potential, centered at the
origin of the coordinate frame (site 0), through the
scattering amplitude [but notice the inversion with

respect to Eq. (2.4a)]:

W[ ih—t+, i y—t ]

=cot(5t) i—, (2.4c)

where iyt —=ft ig& is—the propagating solution of the
SE in the outer-sphere potential in terms of the regular
(ft) and irregular (gt) solutions with the proper asymp-
totic behavior. Finally

j,L' j,L'

1/2
k= —J' ILA A,

(2.&)

The expression involving M and 6 comes from the

It is easy to verify that Eqs. (2.4) in T-matrix normali-
zation are obtained from the same equations in Ref. 2 in
E-matrix normalization simply by replacing, wherever
they appear, stationary waves (nt and g&) with the propa-
gating ones ( iht a—nd iyt) —The o. nly difference with
Ref. 2 is that we have eliminated from the equations the
effect of the outer sphere in favor of the physical atomic
spheres, which leads to the appearance of the second
term in Eq. (2.4b) as a modification of the free amplitude
of propagation GL'L ~ and to the term I'z on the rhs of Eq.
(2.4).

Equation (2.4) simply states that the total scattering
II,.

amplitude of angular momentum L at site i, BL ', is equal
to the atomic scattering amplitude t& times the amplitude
JL&l q(kin)' of the exciting wave normalized to one
state per Rydberg plus the scattering amplitude of all the
waves that proceed from all the other atomic sites with
any angular momentum, propagate up to site i arriving
with angular rnomenturn L, and are scattered by the
atom at site i. In particular we want to note for future
use that the inhomogeneous term I ~ depends linearly on
the exciting amplitude fz in the scattering problem and
therefore goes to zero when treating bound-state prob-
lems since in this case fz should be set to zero.

By introducing the matrix (T, ')gL ~ =[(t/) ']5,J5LL
diagonal in the site and angular momentum indices, one
can write Eq. (2.4) as

II.g [T, +G])LBL'(A)= g [M ih])LBL.'(A—)
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decomposition of the MS matrix T, +6 as M —iA
where M and b are Hermitian matrices (real and sym-
metric if a real basis of spherical harmonics is used) such
that

=cot(5i)5,~5LL.+( I —5,~ )NpL ~ + g JLL.,al "JL, L,
L"

(2.5a)

(2.5b)

with ~= [E—( Vtt ) ]' (( Vtt ) being the constant
(volume averaged) interstitial potential) and a, the real
part of cot(5, ) in Eq. (2.4c).

As a consequence of their physical meaning the
—II.

scattering amplitudes BL satisfy a generalized optical
theorem of the form

= —Im[(M —ib, ) '])L.
7T

(2.6)

Mt = f dr r P& (r)R/'(r), (2.7)

which can be derived on the basis of Eq. (2.5) and the
decomposition referred to above. This relation is a par-
ticular case of a theorem, valid under more general condi-
tions, that has been proved in Ref. 4(a).

Therefore, if we introduce the atomic radial dipole ma-
trix element

is a geometrical structure factor that contains all the
structural molecular information on the environment of
the photoabsorber. In Eq. (2.11) use has been made of
the relation, related to the optical theorem for the atomic
t matrix, '

Imt/=1m[exp(5&)sin(5&)]=sin (5&) . (2.13)

Equations (2.3) and (2. 10)—(2.12) provide two alterna-
tive descriptions of the photoabsorption process which
are completely equivalent mathematically. The first one
may be called the scattering approach while the second
can be referred to as the MS approach. Which method to
use is a matter of convenience depending on the type of
language one wants to utilize to describe the physics of
the problem at hand and the kind of insight one wants to
obtain. In the following we shall discuss the implications
of both points of view trying to obtain a deeper under-
standing of the absorption process in molecules.

From the scattering point of view the advantage of
working in T-matrix normalization is that one can treat
on the same footing bound states and continuum reso-
nances. In fact from general scattering theory' one
knows that in the complex energy plane, bound states
correspond to poles of the T matrix of the scattering po-
tential at points on the real negative axis, whereas poles
near the real positive axis in the fourth quadrant give rise
to shape resonances with widths defined according to
their distance from the real axis.

If we were searching for bound states such that E & 0
but E —( Vtt) &0, we would be led to the following

-II,
homogeneous equations for the amplitudes, BL ':

where
1/2

II.g (Mb)]LBL'=0
j,L'

(2.14)

(2.&)

is the continuum regular solution of the radial SE inside
sphere I, , normalized to one state per Rydberg, that
matches smoothly to

1/2

[j&(ar)t&
' iht+(ar)—]

which are obtained from Eq. (2.5) by setting the inhomo-
geneous term I z to zero as already anticipated (fq

=—0, so
that b, =0) and by continuing analytically the matrix M
into M~ through the replacement of k by i&lEl. —
Equations (2.14) have been derived in Ref. 1. For our
purposes it is sufhcient to note that the condition for a
nontrivial solution of these equations is

DetMb =0 (2. 1 5)

&t, , t, iXt, i+ai, , i, +inst, +i

by summing over m and mp. ' Here

8~ ) 2 lp+1
o', , +, = ace(M, '+) ) i Im(t( +, )

0

(2.10)

(2.11)

at the muon-tin radius r =p;, one can recast the absorp-
tion cross section (2.3) as

which is the condition that the analytic continuation of
the molecular T matrix [being proportional to QL JLL B$
as shown in Ref. 4(a) and therefore behaving as M ' ac-
cording to Eqs. (2.5)] has a pole for some value or values
of E on the real negative axis.

For bound states well localized in the molecular region,
one anticipates that the effect of the outer sphere wi11 be
negligible [t& -=0 in Eq. (2.4b)], so that the condition
(2.15) becomes

is the dipole-allowed atomic photoabsorption cross sec-
tion and

DetM0 =0, t,'2. 16)

Q Im[(T, '+G) ']]'
2i+i sin (5&)

1 1 g Im[(M —i~) H'm i~
~ —1 ii

2i+i sin (5&)

(2.12a)

(2.12b)

where Mo is obtained from M in Eq. (2.5a) by dropping
the outer-sphere contribution (a& =—0). In other words, a
molecular valence state, lying above the interstitial poten-
tial, ( Vtt ), which is bound in the presence of the outer
sphere, shows up as a sharp resonance in the continuum
when the outer-sphere potential is removed. This proper-
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ty holds in general for localized states, but fails to be true
for extended states, e.g., Rydberg states, the existence of
which depends on the presence of the outer-sphere poten-
tial. (For a discussion of Rydberg states of atoms and
molecules, see Ref. 16.) The transition strengths calculat-
ed in this scheme may be wrong due to the different nor-
malization of the continuum and bound states, however
their absolute energy locations with respect to ionization
threshold and relative to the other resonances in the con-
tinuum are in general accurate.

This is the essence of the extended continuum scheme.
In practice one calculates a self-consistent Xa potential
for the cluster of interest, with an outer-sphere (OS) re-
gion and an OS potential. The latter is removed and a
continuum calculation performed for all energies (nega-
tive and positive) greater than the constant interstitial po-
tential ( Vzr )(E ) ( Vzr ) ). Notice that ( Vz~ ) is negative
relative to the value (set to zero) of the Coulomb potential
at r ~~. This approach has the advantage of calibrating
on the same energy scale the bound-state features relative
to the continuum features without the need to perform
ionization energy calculations in order to position the
bound-state transitions relative to the ionization thresh-
old. Due to the fact that local-density calculations some-
times misrepresent excitation energies, this is not a trivial
advantage. All this rests on the reasonable assumption
that the correlation energies for the bound states and the
continuum resonances are roughly the same.

Continuum resonances, usually within one or two Ryd-
bergs above the ionization threshold, show up as a rela-
tive increase, around a particular energy, in the ampli-
tude of the final-state continuum wave function of a par-
ticular symmetry at the site of the absorbing atom. The
remarkable feature is that, for a given final dipole-allowed

II,.
l angular momentum, the sum g ~~Bi '(A)~ which in

Eq. (2.3) determines the intensity of the transition and
therefore of the absorption, is usually dominated by a sin-
gle A value. In the case of an N2 molecule, and in general
for diatomic molecules, E-edge s-resonances are dominat-
ed by the l=3 term. ' " In this case the amplitude in-
crease of the wave function is ascribed to the caging effect
of the centrifugal barrier in the outer-sphere region for an
incoming l=3 partial wave as referred to the molecular
center midway between the two atomic sites coupled
through the molecular field to the l =1 photoelectron
wave, as seen from the photoabsorbing site. In the litera-
ture these resonances are therefore referred to as cage or
shape resonances. The concept of a centrifugal barrier
has previously been thought to be general enough to en-
compass every case until it was found that shape reso-
nances were possible with l values as low as 2, 1, or even
0 where clearly the centrifugal barrier cannot be
eff'ective. ' As apparent from Eq. (2.S), which can be
written as

1/2

I &B '(A) = [(M—ib, ) 'b, )"
K

= [(I iM 'b, ) 'M 'b,)"—
(2.17)

provided we put the origin 0 at site i so as to exploit the
relation JL'L ~ =5LL, it is clear that a sharp increase of the

II,.
amplitude BL '(A) around a particular energy E„occurs
whenever M '6 is singular at this energy with a small
residue. Since I & and the matrix elements of 5 are con-
tinuous functions of energy we again find the relation

DetM(E„) =0 (2.18)

as a necessary condition for a resonance. ' The other
condition is that the residue at the pole should be nega-

II,
tive and small, so that the amplitude Br '(A) has a pole in
the fourth quadrant of the complex energy plane near the
real axis or equivalently, due to the relation between the
T and the E matrices, that one of the eigenphases of the
E matrix equation increases through m l2 by almost ~ in
a narrow energy range around E„.' '

The condition in Eq. (2.18) encompasses the spectrum
of cases for the occurrence of a shape resonance. It is a
condition that links together the scattering properties of
the individual atoms in the molecular cluster and their
positions in space, which justifies the name cage or shape
resonance given to the corresponding absorption features.
For diatomic molecules or atomic clusters with only one
shell at distance R from a central atom, it leads to the re-
lation

(E„—( Vzz ) )' R =const (2.19)

between the energy position of the continuum resonance
and the length of the bond. ' ' When a bound-state
feature is present at energy Eb one can eliminate the in-
terstitial potential in Eq. (2.19) to get the relation

b,E„&R =(E„Eb)R =co—nst (2.20)

which can be verified experimentally. ' The condition
(2.19) has also served as a basis for correlating bond
lengths and shape resonances in more complicated mole-
cules or for connecting the first coordination shell dis-
tance with the energy position of the main resonance
after the edge jump as has been seen in a number of
compounds. " More recently it has been used to com-
plement EXAFS measurement of a Cu-0 distance in
copper-containing high- T, superconductors.

However, the global information contained in Eqs.
(2.19) and (2.20) does not exhaust the totality of structur-
al information present in a molecular photoabsorption
spectrum. A lot more can be learned from the expression
(2.12a) for the absorption cross section. In this case the
discussion of Refs. 10(b), 10(c), and 12 carries over to this
case. For the convenience of the reader and for the sake
of completeness we briefly summarize the conclusions.
At the same time we shall try to characterize the various
spectral regions of the absorption spectrum according to
the rate of convergence of the MS series defined in Eq.
(2.21) below, in order to have hints for performing
structural analysis. From this point of view it will turn
out equally interesting to analyze the concept of shape
resonance in terms of diffractive interference processes
connected with the MS paths involved in the resonance.

In fact, provided that the spectral radius p( T, G ) (max-
irnum modulus of the eigenvalues) of the matrix T, G is
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(2.21)

the series being absolutely convergent with respect to
some matrix norm. In such a case one can write

where

(k )
= g X,"(k)

n=a
(2.22)

X( ( }= 2, Q Im[( —I )"( T, G )"T, ]t'
1 1

21+1 sin (5', )

(2.23)

This is a generalized MS expansion that reduces to the
more familiar one' ' when the effect of the outer-sphere
potential is switched off. As before X&(k) represents the
partial contributions of order n in the photoabsorption
coefficient of the molecule under study due to all process-
es in which the excited photoelectron is scattered n —1

times by the surrounding atoms before leaving the rnOle-
ular region. Only closed scattering paths are allowed due
to the site diagonal nature of Eq. (2.23). The functional
form of X&(k) is given by

Xt(k) = g A„(k,R; ")sin[kR "'+p'„(k,R,"")], (2.24)

where the sum is taken over all possible closed paths of
order n, and R"' is the corresponding path length. It is

~n

the form expected on the basis of the interference process
between the outgoing and backscattered photoelectron
wave at the photoabsorbing site. According to the size of
the spectral radius, p(T, G), one can roughly divide the
photoabsorption spectrum into three energy regions.

(1) A full multiple scattering (FMS) region, character-
ized by p( T, G ) )—', where an infinite number of paths (or

a great number of them) contribute to the final shape of
the absorption spectrum. For low-Z scatterers, this is
usually near the edge region (1—2 Ry or 14—27 eV within
the absorption edge). Only global geometrical informa-
tion can be extracted from the data such as the point-
group symmetry and relations of the type ~R =const.
The bound-state features, whether calculated in a bound-
state scheme' (MS-Xa} or in an extended continuum
scheme clearly belong to this region. Notice that the
condition DetM =0 for a shape resonance does not neces-
sarily entail the inequality p( T, G ) ) 1, although the spec-
tral radius in this case should stay near the value one,
since many paths interfere to create such resonances.

(2) An intermediate multiple-scattering (IMS) region
characterized by —,

' p(~T, G) ~
—,', where only a limited

number of paths of low order (n ~4) contribute due to
the convergence of the series in Eq. (2.21). Again for
small atomic clusters and according to the type of
scatterers involved, this is in the approximate energy
range 30 eV to 200 eV above the absorption edge. It is

less than one, one can perform the matrix inversion in
Eq. (2.12a) by series

(T, '+G) '=(I+T, G) 'T,

also the region where information on bond length is con-
tained, since the photoelectron is sensitive to the relative
position of two, three, or more atoms at a time.

(3) A single scattering (SS) region, characterized by
p(T, G ) S —,', where only paths of order n =2 contribute
significantly. This is the region where the photoelectron
is sensitive only to the pair-correlation function, i.e., the
relative positions of the central atom and the backscatter-
ing atom. It obviously extends into the IMS and FMS re-
gions as well. The corresponding signal is usually re-
ferred to as EXAFS in the literature, although in proper
terms EXAFS should refer to all single and MS paths sig-
nals present in the spectrum.

The general picture of a molecular absorption spec-
trum that emerges from the preceding discussion is one in
which oscillating signals with variable amplitudes are su-
perimposed on a background of a more or less smooth
atomic absorption. In the region of convergence of the
series equation, Eq. (2.21), the SS signal is strongest and
acts as a carrier wave that supports all of the other MS
waves.

This picture is inspiring a new kind of analysis based
on a subtraction procedure for extracting the various MS
signals that carry geometrical information. ' " In
Sec. V we describe the application of the technique to
SF6, GeC14, and Br2, in an attempt to comprehend the en-
tire absorption spectrum within a unified scheme.

III. THE NEED FOR AN
ENERGY-DEPENDENT COMPLEX POTENTIAL

AND THE GREEN'S-FUNCTION APPROACH

Since the work of Lee and Pendry, ' "MS theory has
been widely and successfully used to interpret the modu-
lations of the x-ray-absorption spectra in a variety of sys-
tems. These range from molecules in gas phase to adsor-
bates, from extended periodic systems, like crystals to
disordered or amorphous materials, from large atomic
clusters to small ones, both to interpret single scattering
and more recently MS signals. Used as a guide for
analyzing data it becomes a powerful technique for
structural analysis in many interdisciplinary fields. It is
therefore of utmost importance to develop the theory fur-
ther in order to eliminate the remaining discrepancies
with experiments. For example, one aspect that has sub-
stantially limited the possibility of extracting reliable
Debye-Wailer factors (cr ) and coordination numbers
(N, ) from data is the invariable discrepancy between
measured and calculated EXAFS amplitudes based on
theoretical parameters (calculated amplitudes always be-

ing larger). This fact has forced and still forces investiga-
tors to simultaneously fit electronic scattering ampli-
tudes, o. and N,- to the experimental data with the risk of
obtaining unreliable results in the minimization pro-
cedure ("false minima"), due to the high-statistical corre-
lation between these parameters, or to resort to phase and
amplitude transferability which is not always possible and
may sometimes be dangerous. The reason for this
discrepancy is the use of real potentials to calculate atom-
ic scattering amplitudes and the consequent neglect of in-
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elastic excitations, both intrinsic and extrinsic. These in-

elastic channels drain away amplitude from the elastic
channel which alone gives structural information. This
situation calls for a many-body treatment of the photoab-
sorption process.

Now a formally exact solution of this problem in the
language of configuration interaction or channels of the

associated scattering problem is given in Ref. 28. Here
however we want only to present a formal argument,
based on that solution, that will enable us to achieve a
reasonable guess for the one-electron potential to be used
in an effective one-particle theory.

According to Ref. 28 the photoabsorption cross section
can be written as

r

o(co)= 4n—ace g fd rd r'PI (r)a rIm gS "S G .(r, r', co —I, ) a r'PL (r'),
mooo aa'

(3.1)

where PL is the deep-core state with angular momentum
0

L 0=(l ,0m)o and S is the overlap factor (t '~%g ')
giving, in the sudden approximation, the probability am-
plitude that the excited state 4G ' of the spectator
(N 1) elec—trons with a core hole, created in the photo-
absorption process, relaxes to the state 4 ', eigenstate
of the (N —1) particles Hamiltonian, leaving in the sys-
tem an excitation energy b,E . G &(r, r', E) is the inter-
channel G matrix representing the amplitude probability
of propagation of the excited photoelectron from point r
to point r' while at the same time the excitation energy
left into the system changes from hE to hE&. Due to
the completeness of the 4 ' states and the normaliza-
tion condition (%G '~%G ')=1, one has the sum rule

(3.2)

In Appendix C-4 of Ref. 28 it is shown that the
Green's-function matrix G &(r, r', E) satisfies the set of
coupled equations

g [(V +a. )5 r
—V r(r)]G &(r, r', co —I, )

y

=5 P(r —r') (3.3)

supplemented by outgoing wave boundary conditions.
Here I, is the ionization threshold of the core level,
k =co—I, —hE is the kinetic energy available to the
photoelectron, ensuing a process in which the energy
b E has been left into the system, and V r (r) is the inter-
channel potential matrix described in Ref. 28.

This set of equations contains the complete description
of all the possible outcomes of a photoemission process,
be it of intrinsic origin (i.e., consequent to the relaxation
of the system around the core hole) or of extrinsic origin
(excitations created by the photoelectron on its way out
of the system). Although the distinction between intrin-
sic and extrinsic losses is not in keeping with the general
principles of quantum mechanics we keep it as a useful
aid for classifying the system excitations according to
some convenient scheme. For example, in metals and
semiconductors, we might collect all the plasmon-type
final channels, whether of intrinsic or extrinsic origin,
which give rise to reasonably similar interchannel poten-
tial V & in Eqs. (3.3). We can then eliminate from the set

of Eqs. (3.3) the Green's-function subrnatrix correspond-
ing to these channels by expressing it in terms of the
remaining channels. These latter are then described by a
system of equations analogous to that in Eq. (3.3) having
however a potential submatrix which is now complex and
energy dependent due to the elimination of the plasmon
channels. When the same elimination is made in Eq. (3.1)
one ends up with the same expression except that the
quantity inside the large curly brackets takes the form

g'S'(co)S~ (co)G (co),
aa'

where the overlap factors S (co) have assumed an energy
dependence and the sum g' is over the remaining chan-
nels. In particular we could eliminate all channels in
favor of the completely relaxed one (a=0) which is the
channel where the (N 1) particle —system remains in its
possible lowest state (b,Eo =0). This latter channel is the
only one capable of giving structural information and
carries most of the weight (~SO~ =0.7+0.8). This pro-
cedure would lead us to a single equation for Goo in pres-
ence of a complex, energy dependent, nonlocal optical
potential Voo and to a cross section proportional to
~SO(co) ~ 1m[GOO(co —I, )] where ~SO(co) ~

describes the
effect of all the eliminated channels.

Now the construction of such a potential and the con-
sequent solution of the effective equations for Goo is out
of question. We can however on the basis of physical
considerations try to make an ansatz as to the nature of
Voo. For example, it is well known in fact that for metals
one obtains very good agreement with the observed ab-
sorption spectra using a one-particle approach with an
Xu potential and convoluting the calculated spectrum
with a Lorentzian broadening function having an
energy-dependent width related to the mean-free path of
the photoelectron in the system by the relation
I (E)=A'(E/2m)'~ I, '(E). The main discrepancy with
experiments lies in the calculated absorption maxima fall-
ing short of the observed ones due to the energy indepen-
dence of the Xa exchange. In the framework of the
above multichannel approach this finding can be rational-
ized by observing that in a metal the completely relaxed
channel together with the plasrnon excitation channels
(whether intrinsic or extrinsic) almost completely exhaust
the sum rule (3.2). In Si, for example, one knows that the
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intensity of the double-electron excitation channels is of
the order 10 —10 times the main relaxed channel.
Therefore an optical potential given by VX +i DE) is
able to give a satisfactory picture of the absorption pro-
cess. One can further argue that, in the spirit of a statis-
tical approximation suggested by the opening of many
channels with the same weight, the optical potential in
question might be approximated by the self-energy of a
uniform interacting electron gas with density given by the
local density of the system under study. This fact im-
mediately points to the Hedin-Lundqvist (HL)
potential, "with its energy-dependent exchange and its
imaginary part which is able to reproduce rather accu-
rately the observed mean-free path in metals, ' as being a
very good candidate for such an effective potential, at
least for metals and semiconductors.

Although initially devised to describe exchange and
correlation corrections to the Coulomb potential due to
the valence charge, Lee and Beni" applied the HL poten-
tial to the atomic core region as well. One ean therefore
interpret this potential as an effective optical potential
that controls the propagation and the damping of the ex-
cited photoelectron everywhere in the system. Moreover
in the approximations where we can neglect excitations
other than "local" plasmons, we expect ~S&(co)~ to be
structureless and nearly one (to within the weight of the
neglected channels). We have in this way reduced our
many-body problem to an effeetive one-particle problem.
Consequently the effective Green's function G(r, r', E)
(we shall henceforth drop the index 0) will describe the
propagation and attenuation of the photoelectron on its
way out of the system. In keeping with the proposed in-

terpretation, no ~S&(co) ~
correction will be needed. No-

tice that in this way we have transferred all the weight of
the plasmon intrinsic excitations to the extrinsic ones on
the assumption that their effect on the absorption spec-
trum is similar. This fact justifies the interpretation of
G(r, r', E) as a propagation amplitude described in terms
of a Dyson self-energy.

The application of these ideas to the calculation of the
I(:-edge absorption spectra of some transition metals
and semiconductors (ZnS, c-Si) has yielded results in

surprisingly good agreement with experiments. In partic-
ular, amphtudes and phases of the EXAFS oseillations
are very well reproduced. What we propose here is an
extension of this method of calculation (which is substan-
tially based on a MS method with complex potentials) to
the description of inner shell x-ray-absorption spectra of
molecular systems. The rationale underlying this sugges-
tion follows the same line of reasoning that led Lee and
Beni" to extend the validity of the HL self-energy to the

atomic core regions. In fact, in the spirit of the statistical
approximation one might think that the relation of the
HL self-energy to the true self-energy of the particular
system investigated is similar to that of the Thomas-
Fermi approximation of the atomic density versus the
shell structure obtained by solving the radial Schrodinger
equation. Since many channels (of equal weight) are open
in the "high-energy" region one has grounds to speculate
that the above approach leads to a reasonable description
of the EXAFS oscillations in an absorption spectrum.
On the other hand, in the near-edge region of the spec-
trum (below and above the ionization threshold), one
does not expect to reproduce all of the absorption
features. (This is due to the discrete nature of the chan-
nels open for excitation. ) One will obtain an average
one-particle background onto which real many-electron
features will be superposed. Single-particle resonances
could then be separated from multiparticle excitations.
We shall encounter an example of this situation in the
analysis of the SF6 spectrum.

As a result of the reduction described above, the func-
tion G+(r, r';E) obeys an effective one-particle
Schrodinger equation, better known as Dyson's equation,
glverl by

[V +E—V, (r) —X,„,(r;E)]G+(r,r';E) =5(r —r'),

(3.4)

where X,„,(r;E) is the local energy-dependent, complex
HL exchange and correlation potential, and V, is the
usual Coulomb or Hartree potential.

The result is consistent with the physical picture of the
photoabsorption process, in which we add an electron to
the ground state of the (Z+1) equivalent atom. There-
fore G(r, r', E} describes the propagation of the excited
photoelectron from point r to point r'. The amplitude of
this propagation is the probability amplitude that the
added electron remains in the original state in which it
has been added to the system. Its imaginary part, as in

the scattering case, gives the total probability of scatter-
ing out of the initial state. As a result, mean-free path
effects are automatically taken into account in this way,
as discussed in detail in Ref. 32.

Equation (3.4) is to be solved with outgoing wave

boundary conditions for 6+ and the solution is readily
obtained for a collection of muffin-tin potentials. Due
to the localization of the core state PL (r) at the photoab-

sorbing site i in Eq. (3.1) we need the solution of Eq. (3.4)

only for r, r'EI, , the sphere around the excited atom.
Taking the origin at site 0, this solution is

(r, r';E) = —g RL(r)rtt RL.(r')+ g RL(r }S~(r )
LL' L

(3.5a)

= —g RL(r)[rLL t )5Lt ]RL.(r') —g —RL(r )t(RL+(r ),
LL' L

(3.5b)
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where RL (r)=R&(r)Yt (r)= (—~/n)' f&(r)YL(r) is again
that solution of the Schrodinger equation inside Io, regu-
lar at the origin and matching smoothly to

1/2

[J&(xr )t&
' —ih&+(vr )]YL (r ) (3.6)

only for channel 0 without the ~So(co)
~

factor as illustrat-
ed above, gives the polarization averaged cross section

8 2

o(co)= agog A(lo, l)1m[Mr [rim 1m i ]Mt
I

at r =ro, the muffin-tin sphere radius. Here and below

r&~r& ~
is the lesser (the greater) of ~r~ and ~r'~. Similarly,

SL(r)=S&(r)YL (r) and Rt+(r)=R&+(r)Yt (r) are solu-
tions of the Schrodinger equation in Io, singular at the
origin and matching smoothly to (a/n)' j&(~r)YL(r)
and i(v/—m )' h&+(ar ) YL (r), respectively, at r =ro.
These terms account for the singular part of the Green's
function G+(r, r', E). Due to the relation (3.6), one also
has

+Mi'ti M,' ],I

where M, ' is the same as defined in Eq. (2.7),

M~ =f fdr r' dr'P& (r)RL (r & )Rt+(r & )P& (r')/M~

and

lo IO+ 1

' 2l + 1 "o+' 2l + 1

(3.8)

rt L.= [(T, '+ G ) ']LL. (3.7)

where T, and G are the same as in Eq. (2.5). In Ref. 33,
the solution (3.5a) is given for real muffin-tin potentials
without an outer sphere. In a real spherical harmonic
basis, which we use, the solution can be shown to be valid
for complex potentials and in the presence of an outer
sphere, as well. In this last case however, RL and SL are
obviously complex.

Insertion of the solution (3.5b) into Eq. (3.1) written

RL (r) =SL (r)(t& ) '+RL+(r)

so that Eq. (3.5b) follows from Eq. (3.5a). Moreover r is
the scattering path operator given by

Only for real potentials does this expression reduce to the
more familiar formula (2.10)' '

8 2
o.(co) = aco g A (lo, l)(Mr') Imr

Im

(3.9)

8 2

o, (co)= ace g A (lo, 1 )Im[M('t~ M('],
Im

(3.10)

whereas the effect of the structure is contained in the
multiple-scattering series

which follows from Eq. (3.5a) by noticing that in this case
RL and SL are real functions. The atomic absorption
o, (co) is obtained by putting G =—0 in Eq. (3.14):

8a 00

o, (co)= agog A(lo, l) g Im[(M&') (t, ) [(—I)"G(T,G)"]&
& ]

= g a,"(co)
lm n=0 n=0

(3.11)

which is obtained by expanding the scattering path
operator r in series as in Eq. (2.21).

Notice that in the complex potential case the atomic
cross section (3.10) does not factorize out from the
structural contribution (3.11) as was the case for real po-
tentials in Eqs. (3.9) and (2.10). Therefore in view of the
experimental analysis we define

o&(~)
g~(~) =

[a,(~)](

for the total fine-structure signal in channel l and

(3.12a)

(3.12b)

for the various MS signals of order n in channel l.
As shown in Ref. 32 and verified for the calculations

presented in the following sections, a real potential calcu-
lation followed by a Lorentzian convolution with an
energy-dependent broadening function equal to the imag-
inary part of the complex potential reproduces the results
obtained via the solution of Dyson's equation (3.4) for the

photoelectron Green's function with complex self-energy
and then using Eqs. (3.10)—(3.12). Therefore, modulo a
Lorentzian convolution, we can still use the scattering
approach as a viable description of the photoabsorption
process even though the many-body approach would lead
to a MS description.

IV. SFg EXPERIMENTAL METHODS

The sulfur E-edge absorption measurements of SF6
were performed at the Stanford Synchrotron Radiation
Laboratory using the SSRL/LBL/EXXON 54-pole
wiggler beam line 6-2 operated in focused undulator
mode with a magnetic field of 5 kG. The sample fluores-
cence signal was measured using a N2-filled detector of
Stern-Heald design onto which a gas flow cell was
adapted. The sample used in the measurements consisted
of a gas mixture of 2:1 He to SF6 by volume. Two slits
were used to define the beam and a He-filled ion chamber
was used to measure Io. The experimental resolution
( =0.5 eV), was determined by the Darwin width of the
Si(111) monochromator crystals and the vertical diver-
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gence of the x-ray beam. Energy calibration was done
by assigning the first peak in the sulfur K-edge spectrum
of a calibration sample of Na2S203. 2H20 to 2472.0 eV
which results in a first-inAection point at 2471.3 eV in a
powdered sample of elemental sulfur. The calibration
samples were run before and after measurement of the
gas spectra of SF6. Data analysis followed the standard
procedure of normalization of the post-edge region to
unity, after subtraction of the pre-edge region, based on a
spline fits in the post-edge and polynomial fits in the pre-
edge region. The data presented represent the average of
two 40-min scans.

V. APPLICATION OF GENERAL METHODS TO SF6

Since the publication in 1966 (Ref. 37) of the gas phase
sulfur K-edge photoabsorption spectrum of SF6, the
"unusually rugged" spectral profile from the S 1s thresh-

old at 2490 eV up to about 2570 eV has attracted the in-
terest of many researchers. Figure l(a) shows the spectra
recorded at SSRL and fixes the notation of the various
spectral features as used by Ferrett et at. and Giantur-
co et al. except that in this last paper features F and 6
are interchanged.

Zimkina and Vinogradov "made an early attempt to
interpret the E-edge spectrum based on aligning the S 1s,
S 2p, and F 1s photoabsorption spectra in SF6 along the
respective ionization thresholds. From the observed
similarity of the spectra it was concluded that the prom-
inent features were due to "transition of the core electron
to some common system of excitation states. " By relying
on a schematic molecular orbital (MO) diagram for SF&
with four unoccupied orbitals [a& (3s), t, „(3p), t2 (3d),
and es(3d ) j Zimkina and Vinogradov +' were able to as-
sign feature 3 to a dipole-forbidden transition to the a,
state and feature 8 to the dipole-allowed transition to the
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FIG. 1. SF6 near edge (FMS) and IMS regions: (a) The measured edge spectrum. (b) The edge spectrum computed by the extend-

ed continuum method (solid line} and via an explicit bound-to-bound state calculation combined with a real HL potential computed

using an outer sphere for the region E)0 (dashed line). (b inset) The blown-up continuum part of the computed spectrum. (c) The I

decomposition of the bound-state resonance computed via the EC-MS-Xa scheme. The solid line is total cross section (first 9 basis

functions) while the dashed and dotted lines correspond to 1=1 and 1=3 components, respectively. (d) Eigenphase sum [Eq. (6.3))
for the continuum part of the spectrum in units of m.
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t,„state both situated below the ionization threshold
(IT). Zimkina and Vinogradov " concluded that the
concept of potential barrier put forward by Nefedov ' to
explain the presence of sharp continuum resonances in
the S L~~-L~~~ edge spectrum could not be used for the S
E edge to explain features C and D above the IT as
1s~tz, e transitions on the basis that these features
were also present in the K-edge spectrum of fluorine.
Nearly at the same time and independently of them,
Dehrner ' ' used the same potential barrier idea supple-
mented by a double-well molecular potential model to as-
sign the continuum features C and D to vibronically as-
sisted transitions to the t2 and e states due to the pho-
toelectron being trapped in the inner potential well by an
effective barrier of 8 and 20 eV, respectively. Dehmer
bypassed the objection by Zimkina and Vinogradov
by the assumption that in the F E edge the outer-well
states overlap less effectively with the core levels of F
than do the inner-well states. Following this interpreta-
tion, since all the continuum resonances in the S K spec-
trum occur at unusually high-photoelectron kinetic ener-

gy, SF6 has become a prototypical example of potential
barrier and shape resonance effect. Dehmer ' ' also
confirmed the assignment, given in Ref. 40(a), of features
A and B below the IT as transitions to the antibonding
states a&, and t&„, the a&g transition being vibronically
assisted. Finally feature E was interpreted as marking
"the onset of direct ionization which begins where the ki-
netic energy of the photoelectron surpasses the potential
barrier height" of 20 eV that keeps the excited electron of
feature D inside the inner well.

While these interpretations were qualitative in charac-
ter, quantitative explanations date from the same period.
Led by the idea that the prominent features in the ab-
sorption spectrum represent transitions to unoccupied or-
bitals strongly localized in the molecular region, Giantur-
co et al. attempted to understand the continuum reso-
nances as electronic excitations into virtual orbitals with
antibonding character embedded in the continuum ob-
tained via an LCAO MO calculation. The assignment ar-
rived at was the same as suggested in Ref. 40(a) for
features A, B, and C with a good agreement between cal-
culated and experimental energy spacings. Feature D
however was assigned to a dipole-allowed transition to a
MO state of t, „symmetry, 2 eV above the C feature, in
marked contrast with the experimental value of 13 eV.
Feature E was instead assigned to a dipole-forbidden
transition to a state of e symmetry with the correct ener-

gy spacing from feature C (18 eV). The features at higher
energies (F, G, and the undulatory structure above) were
interpreted as due to double-excitation processes, as was
the broadening of feature D. Clearly the level structure
recommended in Ref. 40(b) and later confirmed by the ex-
perirnental results for photoelectron branching ratios and
angular distributions was not reproduced.

However a similar recent calculation based on the
discrete-variational Xa MO calculations of virtual orbit-
als by Nakamatsu et al. has reproduced the level struc-
ture recommended in Ref. 40(b) with the correct energy
spacing for the four features A, B, C, and D, which have
therefore been given the same assignment suggested in

Ref. 40(b). Nakamatsu et al. suggest that these reso-
nances originate from the "constructive interference be-
tween the wave function in the central sulfur atom and
that scattered by the surrounding fluorine atoms. " They
further noted the absence of any potential barrier in the
molecular potential as shown from a cross-sectional plot
along the F-S-F direction.

The weak point in the interpretations reported above
lies with the assignment of the strong feature D to a
dipole-forbidden transition which should therefore be
vibronically assisted. Empirically, the intensity of vib-
ronically assisted dipole-forbidden transitions is approxi-
mately 10' or less than that of the main line which is
not the case for feature D. Additionally, features A and
C have yet to be treated rigorously from the computa-
tional point of view. We defer the proper treatment of vi-
brational and multielectron effects to future work. Final-
ly the assignment of features F and 6, attempted only in
Ref. 39, to double-electron excitations is rather without
quantitative support and is not convincing.

In 1986 the problem of the interpretation of the S K-
edge photoabsorption spectrum has been addressed from
the experimental point of view by Ferrett et al. ,

s who
have measured the photoelectron spectrum between 2460
and 2600 eV across the discrete and continuum reso-
nances in the vicinity of the S K edge. From a study of
the decay of the various resonances they were led to the
conclusion that features D and E should be assigned to
doubly excited autoionizing states with configuration
Is 'v 't, „v* in a MO picture (u and U* being occupied
and empty valence states, respectively) which were ob-
served to decay into S 2p, S 2s, and/or valence photo-
emission channels. They noted that the threshold for the
satellite 1s~continuum lies 3—4-eV higher than features
D and E. They also noted that at photon energies be-
tween 2520 and 2570 eV, the large oscillations of the S 1s
cross section is we11 reproduced by the MS-Ju calcula-
tion performed by Wallace, but an attempt at explain-
ing the oscillations in terms of single-scattering
diffractive effects using a plane-wave approximation was
not satisfactory. Ferrett et al. concluded that "im-
provements in the description of both the electron
scattering and the molecular potential are necessary to
model the diffractive (EXAFS-like) and nondiffractive
(barrier interaction) effects in this energy region. "

It was therefore very natural for us to try to make a
contribution to the understanding of the S E-edge spec-
trum in gas phase SF6, since our approach describes both
points of view (diffractive and barrier effects) in a unify-
ing scheme. The analysis of the spectrum of SF6 was
therefore performed using the general principles and ap-
proach described in the preceding sections.

A. Analysis based on the scattering approach

In Fig. 1(a) we show the measured spectrum corre-
sponding to the energy interval from —12 to 70 eV and
containing all of the relevant features labeled A through
G with the same notation used in Ref. 38. The zero of en-
ergy here and in the following corresponds to the ioniza-
tion threshold Jo as determined experimentally by Ferrett
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TABLE I. Structural and computational information for SF6, GeC14, and Br,.

Molecule

SF6
GeC14
Br2

Rb,„d{ao)'

2.95
3.99
4.31

DW Fct. (az)'

0.006 18
0.007 25
0.007 08

R...«o)'

4.53
6.07
4.31

Rcent(ao )

1.68
1.91
2.15

R„,(ao)

1.57
2.08
2.15

'The bond distances (Rb,„d) and Debye-Wailer factors (DW Fct.) are in atomic units and were taken
from Refs. 50 (SF6), 61 (GeC14), and 7 (Br,), respectively. Of the DW factors used, only that for Br2 was
not an experimental value.
Note that the outer sphere and interstitial potential a values were obtained via a direct average of the

atomic values determined by Schwarz (Ref. 52) and were set equal. Also, all sphere radii were deter-
mined by the Norman method (Ref. 51) and, except for SF6 which has 10%%uo overlap of the atomic
spheres, the spheres are constructed to touch with no overlap. The sphere radii of absorbing atom
(cent), ligand atoms (lig), and outer-sphere (osp) region are given.

et al. As we shall show below, in this energy interval
the calculated spectral radius p( TG ) is ~ 0.75, character-
izing this portion of the spectrum as a full multiple
scattering region. Moreover, the region where p(TG) is

0.7 extends as far as 130 eV above threshold reAecting
the strong scattering power of S and F atoms.

Figure 1(b) shows (solid line) the results of an extended
continuum MS calculation which uses the real part of the
HL exchange and correlation potential for dipole-allowed
transitions from a 1s S core state of a, symmetry to a
continuum final state of t, „symmetry. The dashed line
shows the results of a similar calculation which uses the
standard approach of computing the dipole cross section
for a final bound state of t, „symmetry combined with a

continuum calculation utilizing a real HL potential. An
outer sphere is present both for the bound and continuum
cases. We refer the reader to Table I for information on
MT radii used.

Before discussing in some detail the differences and
similarities of the two methods, we note that in both
cases only features 8, F, and G are reproduced in the MS
calculations of dipole-allowed transitions to bound or
continuum final states.

The assignment of the only intense peak below thresh-
old as a S 1s to 6t,„ level is straightforward. In the stan-
dard approach the cross section for bound-to-bound tran-
sitions is calculated using the bound-state version of Eq.
(2.1) given by

8 2

0 (co)= ace y l(q," ~

L, m, mo

1/2

(~—~L )'+ (y/2)'
(5.1)

where QL is the bound final-state component (valence lev-

el), centered on the sphere of the absorbing atom of sym-

metry t,„of the point group Oh allowed by the dipole
selection rule, y is the core hole lifetime [which is 0.59 eV
(Ref. 46) at the S IC edge], and ~L is the transition energy
(2486 eV).

The calculated value of —3.6 megabarns (Mb) for the
cross section compares favorably with the value of —1.9
Mb reported in Ref. 38. When correcting for an experi-
mental resolution of 0.25 eV, one obtains
cr(co ) =3.6 X 0.59/(0. 59+0.25) =2.5 Mb, since cr(co}
scales as 1/y. In order to carry out this calculation the
following had to be done.

(1} Computation of a self-consistent-field-scattered
wave Xa (SCF-SW-Xa) ground-state potential, with
which to calculate the one-electron initial states.

(2) Computation of a spin-polarized SCF-SW-Xa final-
state potential in the configuration 1s 6t&„. (That is to
say, the SCF spin-up 1s to spin-up 6t, „configuration. )

(3) Computation of the dipole cross section for the
transition 1s~t&„, using the one-particle states relative

to the ground-state and excited-state potentials, respec-
tively. In doing so, we neglect the effect of the nonortho-
gonality of the wave functions of the passive electrons in
the initial and final states. This fact might account for
the discrepancy between the calculated and experimental
values. By calculating the SCF-SW-Xa final state, rela-
tive to the charged configuration 1s ' with a 1s core hole
and taking the total energy difference between this state
and the one relative to the configuration 1s '6t, „, we
have computed the term energy bE„, (bE„,=7.7 eV).
This means that the 1s ionization threshold is 7.7 eV
above the transition, whereas the measurements of Fer-
rett et ah. yielded 4 eV. This discrepancy is not surpris-
ing for local density calculational schemes. By following
the same convention used for the experimental spectra we
also let the ionization threshold in the calculated spectra
coincide with the zero of the energy scale, which is also
the zero of photoelectron kinetic energy.

In the standard approach the continuum cross section
is calculated in the manner of Dill and Dehmer, using an
outer sphere and real potentials. The result of this calcu-
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o„,(co) = g cr~(co) . (5.2)

We see in Fig. 1(c) that the bound-state feature 8 can
be represented as a scattering resonance dominated by
the l =3 (dotted line) and to a lesser extent by the l =1
(dashed line) partial waves. (It should be noted that be-

lation is plotted as the dashed line in Fig. 1(b). The same
analysis can be carried out in the EC-MS-RHL in a
manner which is mathematically more elegant and com-
putationally faster than the standard approach. The re-
sult is shown as the solid line in Fig. 1(b) and was ob-
tained using the same molecular potentials as in the stan-
dard calculation but without the outer-sphere potential.

Using the SCF Coulomb potential (as obtained from
the total charge density) and the spin-up charge density
already obtained from the excited configuration 1s '6t

&„

to calculate the exchange and correlation parts of the real
HL potential, the total cross section in both the bound
and continuum regions was computed as a single continu-
um cross section. It should be noted that here the zero of
energy is the zero of the Coulomb potential at infinity
and should be interpreted as the ionization threshold.
Therefore, in this approach the term value for the
1s~ t,„ turns out to be 4 eV in keeping with the experi-
mental value of Ferrett et al. The extended continuum
method has two drawbacks but several advantages. As a
result of using a continuum final-state normalization in
the bound-state region the calculated intensities might
not be correct [the good agreement with the explicit
bound-to-bound computation seen in Fig. 1(b) is inciden-
tal and should not be taken as the general case]. In addi-
tion, removal of the outer-sphere potential results in the
inability to properly handle Rydberg states which depend
strongly on the boundary conditions imposed on the
wave functions. On the other hand, some of the advan-
tages include speed of computation, rather accurate ener-
gy spacings, and the possibility of decomposing the
bound-state features according to the l values of the in-
coming spherical waves.

The computational advantage can already be seen. In
order to compute all bound-state transition intensities for
a final state transforming under a given dipole-allowed ir-
reducible representation, only one SCF final-state poten-
tial need be computed. Concerning the second point,
note that in the particular case of the SF& molecule that
the energy spacing b zG between features B and 6 in Fig.
1(a) is not well reproduced in the EC scheme. This
scheme gives a value of 64 eV compared with 68 eV
found experimentally. However, the agreement achieved
by the standard calculation is fortuitous, since it is based
on an estimate of the term value for the 8 transition (7.7
eV as opposed to 4 eV). Also note that the two calcula-
tions with and without an outer-sphere potential are
nearly coincident. The third advantage lies in the fact
that the EC method, by treating the bound states as con-
tinuum resonances, makes possible the decomposition of
the total cross section in terms of the partial contribu-
tions of the various asymptotic incoming spherical waves
as given by Eq. (2.3):

cause of the presence of ligands, the full spherical symme-
try about the absorbing site is broken and hence channels
other than the exciting channel are available to the in-
coming photoelectron. ) This information on the nature
of the molecular potential can be used to supplement that
coming from possible shape resonances in the continuum.

In order to understand the physical origin of features F
and G we calculated the eigenphase sum p,„defined as'

p,„=g,„ le= —. g tan '(U KU)p„,1

A

(5.3)

where U is the real, orthogonal matrix which diagonal-
izes the real symmetric K matrix. In Fig. 1(d) the eigen-
phase sum for the final eigenchannel of t,„symmetry has
been plotted. [It should be noted that the curve was
made continuous by imposing the restriction 0 ~p,„~1

and shifting all branches of tan '(x) into this region. ]
As already discussed by Dehmer and Dill, ' "the eigen-
phase sum is a fingerprint in multichannel scattering pro-
cesses which indicates any rapid changes in phase of a
major partial wave component of the final-state wave

function. "
We see from Fig. 1(d) that the eigenphase sum in-

creases by 2~i3 over an energy range of about 10 eV cen-
tered around feature 6 at 60 eV. Hence it is tempting to
consider this feature as a shape resonance, since it has the
same behavior as that found in the Nz o„channel al-
though at a much lower energy (approximately 10 eV
photoelectron kinetic energy). ' The problem in the case
of SFt-, is that it is diScult to imagine the physical origin
of the required barrier height (approximately 65 eV)
needed to trap the photoelectron. However there are
other arguments in support of this assignment. First, of
all, as we show below, at this energy the value of p( &G ) is
around 1, indicating that it is a FMS resonance. In other
words an infinite or large number of MS signals contrib-
ute to its shape by constructively interfering at a particu-
lar photoelectron energy. In fact the shape of the feature
6 is very reminiscent of the first absorption peak in the
E-edge spectra of transition metal-ion salts in aqueous
solution, which coordinate with six water molecules to
form octahedral complexes. ' "' It seems that in the
case of SF|-, we are in the presence of a "delayed octahe-
dral resonance" pushed up in energy by 60 eV. Secondly,
and more importantly, from the unifying scheme present-
ed above, the distinction between the two physical origins
of a spectral feature (diffraction as opposed to barrier
effects) is somewhat less sharp than previously thought.
We have in fact shown that any resonance can be decom-
posed into MS signals originating from a number of
geometrical paths, followed by the photoelectron in its
final state. What distinguishes a resonance from a
"diffractive" maximum in the cross section is therefore
the number and coherence of the "diffractive" signals
contributing to the spectral feature under consideration.
In a resonance, the many "diffractive" signals interfere
coherently giving rise to a sharp feature while in a
"diffractive" maximum only a few "diffractive" signals
(in some cases only one) contribute with little or no
coherence. It is also possible to realize a large spectrum
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of intermediate cases between both extremes. Thirdly, it
has been shown' that one does not need a "barrier"
effect to have a resonance since the concept of a potential
resonance is more general than the barrier model. Based
on all of these considerations we therefore assign feature
G to a "delayed octahedral shape resonance. " As shown
below, the introduction of an absorptive part in the HL
potential (imaginary part of the Dyson self-energy g,„,
[see Eq. (3.10)]) to account for the finite lifetime of the
photoelectron in the final state reduces the value of the
convergence parameter p( TG ) to approximately 0.75 and
improves the convergence of the MS series. We shall
therefore attempt a decomposition of the feature G into
MS paths.

More problematic is the assignment of feature F.
From the fact that it falls in an energy region where the
eigenphase sum decreases by approximately 3nl4 ov.er an
energy range of 50 eV, we are led to refer to it as an an-
tiresonance. In other words, the scattering is strong but
there is no real trapping of the photoelectron wave in the
potential region. In our calculation the energy spacing
AFG between features F and G is not very well repro-
duced: 20 eV as opposed to the experimental value of 30
eV. It should be noted that this spacing depends strongly
on the details (e.g. , MT radii) of the potential. Moreover,
it is also sensitive to the presence or absence of an outer-
sphere potential. The MS calculations of Wallace quot-
ed in Ref. 38 is in better agreement with the experimental
data (b,FG =25 eV). We believe that any differences are
due to the choice of sphere radii. (The radii used by Wal-
lace were r»~=4. 21, rce«=1. 76, and r~;g=1. 22, all in
atomic units. ) The general shape of the two calculated
spectra is very similar however. Consequently we are
rather confident in the one-electron nature of feature F.

In order to enhance our understanding of this part of
the energy spectrum we examine the asymptotic partial
wave decomposition of the total cross section in terms of
the partial cross sections o„(E) [see Eq. (5.2)] corre-
sponding to the outer sphere (and central atom) first
seven basis functions of the symmetrized t, „ final state.
In Figs. 2(a) and 2(b) we display the contributions for the
1= 1 [Fig. 2(a) solid line], 1=3 [Fig. 2(a) dashed line],
1=5 [Fig. 2(a) dotted line], 1=5 [Fig. 2(a) dot-dashed
line], 1=7 [Fig. 2(b) solid line], 1=7 [Fig. 2(b) dashed
line], and 1=9 [Fig. 2(b) dotted line]. The states with the
same I values are orthogonal states transforming accord-
ing to the t, „representation. The functions OA(F. ) were
computed via the EC-MS-Xa scheme. In Fig. 2(c) we
also display the total cross section (nine basis functions,
solid line) with the sum of contributions of the first four
basis functions (dashed line) and of the first seven basis
functions (dotted line).

We note that in the region of the G resonance, the par-
tial wave contributions corresponding to 1=5, 1=7 (both
states) and 1=9 partial waves resonate. This is akin to
what has been observed in the N2 molecule where only
the l = 3 partial wave resonates. ' ' ' Consequently,
feature G might be called a centrifugal barrier resonance,
although this name, as for the case of N2 does not explain
why the resonance happens to fall at that particular ener-

gy. We also note the interference effect in the / =1 and

in the 1=3 eigenchannel between features F and G, due
to an interplay of background eigenphases. This can be
considered as confirmation of the assignment of F to an
antiresonance.
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FIG. 2. SF6 FMS, IMS, and SS partial wave decomposition:
(a) Partial cross sections for basis functions with I = 1 (solid

line), 3 (dashed line), 5 (dotted line), and 5 (dot-dashed line). (b)

Partial cross sections for basis functions with l =7 (solid line), 7

(dashed line), and 9 (dotted line). (c) Total cross-section (solid

line) sum of first four basis functions (dashed line) and sum of
first seven basis functions (dotted line).
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B. Energetics of multielectron transitions

Returning to the other features, we noted above that
the MS approach fails to account for the features labeled
A, C, D, and E in Fig. 1(a). Since our computational
scheme deals with only electronic excitations, it cannot
handle vibronically allowed transitions. Therefore we
cannot discriminate between the assignments for features
D and E made by Dehmer ' ' and Ferrett et al. or be
more positive about the interpretation of features A and
C. Based on the work of Ferrett et al. , and noting that
features D and E, taken together, seem to be an enhanced
replication of feature C which is then split into a strong
peak followed by a weaker one [see Fig. 1(a)] we are in-
clined to assign all of them to double electron transitions.

Having performed a SCF-MS-Xe calculation for the
configuration 1s 6t&„we are in a position to study the
energetics of double electron transitions. Table II shows
the single-particle spin-polarized valence levels for this
configuration. Although in general single-particle energy
spacings do not give the correct excitation energies, we
have checked that the total energy differences between
the appropriate SCF configurations give substantially the
same values. Therefore we have chosen to present the

single-particle levels in Table II as an aid to intuition.
In the sudden approximation the intensities of double

excitations are governed by the monopole matrix ele-

ments between the spectator states in question. (See

Ref. 49 for a more complete discussion of the general
problem of multielectron excitation from both the
theoretical and the experimental perspectives. ) So we ex-

pect the strongest transitions to be the ones with the
maximum overlap between the final and initial states of
the passive electron. On physical grounds we expect this
transition to screen the S 1s core hole, so that in the final

state there should be more charge on the S MT sphere
than there is in the initial state. The only passive electron
transition satisfying these requirements is the 4t,„~6t,„
transition, so that the final state has the configuration
1$4t ]+ 6t &+ corresponding to bonding and antibonding
molecular orbitals of 3p(S)-2p(F) character. This
configuration lies approximately 17 eV above the one-

electron configuration 1s '6t, „and should be identified

with feature D lying approximately 20 eV above feature
B.

We find a similar situation for the bonding-antibonding
pair 3s(S)-2p(F) corresponding to the passive electron
transition Sa, ~6a, , however this is an antiscreening

1g 1g&

TABLE II. Valence level scheme for the spin-polarized 1s~t &„excited-state potential of SF6.

Level'

1T)g
1T)g
1T2„
1T2„
4A )g
4A )g

5A)g
5A)g
6A)g
6A )g

7A)g
7A)g
1 T2g
1 T2g

2T2
2T2
2Eg
2Eg
3Eg
3Eg
3Tl u

3Tl u

4Tl u

4Tl u

5Tl„
5Tlu
6Tl„
6T,„

Occupancy

3.0
3.0
3.0
3.0
1.0
1.0
1.0
1.0
0.0
0.0
0.0
0.0
3.0
3.0
0.0
0.0
2.0
2.0
2.0
2.0
3.0
3.0
3.0
3.0
3.0
3.0
1.0
0.0

Character

2p(F)
2p(F)
2p(F)
2p(F)
2s(F)
2s(F)
3s(S)-2p(F)
3s(S)-2p(F)
3s(S)-2p(F)"
3s(S)-2p(F)"

2p(F)
2p(F)
3d(S)
3d(S)
3s(F)
3s(F)
2p(F)
2p(F)
3s(F)
2s(F)
3p(S)-2p(F)
3p(S)-2p(F)
2p(F)
2p(F)
3p(S)-2p(F)"
3p(S)-2p(F) A

Energy (eV)

—16.2969
—16.1350
—14.6866
—14.5037
—37.7068
—37.5327
—23.3760
—23.2576
—13.5173
—13.3554
—0.7252
—0.6313

—14.0003
—13.8139
—1.4953
—1.3157

—33.6904
—33.4959
—15.8262
—15.6261
—34.7694
—34.5762
—20.5936
—20.3650
—14.6982
—14.5159
—3.7416
—3.5239

Spin

'The core levels have been left out but their symmetries were considered when numbering the valence
levels. The core states are S 1s ( la&~), F 1s (2a&g, 1t&„, leg), S 2s (3a&g), and S 2p (2t,„).
The characters here are based on the MT charge decomposition on the atomic spheres while the labels

A and B correspond to bonding and antibonding levels, respectively. Blanks are left when the atomic
states do not hybridize enough or at all.
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transition (there are 0.21 units of charge on the S muffin-
tin sphere for the Sa,g state compared to 0.05 for the
6a i ). The corresponding multielectron final-state
configuration is 1s '5a

&
'6a& 6t&„and lies approximate-

ly 10 eV above the 1s 6t&„ transition. We identify this
transition with feature C lying approximately 8 eV above
8.

Concomitant with these two multielectron main lines,
there are other possible double-electron transitions corre-
sponding to the passive electron transitions 4a& —+6a,
(approximately 24 eV above the main line 8 and
identified with the feature E) and to the transition
5t, „~6t,„(appr oxim ately 1 1 eV above 8 and identified

with the transition companion to feature C). On the basis
of charge overlap these last two features are expected to
be weaker than those corresponding to the bonding-
antibonding transitions of the passive electrons. The pos-
sible photoelectron transitions 1t2 ~2t2 can be exclud-
ed on the basis of the fact that the charge overlap is ex-
actly zero, since the molecular orbital, made up of 2p F
states, resides completely on the F atoms. We defer to a
future publication a more thorough discussion on these
transitions together with the one-electron calculation of
the S L-edge spectra, which would give a more coherent
picture of the various photoabsorption spectra of SF6.

C. MS analysis intermediate and single-scattering regions
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We attempt now an analysis of the SF6 photoabsorp-
tion spectrum in the framework of the MS theory. Fig-
ure 3(a) shows the measured spectrum relative to the S ls
ionization threshold energy of 2490 eV in a range up to
350 eV in photoelectron kinetic energy, not corrected for
self-absorption. The labels D, E, F, and 6 are the same as
those in Fig. 1(a) and have been placed here to maintain
our convention. It is important to try to determine prop-
erly the various MS regions before carrying out our
analysis. In Fig. 3(b) we plot the absorption cross section
calculated using the real HL potential with (dotted line)
and without (solid line) an outer sphere. The inset shows
the spectral radius p( TG) of both computations over the
same energy range. We see that the presence of an
outer-sphere potential has only a slight influence on the
cross section which is more pronounced at lower energies
where p(TG) is larger. The dashed line shows the S
atomic absorption, calculated for the muon-tin atom.

Figure 3(c) shows the same calculation obtained by us-

ing the full complex HL potential [see Eq. (3.18}]for the
case without an outer-sphere potential and the inset
shows the corresponding spectral radius. The calculation
with the outer sphere is indistinguishable from this. As
expected, the introduction of photoelectron damping in
the final state improves the rate of convergence of the MS
series and makes absorption features smoother. A convo-
lution of the spectra in Fig. 3(b} with a Lorentzian
broadening function using the damping parameter ob-
tained from the inverse of the core hole and photoelec-
tron lifetimes in the final state as given by the imaginary
part of the HL potential provides essentially the same re-
sult (see Ref. 32) as shown in Fig. 3(c). The advantage of
computing with a complex potential lies in the possibility
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FICs. 3. SF6 FMS, IMS, and SS regions: (a) The measured
spectrum covering the FMS, IMS, and SS regions. (b) Absorp-
tion cross sections for calculations utilizing the real HL ex-

change potential with (dotted line) and without (solid line) an
outer sphere. The calculated atomic absorption for the case
with no outer sphere has also been plotted (dashed line). (b in-

set) p(TG) for these calculations with (dotted line) and without
(solid line) an outer sphere. (c) Absorption cross section com-
puted via the complex HL exchange-correlation potential for
the case of no outer sphere. (c inset) p( TG ) for the correspond-
ing calculation. The case with outer sphere is indistinguishable
from this.
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of a direct determination of the convergence rate of the
MS series in the presence of photoelectron damping.
This fact is of the utmost importance in the determina-
tion of the number of MS paths present in a photoabsorp-
tion spectrum.

Following the systematic division laid down in Sec. II,
we can divide the calculated absorption spectrum into
three energy regions: a FMS region [p(TG) ~0.75] cov-
ering the energy range up to 70 eV photoelectron energy,
an IMS region [0.75 ~ p(TG) ~0.50] covering the range
160~E ~ 70, and a SS region covering the range E ~ 160
[0.50 ~p( TG) ]. We note however that due to the strong
scattering power of the S and F atoms that the region for
which p(TG ) ~ 0.70 extends up to 130 eV of photoelec-
tron energy. This is equivalent to extending the FMS re-
gion as far as 130 eV. The important point is that p(TG)
is approximately 0.75 in the vicinity of the resonance la-
beled G. This allows us to implement an analysis in terms
of MS paths.

Figure 4(a) shows a comparison between the experi-
mental signal g,„~(k) derived in the standard way and
the theoretical SS signal gz(k) calculated according to
Eq. (3.18b) and multiplied by a Debye-Wailer function
exp( —2o k ), with a given by the experimental value
listed in Table I. The experimental resolution and
core-hole lifetime broadening were found to have a negli-
gible effect on the signal amplitude. The actual compar-
ison in Fig. 4 is between ky, „p(k) and ky2(k) in order to
blow up the high-k region. Note that there is no adjust-
ment of the photoelectron reference level, which has been
taken to be the physical ionization threshold in both
spectra. This alignment is the natural one and cannot be
otherwise, since in our theoretical treatment the reference
level is different in different regions of space and depends
on energy. In fact in the interstitial region the photoelec-
tron wave vector tr=(E —( Vtt ) )'~ is energy dependent
through the exchange and correlation part of the intersti-
tial potential ( Vtt ). In the outer sphere instead we have
k =E', E being the photoelectron kinetic energy.

From Fig. 4(a) we see that the SS signal models rather
accurately the experimental data for k ~ 6 A ' (E & 130
eV) which is the region in which we expect MS contribu-
tions to be negligible. Note that there are no free param-
eters in the theory except the choice of the atomic radii
used in the mufBn-tin approximation of the potential
which were chosen according to the prescription of Nor-
man, ' and the a values taken from Schwarz for SCF-
S%-Xa calculations. We have found that, in the single-
scattering region, reducing the 10%%uo overlap of MT radii
(keeping the Norman ratio fixed) does not change our re-
sults.

A mismatch in phase is observed at lower-k values
where the spectral radius is greater than 0.7, pointing to
the fact that a SS signal is insufficient to reproduce the
experimental curve. Figure 4(b) shows the difference be-
tween the measured spectrum and the calculated SS sig-
nal (solid line) plotted against a calculated MS signal
which includes contributions from all double-, triple-,
and quadruple-scattering paths (dotted line, y3+y4+g5).
The inset displays the separate MS contributions.
Among these MS contributions the signals corresponding
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FIG. 4. SF6 measured EXAFS and calculated single-
scattering spectra: (a) The solid line is the measured EXAFS
spectrum weighted by k while the dashed line is the computed
single-scattering spectrum also weighted by k. (b) The
difference between the measured EXAFS spectrum and calcu-
lated single-scattering spectrum (solid line), the sum of the con-
tributions from all double, triple, and quadruple MS paths (dot-
ted line) and the dominant triple-scattering signals (dashed line)
of the type S-F1-S-F1-S, S-F1-S-F1'-S, S-F1-S-F2-S, where
Fl and Fl' are trans while Fl and F2 are cis [(b) inset] indiv. i-
dual double (solid line), triple (dot&ed line), and quadruple
(dashed line ) MS signals.

0.0

to collinear paths are the dominant ones since they are
enhanced by the focusing effect and because the ortho-
gonality rule approximately depresses all of the other
noncollinear paths where the first and last vectors joining
the central S atom and the F ligand are orthogonal. ' "
The dashed line in Fig. 4(b) represents the contributions
of the triple-scattering paths of the type: S-F1-S-F1-S,
S-F1-S-F1'-S, and S-F1-S-F2-S where F1 and F1' are
trans and F1 and F2 are cis. It is seen that there is
reasonable amplitude agreement with the experimental
residual signal at least for the first three oscillations. At
higher-k values the noise level does not allow us to extend
the comparison further. This approximate agreement in-
dicates that other MS paths, certainly present in the spec-
trum due to the large value of p( TG ) (approximately
0.80) roughly cancel one another. In our experience, this
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is generally the rule in high-symmetry coordination
geometries. However in order to reproduce the exact
shape of the I' and G resonances the contribution of all
these paths would be essential. This situation reinforces
the claim that feature G is a shape resonance, since it re-
quires many MS paths to reproduce its shape. Due to the
fortunate case that the resonance falls in a high-energy
regime with spectral radius approximately 0.75, we were
able to do a meaningful analysis in terms of MS paths
(since the series is convergent) and extract the dominant
carrier waves among the various signals.

D. Summary

In summary, on the basis of an effective one-electron
picture we have been able to assign features 8, I', and G
to dipole-allowed final-state channels of t, „symmetry as
bound state (B) or continuum resonances (F and 6). An
eigenphase shift analysis has shown the antiresonance
character of feature F, which is very sensitive to the de-
tails of the molecular potential, whereas G has been inter-
preted as a "delayed" shape resonance of centrifugal bar-
rier type. No features D and E appear in this description.
Unless one wants to resort to improbable dipole-
forbidden transitions, the only explanation left relies on
their multielectron character which seems to be
confirmed by a study of the energetics of the double-
electron transition. We therefore agree with the interpre-
tation proposed by Ferrett et al. both on the basis of
their analysis of photoelectron spectra in SF6 and prelim-
inary MS calculations. We defer to future work, incor-
porating both vibrational and multielectron effects, the
assignment of features A and C. As a conclusion, we
share the conviction, put forward by Ferrett et al. in a
second study of S 2p photoionization, that "SF6 is most
likely a very special case which provides us with a testing
ground for investigating unusually strong many-electron
interactions in molecules. " Being equipped with a suit-
able theoretical framework to describe this type of situa-
tion ' we will take up this challenge in future investiga-
tions.

VI. APPLICATION OF GENERAL METHODS TO GeC14

As an example of the utility of the method developed
here we compare the results of our own computations
with the experiments and computations of the MS spec-
trum of GeC14 carried out by Bouldin et al. In order to
fully understand the range of the MS signals the Ge K-

edge spectra of the gases GeH4, GeH3Cl, and GeC14 were

measured. The measurements were done in the transmis-
sion mode using ion chamber detectors and a Si(111)
monochromator. With this experimental configuration
an experimental resolution of 3.5 eV was reported. One
should note that the measured amplitudes are about a
factor of 2 higher than those reported in Ref. 10(a),
which were taken from Kincaid's thesis. The same
problem is found in Br2 and will be mentioned in Sec.
VII.

To experimentally determine the range of the MS sig-
nal, the data were first normalized and then a subtraction

procedure was implemented. It was assumed that the
GeH4 spectrum could be used as a model for the Ge K-
edge atomic absorption while that of GeH3C1 would
yield —,

' the GeClz single-scattering spectrum (plus
atomic absorption). Hence the linear combination b,y

G cl 4+G H cl+ 3+G H was taken to represent the
4 3 4

MS signal (n )2) in the GeC14 spectrum. The following
conclusions were drawn from the analysis.

(1) The SS signal dominates the MS signal even at low
energies.

(2) Only within 15 eV of the edge is the MS signal com-
parable in amplitude to the SS signal.

(3) The ratio of the MS to SS amplitudes decays to less
than 6% beyond 40 eV of the edge.

In order to "obtain a good idea of the current state of
theoretical calculations compared with experiment"
multiple-scattering computations were also carried out by
Bouldin et al. Here as in the case of the experimental
measurements we outline the basic content of their calcu-
lations. First of all a non-SCF molecular potential was
constructed by the overlapping atomic potentials generat-
ed from SCF Herman-Skillman charge densities for
neutral Ge and Cl atoms. From the brief outline given it
is not clear what potential was used for the final state.
But it may have been the standard Z+1 potential used in
non-SCF computations. The formulation of Durham
et al. was used to compute the total multiple-scattering
signal. It should be noted that this formulation allows
for the damping of the photoelectron via the inclusion of
the sum of the core-hole and excited state lifetimes as a
constant imaginary part of the potential but its use was
not discussed. In the computations the atomic radii for
Ge and Cl were defined to be 2.5 and 2. 1 atomic units, re-
spectively. The single-scattering spectrum was calculated
using the formalism of Miiller and Schaich. To obtain
the MS signal the computed SS signal was subtracted
from the computed total MS signal and the following ob-
servations were made.

(1) Beyond 40 eV of the edge the MS signal is negligi-
ble.

(2) The ratio of the MS signal to the SS signal is 15%
above 40 eV.

In summarizing the following statements on which we
will focus were made.

(1) "Because of the path lengths involved, MS can al-

ways be neglected for EXAFS studies of the first shell. "
(2) When k ~ 3 A ' (40 eV) MS signals (n & 2) may be

neglected.
(3) "Theoretical simulations are not yet quantitatively

accurate. They tend to overestimate the importance of
multiple scattering relative to single scattering. "

In order to subject our ab initio method to another sys-
tern in which extensive data were available we decided to
attempt to see how close we could get to the results of the
GeC14 experiments. Our computations were identical to
those carried out for SF6. Spin-polarized ground-state
and excited-state SCF-SW-Xa potentials were construct-
ed for GeCl~. (See Table I for computational informa-
tion. ) The final-state potential was one with the
configuration 1s 't2, which produced a t2 level with the
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highest charge on the Ge atomic sphere and hence was
assumed to correspond to the experimental white line.
The term energy hE=E„„—E&, ,&=6.3 eV was

used to place the onset of the continuum at 6.3 eV above
the experimental white line. In order to compare our
computational results with those of Bouldin et al. we
note that the experimental white line is set at 17.3 eV.
Hence the onset of the continuum must be at 23.6 eV. In
this way we are able to place our energy scale relative to
theirs.

We display the total fine-structure signal (solid line),
the SS (dotted line) signal, and the sum of the first three
MS signals (dashed line, n =3, 4, and 5) in Fig. 5(a)
(above 50 eV this latter is indistinguishable from the
difference of the first two curves. As an inset we also
present the spectral radius. All of the computations were
obtained via the EC-MS-CHL using no outer-sphere po-
tential. Notice that above 50 eV (despite the fact that the
spectral radius is close to 0.5) the SS and total fine-

structure signal are very close in amplitude and phase,
pointing to the fact that the residual MS signal is very
weak (less than 5%o of the SS signal) in agreement with
the experimental finding of Bouldin et al. This fact can
be understood by looking at the individual MS signals
[Fig. 5(b)] corresponding to double-scattering (solid line),
triple-scattering (dotted line), and quadruple-scattering
(dashed line) paths. It is clear that although the signals
have appreciable amplitude individually [about 15—30%
of the SS signal, in keeping with the value of
p( TG ) =0.5], their sum is affected by a massive cancella-
tion.

In order to assess the amplitude of the SS signal we
have included an experimental Debye-Wailer factor ' (see
Table I) and total resolution width of 4 eV (via Gaussian
convolution) composed of the core-hole lifetime [1.9 eV
(Ref. 46)] and the experimental resolution [3.5 eV (Ref.
55)]. In Fig. 5(c) we compare our single-scattering spec-
trum directly with the experimental spectrum (GeC1~) of
Bouldin et al. First of all we see that there is no prob-
lem with the amplitude of the computed spectrum and
hence the last conclusion of Bouldin et al. is not valid
for our model. We note however that there is a slight
mismatch of the phases which we think may be due to
the exchange-correlational potential used or the MT pa-
rameters used. In fact, although we have tried to adopt
physical criteria to minimize the effect of the arbitrari-
ness in the selection of these parameters it is clear that
some dependence still exists. Slightly changing the Nor-
man ratio of the MT radii improves the agreement with
experimental data. Also, one should consider the possi-
bility of an error of 2 —3 eV in the relative positioning of
the theoretical and experimental energy scales due to ei-
ther an imprecise estimate of the term energy or to our
inability to accurately position the experimental EXAFS
spectrum. ) Parts l and 2 of the conclusions by Bouldin
et al. as a unit are equally invalid because as seen in

Fig. 5(b) the individual MS signals are not negligible in
the low-energy region but it is their sum that, in this case,
is small. We draw the following conclusions from our
study.

(l) The absence of a large MS signal in experimental

data does not indicate the absence of individual MS sig-
nals. It might well happen that a cancellation, resulting
from the particular geometry and atomic phase shifts in-

volved, will not occur in a different geometrical arrange-
ment and/or with different type of ligands. It is therefore
possible to reconcile the apparently contradicting
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m(x, y ) irreducible representations of the C v point
group combined via the relation

We remark that the triple-scattering signal is small
below k =3 (ao '

) increases near this value and then de-

creases above k =6 (ao '). (Atomic units are used here
to facilitate direct comparison with the results of Ref. 7.)
This behavior can be understood by looking at the spec-
tral radius p(TG) shown in the inset of Fig. 6(a) and is
connected to the value taken by sin(5&) for the relevant
phase shifts in this k region.

In order to further compare our scheme for the compu-
tation of g2 with that of Chou et al. we have taken the
single-scattering spectrum and have included in a stan-
dard way a Debye-Wailer factor (see Table I) together
with the amplitude reduction effects due to the core-hole
lifetime [2.7 eV (Ref. 46)] and experimental resolution
[2.7 eV (Ref. 63)) giving a total width of 3.8 eV. In Fig.
6(b) we compare this calculated single-scattering signal
with the experimental spectrum of Ref. 7. As in the case
of the other gases there is no problem with amplitude
agreement. However, like GeC14 and unlike SF6, there is
some slight mismatch in phase for which the same con-
siderations as for GeC14 apply.

Our conclusion is the same as that in Ref. 7 for what
concerns point l. (With regards to point 2, we find that
the use of a Dirac-Hara exchange-correlation potential
does not seem necessary. Here too further investigations
are needed. ) We find also that the inclusion of intrinsic
losses is not necessary to get amplitude agreement with
the experiments. This finding seems to be in favor of an
adiabatic turn-on model for intrinsic losses, which tends
to give a smaller phasor summation correction (ampli-
tude reduction factor of the order of 0.9) compared to the
sudden model (reduction factor of about 0.8). Due to
the fact that we have used a computed value for the DW
factor (the same as in Ref. 7), we cannot draw any definite
conclusion on this problem. Further applications of the
theory are needed before a positive statement can be
made. We feel however that the amplitude agreement
found in the three molecules studied is indicative of the
fact that the intrinsic loss corrections are less important
than previously thought, at least for what concerns the
first coordination shell. We also have indications that
this is true for further distant shells.

VIII. CONCLUSIONS

In this paper we have presented a general MS scheme
for the calculation and the interpretation of inner-shell
x-ray-absorption fine structure for clusters of atoms in
condensed matter with application to SF6 and GeC14 and
Br2. We have addressed the problem of the equivalence
between two traditional approaches: the scattering ap-
proach of Dehmer and Dill and the density of states (or
MS) approach of Lee and Pendry. ' "' By working in T
matrix normalization we have explicitly shown that the
former method reduce to the latter in the case of a MT
potential with outer sphere, this equivalence holding also

for general potentials, as shown in Ref. 4(a). This way it
becomes possible to reinterpret concepts such as shape
resonances in terms of diffractive interference processes
due to many MS paths. Consequently, the difference be-
tween a diffractive maximum and a shape resonance is
elucidated as discussed in Sec. V A for the case of the SF6
molecule. The equivalence also highlights the substantial
continuity between the two energy regimes in which reso-
nances and diffractive maxima (extended fine structure)
are present as is illustrated in the case of SF6.

In order to take into account extrinsic losses of the
photoelectron in the final state, we have generalized the
MS approach to a complex absorption potential of the
HL ' type, giving a precise prescription for the deriva-
tion of the various MS signals and for their comparison
with the experimental fine-structure signals. In the three
cases studied, after accounting for DW factor and experi-
mental resolution in the proper way, we find amplitude
agreement between the calculated and experimental fine-
structure signals. This fact might indicate that the
correction for the intrinsic loss processes (phasor sum-
mation correction) is negligible. Further applications of
the method are necessary to substantiate this. In two
molecules (GeC1~ and Br2) we find some slight phase
mismatch between the calculated and the experimental
signals which might depend on a variety of factors as dis-
cussed in Sec. VI.

The possibility of monitoring the expansion parameter
p(T, G) of the MS series provides us with an a priori reli-
able knowledge of the number and type of MS paths
present in an absorption fine-structure signal beyond the
SS one. The application of the theory to GeC14 confirms
the small ainplitude of the MS (sum for n =3,4, 5) contri-
butions (about 5% of the SS signal) as due to a fortui-
tous cancellation of the paths of order n =3,4, 5. The
same cancellation is not present in the Mn04 anion. ' "
This is due to the fact that the scattering power of oxygen
fades away with increasing energy more rapidly than for
chlorine atoms. The consequence of this is a depression
of the paths with n =4, 5 and the inhibition of the de-
structive interference with the double-scattering paths.

In our experience, there is no general "rule of thumb"
to estimate the contribution of MS paths. We have found
that the best way to extract these signals is via a fitting-
subtraction procedure that fits the dominant sinusoidal
contributions and subtracts them from the experimental
signal in such a way that the residual signal can be readi-
ly analyzed. We have applied this procedure with success
to the analysis of a-Si in order to bring out effects con-
nected with three-atom correlations.

In conclusion, although more investigation is needed to
assess the reliability of the theory, we feel rather
confident that it can be applied with success to the
analysis of the x-ray-absorption fine-structure data, espe-
cially if supplemented with non-MT corrections (which
we plan to do in a near future) and a sound final-state
effective optical potential. This last aspect of the theory
needs further investigation. However, the HL exchange-
correlation potential seems to constitute a good starting
point for photoelectron energies more than about 30 eV
above the ionization threshold.
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