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Energy-level ordering in the one-dimensional t-I model: A rigorous result
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Two theorems about the spin properties of the ground state and the ordering of the energy levels for

different spins of the one-dimensional t-J model are stated and proved. It is shown that when the

number of electrons N=4n+2 (n an integer) with periodic boundary conditions or N=4n with an-

tiperiodic boundary conditions, the ground state is a nondegenerate singlet.

I. INTRODUCTION

In recent years the t-J model has attracted much atten-
tion as a model to describe the cuprate superconductors
and as a model of highly correlated electron systems in
general. Notwithstanding its apparent simplicity, the
rigorous results and exact solutions for the model, even in
one dimension, are rather limited and still rare. In this
paper we state and prove two theorems about the spin
properties of the ground state and the energy-level order-
ing with total spin S and applied boundary condition for
the one-dimensional (1D) t -J model.

The t-J model we consider here is defined on the sub-
space of electrons without double occupancy. For a 1D
chain with L sites, it takes the form

H Hg+HJ,
L —I

H& -—t g g (c; c;y ~
+ H.c.) —tb g (c ~ cL +H.c.),

L —I

HJ J g (S; S;+) —
4 n;n;+i)+Jlbl(Si'Sg, 4 nlnL) ~

where c; =c; (1 —n; ), S;=c;,(rr—/2), pc;~, and n; are the
projected electron operator, spin- 2 operator, and electron
number at site i, respectively. HI describes the hopping of
an electron between nearest-neighbor sites with a hopping
constant —t. [Without loss of generality, t &0 is as-
sumed here. The case r &0 is obtained from the case
t & 0 using the local gauge transformation c;

( —1) 'c;.] HJ denotes the antiferromagnetic ex-
change between electrons on neighboring sites (J & 0).
The hopping and spin exchange interaction terms between
the two edge sites are explicitly identified in the Hamil-
tonian (1). Depending on the choice of the boundary con-
ditions, the parameter b takes the following values: (1)
b=l with c;+L =c;, if periodic boundary conditions
(p.b.c.) are assumed; (2) b = —

1 with c;+L = —c;, if an-
tiperiodic boundary conditions (a.b.c.) are assumed; (3)
b =0, if free boundary conditions (f.b.c.) are assumed.

The Hamiltonian H conserves the number of electrons
N and the z component of the total spin S,. Thus we can
restrict our discussion to states within a subspace with a
given value of S„say M, and a given value N. We choose
the basis set of the Hilbert space of the ¹ lectron states
to consist of all distinct eigenfunctions of S;, compatible

with eigenvalue M, i.e.,

l lxj foj) =c,'... c„'„.„lo), (2)

whele 'lxj Ixl x2 ' ' ' xN I I ~ xl c x2 + ' + xlv + Lj
and jrrj = to~o2 re lg; cr; =Mj. The eigenstates in

this Hilbert subspace can be expanded in the basis set in
terms of the amplitudes f(jxj foj) f(x~a~ x~o~):

e- g f(fxjbj)lfxjbj). (3)

In this paper we study the ground state (or states if the
ground state is degenerate) and the energy-level ordering
in H. Of central importance is the total spin S which is a
conserved quantity. If we denote by E(S) the lowest ei-
genvalue of H for states with total spin S, then the follow-
ing two theorems hold.

Theorem l. (1) In the cases (a) N =4n+2 (n is an in-
teger) with p.b.c. or (b) N 4n with a.b.c., the ground
state is unique and a spin singlet, and E(S) satisfies the
inequality E(2m+2) & E(2m), where m is an integer.
(2) In the cases (a) N 4n+2 with a.b.c. or (b) N =4n
with p.b.c., E(S) satisfies the inequality E (2m+ 3)
& E(2m+1).

Theorem 2. For arbitrary N with f.b.c., the ground
state is unique and a spin singlet if N is even or twofold
degenerate and a spin doublet if N is odd, and E(S+I)
& E(S).

These two theorems are extensions of a corresponding
theorem proved by Lieb and Mattis for pure spin systems
on bipartite lattices. Their theorem is generally valid in-
dependent of the dimensionality and the geometry of the
lattice provided the lattice can be divided into two sublat-
tices which satisfy some constraints for the intrasublattice
and the intersublattice spin couplings. However, for the
t-J model, the mixing of the fermion degrees of freedom
with the spin degrees of freedom makes the problem more
complicated. Our extension of the Lieb-Mattis theorem
to the t-J model only applies in lD where, except for the
edge contribution, H, (electron hopping) does not change
the order of the electrons along the chain.

The choice of the boundary conditions is important in
our cases. First, when p.b.c. or a.b.c. are imposed, N must
be even because our proof relies on the assumption that
the antiferromagnetic coupling between two spins belong-
ing to the same sublattice vanish (we denote all odd sites
of the lattice as the 2 sublattice and the others as the B
sublattice). Second, in 1D the hopping terms between the
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two edge sites, i.e., c~ cq +H.c., changes the order of
electrons along the chain giving rise to an extra sign factor
( —1)N ' in the matrix elements of these edge hopping
terms. Our result, theorem 1, only applies when the
boundary condition compensates for this extra sign factor.

Part of the result about the ground state in theorem 1

has already been found in the limit of I 0 (Ref. 3) (i.e.,
the limit of U ~ of the Hubbard model) and also in the
numerical calculation of the model on small lattices. Our
theorem provides the general statement and formal veri-
fication of these results.

II. THE LIEB-MA'I I IS THEOREM

S;— —S;—,S;, S;, (4)

To prove the theorem, we shall make use of a theorem
which Lich and Mattis used in their proof. For conveni-
ence in our proof below, we restate and slightly rephrase it
here and take it as a lemma without proof.

Lemma. If, for a Hilbert space with a given basis set,
all the oA'-diagonal matrix elements of a Hamiltonian H
are real and seminegative, then to within a common phase
factor all the coe%cients of the ground-state wave func-
tion are positive or zero. If the Hilbert space cannot be di-
vided into two subspaces such that all the matrix elements
of H between vectors belonging to dilferent subspaces van-
ish, then to within a common phase factor all the
coefficients of the ground-state wave function will be posi-
tive.

Obviously this lemma cannot apply directly to the
Hamiltonian (1). The matrix elements of the hopping
terms (except for the edge hopping terms) are already
seminegative in the basis (2). However, the matrix ele-
ments of the nondiagonal part (i.e., the spin-Aipping terms
S; S;+ I

+ H.c.) in HJ are not seminegative if the basis set
(2) is chosen. Naively, one might perform a local spin ro-
tation transformation by letting

for the spins on sublattice 9 but leaving the spins on sub-
lattice 8 invariantly make the matrix elements negative.
However, this local spin rotation transformation will bring
an extra factor + io to the hopping terms in H. There-
fore the condition required for the lemma to apply will not
be satisfied by this spin rotation.

To overcome this difficulty, we introduce a hole-
dependent spin rotation transformation

L

U=+ exp irr g nt S;, (5)

This is a canonical transformation. The spin exchange
terms transform to

USizSi y lzU =St'zS(+ lz

U(S;+S;+ I +S; S;+ I )U t = —(S;+S;+I +S; S;+ I ),
US I zSLz U S 1 zSL2

U(S,'S;+S, S,')U'=( —1)N-'(S,'S, +S;S,').

The transform of the edge hopping terms is more subtle
as it depends on both N and S,:

U(cl cL +H.c.)Ut=e ' * (cl~cL~+H.c.) .

Clearly, after the transformation all the nondiagonal ma-
trix elements except for those arising out of the edge terms
are seminegative as required by the lemma. For the non-
diagonal contribution of the edge terms, the nonvanishing
matrix elements are

These are the same as the transforms of the spin exchange
terms under the transformation (4). The attraction of this
transformation is that the hopping terms between two
nearest-neighbor sites remain unchanged under the trans-
formation as

Ucieci+ lecJ =ciaci+ ter ~

v'-t- i~tN+ N —N/2cr)oN x I ol xN I oN —
I IU tb Zcl&L U lx I ol XN l&N I LoN)— bt,

0'

(X2o2 XNcrN Lol IU tb+cL~I U I 1 ol, x2o2 ' ' ' xNoN) =e ' + bt,
0'

(1 —o,x2o2. xN —loN-I, Lo~U(SI+SL +Sl SL )U ~1cr,x2o2 xN IoN I)rL
—o) =—e'-

These are smaller than zero only in the following five
cases:

(i) N =4n+2 (n is an integer),

M =0,2, . . . , 2n, b =1;
(ii) N =4n+2, M =1,3, . . . , 2n+1, b = —1;
(iii) N =4n, M =0,2, . . . , 2n, b = —1;
(iv) N =4n, M =1,3, . . . , 2n —1, b =1;
(v) b=0.

The first four cases correspond to the four itemized cases
listed in the statement of theorem 1. The last case corre-
sponds to theorem 2. In the following, we restrict our dis-

I

cussion to these five cases. Since all the nondiagonal ma-
trix elements of UHUt are smaller than or equal to zero in

these cases, the lemma now applies.

III. PROOF OF THEOREMS

We consider only the cases of even N and p.b.c. or a.b.c.
Consider first a Hamiltonian which is defined on the

same Hilbert space as H:

H'=H, +HJ,

HJ =JS~.Sg,
where S~ and Sg are defined as the total spins belonging,
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HJ, WCiaCi+Ja =0,
a

HJ ~C)a CLa 0 ~

This implies that the charge and spin degrees of freedom
are separated in H'. The eigenvalue of H' is therefore a
sum of the electron hopping energy E& and the spin-
correlation energy EJ. Correspondingly, the eigenfunc-
tion of H' is a product of a function of electron space coor-
dinates and a function of electron-spin coordinates

f(Xlol, . . . , Xno'n) =X(Xl, . . . , XlV) Y(o'l . ON) &r (7)

where X(xl, . . . , xn) is an eigenfunction of Hl with all

spin indices omitted (a Slater determinant of noninteract-
ing spinless fermions here) and Y(col on) is an eigen-
function of HJ

The energy eigenvalues, EJ, of the spin Hamiltonian
can be obtained by solving HJ

EJ 2 J[S(S+I ) —Sg (Sg + 1 ) —SB(Stl + I )] (s)

where S is the total spin of the system and Sz~~~ is the
value of Sgttl~. When S, =M, the minimum of EJ will be
reached when S M and S~ =SO =N/4 (N/4 is the max-
imum value S~ and Sa can take).

The eigenvalue of the kinetic part of the Hamiltonian,
E&, is a sum of the kinetic energy of the noninteracting
spinless fermions:

E& ~ 2t gcoskt,

where the electron momenta k; are determined from the
boundary conditions

X(x l, . . . , XN —l, L+ 1)Y(o I
' ' ' ON )

=( 1) bX(l, xl, . . . , xN l)Y(ONol ' oN—l) . —

(9)

The difference between Y(o~ol . . Ow-l) and
Y(ol . . On) corresponds just to a shift of the spins along
the ring by one unit (in the squeezed spin lattice). It is
equivalent to swapping S~ and Sg. From the theory of
angular momentum we know that

Y(ON&1 ' ' KN —I)
( ) ~t~' (io)

Y(o'l Gjv )

when S~ =Stl N/4 and S =M. Substituting (10) into
(9), we obtain

respectively, to the A and B sublattice in a squeezed spin
lattice in which all holes are omitted,

I+exp itr g nt
l ~i

2

1
—exp ilrg nt

i~i
2

It can be shown that S~ and Sa commute.
The Hamiltonian H' is exactly soluble. It is straightfor-

ward to check that HJ commutes with all terms in H, :

X(x,, . . . ,xn, ,L+I)=(—I)"" " '

xbX(l, xl, . . . , xfy l) .

In the cases of (i)-(iv) this gives

X(xl, . . . , xtv l, L+—1)=X(l,xl, . . . , xlv —l) . (i2)

This is equivalent to taking a.b.c. in a spinless fermion sys-
tem. Since the ground-state energy of noninteracting fer-
mions with a.b.c. is lower than the ground-state energy of
the corresponding system with any other boundary condi-
tion when N is even, we see from the above argument that
when S=M and S~ =Sa=N/4 both EJ and E, can
simultaneously attain their respective minima. Thus the
ground state of H' has total spin S M in the S, =M sub-
space.

Next we consider the properties of H' under the trans-
formation (5). Since H, is the same as the kinetic part of
H, we need only consider the J term in H'. It is easy to
show that

IV. CONCLUSION

In conclusion, two theorems concerning the value of the
total spin and the degeneracy of the ground state and the

UHJ'U J[SgzSaz —
2 (Sg+Sg +SA SB )].

Thus the nondiagonal matrix elements of UHJUt are sem-
inegative. Combining this result with that for H&, we see
that all the nondiagonal matrix elements for UH'Ut are
also seminegative. According to the lemma all the
coefficients of the ground state of UH'Ut are semipositive
up to a common phase factor. More strictly, since the
Hamiltonian H' cannot be divided into sets of noninteract-
ing parts in the subspace S, M, all coefficients will be
nonzero. This means that the ground state of H' is nonde-
generate in the subspace S, =M.

Now let us return to the Hamiltonian H. By the lem-
ma, all the coefficients of the ground state of UHUt are
also positive in the S, M subspace. The ground state of
UHUt and the ground state of UH'U will then be
nonorthogonal (two vectors cannot be orthogonal if all
their coefficients in some basis have the same sign), and
therefore the ground state of H' and the ground state of H
will also be nonorthogonal and the ground state of H in
the S, =M subspace must have spin S =M.

Finally let us consider the ordering of the energy levels
for different S. It is known that any eigenstate with spin S
has a corresponding eigenfunction in the ~S, (

~ S sub-
space of eigenfunctions. Thus the energy of the lowest-
energy state of a S, =M subspace will not be larger than
the energy of a corresponding state of a subspace with
S, )M. Generally E(S+ I) ~ E(S). For H, since the
lowest-energy state for a given S, is nondegenerate in the
cases (i)-(iv) as shown before, we immediately get that
E(S+2))E(S), where S=even/odd if N=4n+2 and
p.b.c./a. b.c. are imposed or if N =4n and a.b.c./p. b.c. are
imposed. Theorem 1 is therefore proved.

The proof for theorem 2 is similar to that for theorem 1.
As f.b.c. are assumed, the edge terms in H vanish. So the
theorem holds without the limit on N.
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ordering of the energy levels for different total spins in the
1D t -J model have been stated and proved. In proving the
theorems we have introduced a hole-dependent nonlocal
gauge transformation. After this transformation all the
nondiagonal matrix elements of the t-J model are sem-
inegative provided proper boundary conditions are im-
posed. A possible major application of this transformed
Hamiltonian will be in Monte Carlo simulations. As all
the nondiagonal matrix elements of this Hamiltonian are

nonpositive there will be no sign problem. Work on this
aspect is in progress.
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