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Defect-defect correlation in the dynamics of first-order phase transitions
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We investigate the defect structures evolving after a temperature quench from a disordered phase into
an ordered phase for systems with O(n ) symmetry. Various defect-defect correlation functions are cal-
culated. These quantities exhibit scaling behavior as well as interesting short-distance behavior which
are sensitive to the structure of the theory.

I. INTRODUCTION

The study of the growth kinetics of systems subjected
to rapid temperature quenches' has recently been ex-
tended to include systems with more complex order pa-
rameter symmetries. ' In particular there has been
progress on the study of the n-vector model with noncon-
served Langevin dynamics. Results for the order param-
eter correlation functions satisfy scaling for all values of n

and show nonanalytic behavior for short-scaled distances
which weakens as n increases. ' ' There is, however, no
dramatic variation of the scaling function as a function of
n and the growth law follows a t' time dependence for
all values of n. There are, on the other hand, other quan-
tities of interest in these systems which we do expect to
vary strongly with n. In particular the topological defect
structures, which are the disordering agents controlling
the growth of ordering in these unstable systems, should
show a strong variation with n. In this paper we study
the statistical properties of and the correlations among
these defects. In particular, we calculate here the defect
densities and various defect-defect correlation functions
for different n and dimensionality d for the same TDGL
model studied in Ref. 11 and defined below. It turns out
that these correlation functions depend sensitively on the
detailed structure of a theory. Hence they are more suit-
able than the usual order-parameter correlation function
to be compared with numerical simulations and experi-
ments, since one may be able to discriminate among
different theories. These defect correlations may even
turn out to be easily measurable by digitization methods
since only the positions of the defects are involved. We
show that some of our results can be directly compared
with numerical simulations, and hopefully these and oth-
er results can be checked by future experiments.

In previous work" we discussed the development of a
quantitative method for treating growth kinetics of the
order parameter field hatt(r, t). Here we focus more closely
on the defects associated with this field. Let us begin by
briefly reviewing the nature of the defects for the O(n)
symmetric n-vector model. For the scalar case, n =1, the
defects are domain walls which are points for d =1, lines
for d =2, planes for d =3, etc. More generally, for n =d
one has point defects. This leads to vortices for n =d =2
and monopoles for n =d =3. For n =d —1 one gen-
erates string-type defects.

where x (t) is the position of the ath point defect at time
t and with a charge q . For the case n =d —1, where
one has strings, one can define the defect line density

p(r, t)=g J ds 5(r —x (s, t)),
s

(1.2)

where s parametrizes the string along its curve and
dx /ds can be chosen to point in the direction of positive
winding number for the singularity. In this paper we are
primarily concerned with the defect-correlation functions

and

G(r, t) = (p(r, t )p(O, t) )

G,,(r, t)=(p, (r, t)p, (O, t)) .

(1.3)

(1.4)

The determination of these quantities is a formidable
task but can be carried out via the following steps: (i) re-
late the densities p and p to zeros in the order parameter
field g; (ii) express, under the appropriate circumstances
to be discussed in detail below, f in terms of an n-
component auxiliary field m. m has the same zeros as g
but, unlike f, can be treated as a Gaussian field; (iii) reex-
press p and p in terms of m; (iv) since m is a Gaussian
field we can then explicitly evaluate 6 and 6," in terms of
the variances of m:

Co(r, t)5~—:(m, (r, t)mt(O, t)) . (1.5)

We summarize here the main results of this calcula-
tion. For the case n =d, we find that 6 is of the form

G(r, t) =no(t)5(r)+g(r, t),
where the 5-function contribution arises from the correla-
tion of point defects at the same position. Clearly no(t) is
the total (unsigned) number density of defects at time t
The correlation function for different defects is given by

g(r, t) =n! h Bh
(1.7)r Br

where

In the case of point defects (n =d), it is clear that we
can introduce a defect density

p(r, t)=gtI 5(r—x (t)),
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1 Bf(r, t)/dr
2m.

and f is the normalized variance of m:

Co(r, t)

Co(0, t)

(1.8)

(1.9)

and

n

Gt (x, t)=n! h 1

L 2)I(t}

(n —1)! Bh" 1Grx, t =
Bx L2"(t}

(1.19)

(1.20)

n![ —f"(0,t) ]"
2"n "~ I (1+n/2)

For the case n =d —1 we obtain

G,, (r, t) =Gt (r, t)r;r, +Gr(r, t)(5,, —r, r, ),

(1.10)

where the longitudinal part is given by

h
G (r, t)=n!L (1.12)

The density of defects can be obtained from the "charge"
conservation law satisfied by p and is given by

no(t)= —fdrg(r, t)

Thus all of the correlation functions fall off with time as
L "-t " and the coefficients are scaling functions pro-
viding information about the spatial correlations among
defects. These depend rather sensitively on the precise
nature off (x) as we shall discuss in detail below.

In the next section we discuss the basic assumptions
leading to the results (1.7) and (1.11) for G and G,j. In
Sec. III we consider the scalar (n =1) case where we can
establish some interesting connections between G;J(r, t)
and the order-parameter scaling function. In Secs. IV
and V, the derivations of the results for G and G; are
provided in detail. We also examine the forms of the as-
sociated scaling functions which follow from the theory
we developed previously.

and the transverse part takes the identical form as g (r, t):

h Bh
G (r t)=n!

r Br
(1.13)

In both cases it is easy to verify the overall charge neu-
trality:

fG(r, t)dr=0, (1.14)

II. DEFECT STRUCTURE AND DENSITIES

A. Model

The fundamental model of interest here is the time-
dependent Ginzburg-Landau (TDGL) model with a n

vector order parameter f(r, t), governed by the Langevin
equation,

f G;, (r, t)dr=0 . (1.15)

B@(r,t) & 5F[@]= —I +rt r, t (2. 1)

These results follow rather generally as long as the
zeros defining the defects can be associated with a Gauss-
ian field. Similar results have been previously derived by
Halperin in the equilibrium context. ' In the specific case
of growth kinetics, one must then identify the function
f (r, t},which appears in our results. In our work in Ref.
1 1, we self-consistently evaluated f (r, t) for the n-vector
model and details will be given in sections below. Here
we use the main property off that it satisfies the similari-

ty scaling relation

f(r, t) =f(r/L(t) )

in the long-time limit where the characteristic length
L(t)-t' for a nonconserved TDGL n-vector model.
This relation allows us to extract the overall time depen-
dence of our defect-correlation functions when expressed
in terms of the scaled length x =r/L(t). For n =d,

g(x, t) =n! h Bh 1 (1.17)
x Bx L'"(t)

where h is the dimensionless quantity

(1.18)

while for n =d —1 we have

where the driving free energy is of the form

F[f(r,t)]=f dr[ ,'(Vf) + V(f—)] (2.2)

and V(g) has the "Mexican hat" form. The Gaussian
thermal noise g has zero mean and satisfies

(i);(r, t)g (r', t')) =k~T15; 5(r —r')5(t —t'), (2.3)

where T is the temperature and I is a kinetic coefficient.
We assume that the system is prepared in an initially

disordered equilibrium state at high temperatures with

(g(r, t)) =0,
{g,(r, t)P, (r', t')) =5; et5(r .—r') .

(2.4)

(2.5)

At time t =0 the system is quenched such that it is
governed by (2.1) for t )0. We assume that the final tem-
perature T is below the critical temperature. Indeed we
will assume here that the quench is to T =0. Under these
circumstances the system will develop ordered regions
which grow indefinitely larger with time. In the late
stages of the ordering, growth is controlled by the motion
and annihilation of strongly interacting low-energy de-
fects. These defects are point- and stringlike in the two
cases n =d and n =d —1, respectively. The field

configuration associated with an isolated defect is given

by the nonuniform solution of the classical equation
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V tP,
—V'(iP, )=0 . (2.6) gredient is the rather obvious result

iP, (p) = A (p)p, (2.7)

We assume for the cases treated here that late stage coar-
sening involves only those defects with the lowest energy
and thus those with topological charge +1. Solutions of
this type take the form

g 5(r —x (t))=5(tp(r, t)) ~detBQ~, (2.11)

where the second factor on the right-hand side is just the
Jacobian of the transformation from the variable ip to r.
This is combined with the less obvious result

where the amplitude A(p) vanishes at the defect core
and satisfies

q =sgn(detBQ),

to give

(2.12)

(n —1)
A

BY[A]
BA

(2.8) p(r, t)=g q 5(r—x ) =5(lp)det(BQ) . (2.13)

and p is an n-dimensional coordinate measured from the
defect core.

B. Separation of Selds

Halperin also showed for the case n =d —1 that

P;(r, t)=5( Pi)~, , , . . . , 8, Q, B, 1P, 8,. iP„, (2.14)

The key assumption made in the development of the
analytic theory in Refs. 6, 7, and 11 is that the order pa-
rameter field can be decomposed into a sum of two fields:

ip(r, t) =tr[m(r, t)]+/(r, t), (2.9)

The field ip in (2.9) represents the fluctuations in f about
its ordered component. As discussed in detail in Ref. 6
for the scalar case, P is not properly defined until we
specify the statistical distribution governing the field m.
We are free to choose any statistical distribution we
desire. However, the selected distribution will influence
the statistical properties of the field P. Thus without loss
of generality we can choose m to be governed by a Gauss-
ian distribution and then investigate the resulting behav-
ior of the field P. It was shown in the scalar case for a
nonconserved order parameter that in the scaling regime
the field P could be neglected in the computation of the
order-parameter scaling function. In this case one finds
that the field tr and P decouple in the scaling regime. In
Ref. 11 we assumed this decoupling from the beginning.
One must be careful about this assumption. In the case
of a conserved scalar order parameter, in order to allow
for diffusive processes which lead to an interaction be-
tween separate interfaces, one must allow for an interac-
tion between the o and P fields. ' Henceforth, unless
stated otherwise, we assume here that in treating the late
stages we can ignore the P variable and treat m as a
Gaussian variable.

where cr has the same form as the classical defect solution
except the coordinate variable p is replaced by an auxili-
ary field m. Thus the field m(r, t) has the physically ap-
pealing interpretation of the distance from the point r to
the nearest defect. In the case of interest here where the
relevant defects are unit charge vortices we have

cr(m) = A (m)m .

where e is the d-dimensional Levi-Civita antisymmetric
tensor and summation is implied over the repeated in-
dices.

The important assumption we make here is that, for
long times and in the scaling regime, we can write

ip(r, t) =cr[m(r, t)] (2.15)

p(r, t) =5[m(r, t ) ]det(Bm)

for the case n =d and

(2.16)

p;(r, t)=5[m(r, t)]e;;; . . . ; 8; miB; mzB, m„(2.17)

for the case n =d —1.
In the scalar case (n =1), it is more convenient to in-

troduce a density

p;'(r, t) =5(ip)B, ip(r, t) =5(m)B, m (r, t) (2.18)

which measures the amount of interface and its local
orientation. Thus p' is perpendicular to a domain "wall. "
For n =d = 1, p' is related to p by

p'(r, t ) =p(r, t),
while for n =1,d =2,

p'„(r, t)= p~(r, t), p~(r, t—)=p„(r,t) .

(2.19)

(2.20)

In the next three sections we undertake the study of
G(r, t), G,J(r, t), as well as

G
~ (r, t ) = (p;'(r, t )p,'(0. , t) ) . (2.21)

We start with G,'" since the analysis is somewhat simpler.

and require that the zeros of iP coincide with the zeros of
m. It is then clear that we can replace tp by m in the ex-
pressions for the defect density and obtain

C. Defect Selds

We next consider the appropriate form for the defect
densities when expressed in terms of the fundamental-
order parameter field ip(r, t). In the case n =d, this
analysis has been carried out by Halperin. ' The first in-

III. THE SCALAR CASE

In discussing the scalar case it is useful to concentrate
first on the total interfacial area density
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no(r, t }=(5[m (r, t }]~Bm(r,t)i ) (3.1)

(
n

exp fdl g H;(1)m;(1)
i =1

which measures the amount of interface independent of
orientation. To calculate this quantity we take advantage
of the identity

=exp —,
' g f d 1 d2H;(1)HJ(2)5 i(C 0(12), (3.4)

~a
~

'= f —exp( —a x /2)—- &27r
(3.2)

where we use the notation 1=(r„t,) for convenience. It
is also assumed that the systems are isotropic as well as
homogeneous and

to write
51Cp(ir] r2~ t& t2)=(m;(r„t, )m, (r2, t2)) (3.5)

no(t( (5(=m }
(Bm )

iBm
/

(5(m)&
—(Sm) x /2 )&27rx» (3.3)

In evaluating Gaussian averages over m we will repeated-
ly use the fundamental result

We can put the average occurring in (3.3) into the form
given by (3.4) by using the standard integral representa-
tion for the 5 function and the identity

dd
exp( —a /2)= f exp( y —/2+ia y) . (3.6)

(277)d/2

We obtain

dX 8 d y ~2/ 2 dk, ikm +ixi3m ynO(t)=- e
(27r)d/2 2~' (3.7)

This average is of the standard form (3.4) with

H(r„t, )=(ik+ixy V', )5(r—r, )5(t —t, ) .

It is then easy to show that

(3.8)

(e'" +'""' ) =exp —
—,'[k So(t)+x y S2(t)], (3.9)

where

(m;(1)B[m])=fd 1 Co(11)
5m;(1)

(3.15)

Using this general result we easily reduce (3.14) to

G, (12)=B,'Co(12)B Co(12)(5'[m (1)]5'[m (2)])

+8,'8 C (12)(5[m(1)]5[m (2)]) . (3.16)

S,(t)—:(m2(r, t)) =C,(0, t),

S2(t)—:—([Bm(r, t)] ) = —Co (r, t)
r=0

(3.10)

(3.11)

Evaluation of the remaining averages is straightforward
using the techniques already developed. We obtain

dk
&
dk2 ik m (])+ ik m (2)

and we have used the result

([i};m(r,t)]m(r, t)) =0 . (3.12)
and

y(12)
27r+So(1)SO(2)

(3.17)

The integration over k and y in (3.7) can then be carried
out with the result'

1 dx 8 1
no t =—

27r+S x» (1+x'S,)'" y (12)f(12)
+So(i)S0(2)

(3.18)

( 5'[m (1)]5'[m (2) ] ) = ( 5[m (1)]5[m (2) ] )
a

BCO(12)

1/2
I [(d +1)/2] S2

I (d/2) 7rS
(3 13) where we have defined

y(12)= [1 f ( 12)]—(3.19)

Since So(t) —t and S2(t)~ —,
' for large t, we see that

no(t)-t ' for all d.
We turn next to the correlation function G,-' defined by

(2.21}and given more explicitly by

and

CQ( 12)f(12)=
+So(1)So(2)

(3.20)

G,'(12)= (5[m (1)]B,m (1)5[m (2)](3/.m(2) ) . (3.14) Combining these results gives

Because the average over m is Gaussian we have the gen-
eral theorem

G,'.(12)= [(8,'. B.f}y+(8,'.f )((3i2f )fy ] .
1

(3.21)
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Using the isotropic nature of the problem

f (12)=f (r, t„t,),
where r = ~r, —r2~ we can write

G,', (r, t. , , t2)=GI'r;r. +GT(5; —r, r ),
where

(rf"+(f'}'f)"l
1

(3.22)

(3.23)

(3.24)

since F (0, t) = 1. In the scaling regime we can introduce

fL (x)=LfL (r, t) =x F(x),
dx

fT(x)=LfT(r, t)= — F(x},d
dx

(3.33)

(3.34}

which gives a set of invariant probability distributions. It
is shown analytically in Ref. 6 that for small x,

and

1 yG7(r t] t2) 2' r

1+m /6)u,F=1—ax 1— + ~ ~ ~

4d +2

(3 25) where

(3.35)

f (r, t„t2)=sin[mF(r, t„t2)/2] . (3.26)

with f'= Bf(r, t„t2 )/Br. We can go further if we realize
that f in our theory is related to the two-time order-
parameter scaling function F in the long-time limit by

a =&2/n p(d —1) (3.36)

and p(d) is a nonlinear eigenvalue which depends on d
(e.g., p= l. 104 for d =2 and 0.5917 for d =3). We then
easily obtain that

It is then easy to show that

1 8
GL(r, t„t2)= ——

2
F(r, t„t2),

4 Br'

a
G T(r, t» t2) = — F(r, t»t2) .

4r Br

(3.27)

(3.28)

3a( 1+n. /6p, ) 2+
2d +1

fT(x)=a 1 — x +3+7T/2p 2

For large x one has

(3.37)

(3.38)

There are then a number of interesting results that we
can establish. The first result is the sum rule F(X ) X d n /2@e —x /—2 (3.39)

fdr G, (r, t„t2).=0 . (3.29)
and therefore we find

(X) Xd+3 —n/2pe —x /2x x (3.40)

fL (r, t) = 4rGt (r, t)=r F(—r, t) (3.30)

and

Next consider, at equal times t, =tz=t, the physical in-

terpretation of GL and GT. GL is proportional to the
probability of having a wall at positions r, and r2 with the
same orientation but displaced by a distance r = r, —

r2~

perpendicular to the orientation of the walls. GT is pro-
portional to the probability of having a wall at positions
r, and r2 with the same orientation but displaced by a dis-
tance r parallel to the orientation of the walls. It is easy
to see that the properly normalized probability distribu-
tions are

while

d+1 —n/2pe —x /2,&, x -x e (3.41)

Comparing (3.37) and (3.40) we expect fL (x) to have a
peak value at a nonzero value of x indicating that in-
dependent walls are on the average separated by a dis-
tance L (t)xo where xo is the peak position of fL (x). On
the other hand, by comparing (3.38) and (3.41) we ob-
serve fT to be monotonically decreasing in x. The physi-
cal interpretation is that at short distances along the
parallel to a wall it is very likely that one will encounter
the same wall.

fr(r, t)= — F(r, t),d
dr

and which satisfy

f dr f'(r, t)=1
0

(3.31)

(3.32)

IV. POINT DEFECTS n =4

In the case of point defects we consider the correla-
tions of the density p(r, t) given by (1.7). One must, how-
ever, be careful to properly treat the self-interactions.
Clearly, using (2.13},we have

p(r, , t}p(r2, t)=gq 5(r, —x )5(r2 —x )+ g q q&5(r, —x )5(r2 —x&)
a a&P

=5(r, —r2)5(m(1) ) ~detBm(1)
~
+5(m(1) )5(m(2) )detBm(1)detBm(2), (4.1)
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where in the second term we restrict r&Ar2. The correla-
tion function can then be written in the form

integral representation

G (r, t ) =5(r)no(t)+g (r, t ),
where

no(t) = (5(m(1) ) ~detBm(1)
~
)

(4.2)

(4.3)

sgn(x)= f dto

we can rewrite (4.3) in the more promising form

no(t) = —f Re(5(m)exp(ice detBm) & .
dco c3

'lTCO BOP

(4.5)

(4.6)

is the unsigned density of defects and

g (r, t ) = ( 5(m(1) )5(m(2) )detBm(1)detBm(2) ) . (4.4)
Using here, and below, the representation for the deter-
minant

As it turns out, the determination of no(t) is actually
more difficult than g (r, t) because of the absolute value of
the determinant required in the calculation. Using the

detBm= g e;; . . . ; 8, m, B; m~ . 8; m„,
1 2 n 1 2 n

lll2 ' ' '
1

we can rewrite (4.6) in the form

(4.7)

dc' 8 d kee(el= —1 ReI x exP ik m+imXQ; 8; m„),mo Bc@ (2~)d n n
(4.g)

where

1 n —1

~
~

~

exp ik m+icog Q; 8; m„
1

We see immediately that the average over m„ is of the same form as (3.4) and one easily obtains

d ny(1) (1) 2
n —1

2~ "" 1=1 in

(4.9)

, (4.10)

where

g(1)
n —1

e, . . . , a, m, 3, m„,+S2yI" . (4.11)

Equation (4.11) has the same structure as (3.4). We continue this process n times to obtain

dco 8 Spk r2 " d "y"
no(t)= —f Ref e ' f g "

2
exp —

—,
' g (y"')

mm Bco (2~)", , (2m)" ~2

lll2 '' l

(4.12)

After performing the k integration and rescaling co by a factor of S2 we obtain

S
- ni2

2
nz(t) = C„,

0

(4.13)

where the coefficients are given by

n dn (i)

i=1 l
1 12

I
n

(4.14)

For small n it is easy to evaluate the C„explicitly:

1 1 1

2~'
(4.15)

We turn now to the evaluation of g(r, t) Using (4.4) w. e find

g(r, t)= g e;; . . . ; e . . .
~

(5(m(1))5(m(2))B; m, (1) . 8, m„(1)B.m, (2) 8 m„(2)) . (4.16)
1 n

For an isotropic system, the average in (4.16) can be factored into a product of averages over perpendicular components

and (4.16) can be reduced to the form
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g(r t}=g e, , . . . , ej J. . . . J A; 1 A; ~
. . A; j12n1 2n1 122 n n

(4.17)

where

A, (r, t) = ( 5(m, (1))5(m, (2) )B;m, (1)BJm &
(2) ) . (4.18)

We notice at once that A;J is precisely the quantity we evaluated in the scalar case (3.14) and we obtain immediately

A J(r, t)= AL (r, t)r, r.+ AT(r, t}(51—r;r-)

with

h (r, t)
T

(4.19)

(4.20)

Bh(r, t)
Br

where as before h (r) = yf'/—2n. Inserting (4.19) into (4.17) we obtain

(4.21)

h Bh h h Bh h
g(r, t)=pe; . . . ;e . . . —5, + ——r;r —5; + ——r, r

1 ~ r & & ()r r 1 I r "' Br r
(4.22)

ah
Br

h A A A A

r 1 n 2 n 1 1 n 2
ge, . . . , r(e,; . . . , r;+e, , . . . ;r;+ +e; . . . , r, ).

1 n n

Expanding the product in (4.22), terms can be grouped such that
'n 'n —1

h h
g(r, t)=n! — +

r r
(4.23)

h
g(r, t)=n! Bh

Br
(4.24}

Now charge neutrality requires

fG(r, t)dr=0

or, using (1.6),

no(t)= —Jg(r, t)dr .

(4.25)

(4.26)

The integral in (4.26) can be readily evaluated using (4.24)
to give

All higher-order terms vanish because each term will in-
volve a product g;; r; r; e. . . ; . . . ; . . . which is odd

a p a p a p
under the permutation of the two specified indices. After
straightforward algebra, (4.23) can be written as

n —1

and

g(r, t)= g(x)
1

L2n(t) (4.31)

dx
(4.32)

where h(x)= yf'(x)/2n. —
We can treat g„(x) analytically in the limit of small

and large x. Consider first the small-x behavior. %e
have from Ref. 11 the expansion

For n =1, 2, and 3 this result agrees with our direct cal-
culation (4.15) and appears to provide a general evalua-
tion of the integral given by (4.14).

We are now in a position to analyze our general expres-
sion for g (r, t) which we write in terms of scaling vari-
ables x=r/L (t) in the form

(4.27)
n~~""

no(t)= lim ( yf')" . —
(2n )"I ( 1+n /2 ) ~-o

f (x)=1——x (1+6(x)),a
2

(4.33)

Assuming that f (r, t} is analytic in r up to 0 (r }:

f =1—(S2/2SO)r +. . .

we easily obtain

n~[S /S ]"
no(t)=

2"m" I (1+n/2)
Comparing (4.29) with (4.13) we obtain

(4.28)

(4.29)

where, for small x, 5 is given to leading order by

1
for n =2

g(x)- x for n =3
—x lnx for n =4
x for n &4.

(4.34}

C„= 2"~"~ I (1+n/2}
(4.30) From (4.33) it is easy to extract the leading behavior for g

at small x:
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1

x lnx
for n =2

3.0

2.0

b, '(x)g(x)-
n —1

1
for n =3

X

lnx
for n =4

X

1
for n)4.

X

(4.35)

O
1.0

Oo 0.0
l-o
W

IJJ -1.0
lI-o

LIJ

LLJ —2.0
In the large-x limit, where f falls off exponentially,

f(x)-exp( —x /2)

we conclude that

(4.36) —3.0
0.0 1.0

SCALED DISTANCE X

2.0 3.0

g(x)- —x exp( —nx /2) (4.37)

which decays rapidly to zero.
g(x) can be determined from (4.32) for all x by using

our numerical determination for f(x) given in Ref. 11.
The result for n =d =2 is shown in Fig. 1. Also shown
are the numerical results of Mondello et al. ' for a com-
plex order parameter in 2D. In the large-distance re-
gime, our result agrees qualitatively with the simulation.
However, a disturbing discrepancy is observed at short
distances. While the numerical simulation gives g (x)~0
as x~O, our calculation suggests a positive divergence.
This divergence comes from the higher-order singular
terms b.(x) in the expansion off(x). For comparison, we
also plot g(x) evaluated using the form f (x)
=exp( —x /2) used in the Ohta-Jasnow-Kawasaki (OJK)
approach.

For n =d =2 one has the special case of a lower criti-
cal dimensionality. Thus the analysis for nonzero tem-
perature requires treating bound vortex pairs and spin
waves and algebraic decay of the order-parameter corre-
lation function. It seems likely that our analysis here
must be modified for n =d =2 to include the self-
consistent disordering aspects of spin waves even for

FIG. 1. Defect correlation functions. Solid squares are data
from 2D numerical simulations of a complex order paraIneter in
Ref. 18. Solid curve is calculated from the theory in this paper
using (4.32) for n =d =2. Dashed curve is from the OJK-type
approach. Abscissa for the curves is scaled so as to give a best
fit to the data at large x. Dotted line is the prediction from
(4.32) for n =d =3.

quenches to zero temperature. We intend to discuss this
special case elsewhere.

V. STRING DEFECTS, n =d —1

This case n =d —1 where the defects are strings or
vortex lines is relevant to the interesting examples of a
3D neutral superfluid (n =2, d =3), as well as the well-

known 2D scalar Ising system. The string density opera-
tor is now defined by (2.17). Note that the 5 function is

defined in the n-dimensional order parameter space while
the antisymmetric tensor is defined over permutations
[ii &i2 i„) in the d-dimensional physical space. The
string-string correlation function now reads

=E;; . , ; E . . .
~

(5(m(1))5(m(2))B; m, (1) 8; m„(1)B,. m, (2) BJ m„(2) ) (5.1)

which, as before, can be cast into the form

6;(r, t)=e, , . . . , e. . . . . A,. A, A, (s.2)

In terms of the scaled variable, the large-x behavior of
GL (x) is easy to extract:

where A," is again given by (4.19). Following an analysis
similar to the n =d case we obtain

GL (x)-exp( —nx /2) .

At short distances, since h (x ~0)=const. , we have

(s.s)

G,"(r, t)=GT(r, t)(5, —r,.r )+Gt (r, t)r, r (5.3) GL (x)-x " for x~0 . (5.6)

where Gt (r, t)=n!(h/r)" and the transverse part has the
same form as g(r, t) for n =d. In this form it is easy to
show that "charge" conservation is satisfied:

f G, (r, t)d r=O . (5.4)

Again numerical results are available for this system.
Mondello et al. ' measured a scalar string-string correla-
tion function I „(x). Unfortunately this quantity is not
simply related to the correlation function G,. - calculated
here. We cannot therefore attempt a fit to the numerical
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(5.7)

which is precisely what is found in numerical simulations.
To summarize, we have calculated, starting from some

quite reasonable physical assumptions, various defect-
defect correlation functions. These correlations satisfy
scaling in the late stages of phase ordering. The function-

results. However, it is easy to realize that the short-
distance behavior of I „is governed by that of the longi-
tudinal part of G,- . Thus we have

I „(x)-x

al form of the resulting functions depend more sensitive-
ly, particularly at short distances, on the structure of the
theory than the usual order-parameter correlation func-
tion.
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