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EfFect of randomness on surface critical phenomena
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We study surface critical phenomena of the S model having Gaussian randomness. Using the

renormalization-group 4—d expansion, we obtain surface critical exponents indicating the decay of the
correlation function, g~~'"

' and g~'" ', at the random fixed point. These exponents are evaluated for
both the ordinary and special transitions up to the second order, and the surface scaling relation

=2g~'" ' —g~~'"
' is confirmed in this random system. %'e also confirm the conformal invari-

ance of the real-space correlation function at criticality.

I. INTRODUCTION and

The effect of randomness on critical phenomena has
been a problem of great interest. Critical phenomena of
bulk magnetic systems with small Gaussian randomness
in exchange couplings have especially been studied by us-
ing a renormalization-group field theory, i.e., the so-
called a=4 —d expansion. ' lt has been pointed out
that the effect of randomness does, in fact, affect critical
phenomena for a & 0, while the pure fixed point is stable
for a &0. Here a is the specific-heat exponent of the cor-
responding system without randomness, i.e., of the pure
system. '

Introducing a surface gives rise to another problem in
critical phenomena. ' It is now well known in the pure
case that there are several universal classes according to
the value of a surface exchange coupling; the ordinary
transition which is intrinsically induced by the bulk fer-
romagnetic transition, the special transition at which
both the bulk and the surface undergo the ferromagnetic
transition simultaneously, and so forth. Renormaliza-
tion-group studies "' ' have clarified that critical
phenomena at surfaces near the ordinary or special tran-
sition are determined by the bulk fixed point. From this
point of view, it is natural to consider that critical ex-
ponents at surfaces will be modified from their pure coun-
terparts when the random fixed point is stable.

In this paper, we study the effect of randomness on sur-
face critical phenomena using the renormalization-group
field theory (a=4 dexpansion), and der—ive such surface
critical exponents. The Hamiltonian of the system reads

&=f d 'riidzI ,'[t(r)+c5(z —0)—]S(r)

+—,'[VS(r)] +go[S (r)] ], (1.1)

(fit(r)5t(r') ) =(o5(r —r') (1.2b)

with

5t(r)=t(r) —t, . (1.2c)

II. FORMULATION OF RENORMALIZATION

It is convenient to introduce a momentum representa-
tion. We use a Fourier expansion' which diagonalizes
the bilinear terms in the Hamiltonian (1.1),

We have assumed a semi-infinite geometry, and the type
of transition is classified by the surface parameter c; the
ordinary transition and the special transition occur, re-
spectively, for c & c * and for c =c*.

We organize the rest of this paper as follows. In Sec.
II, we give a formulation of renormalizing multipoint
vertex functions of the random semi-infinite system using
minimal subtraction and dimensional regularization up to
the two-loop order. We analyze the bulk fixed point, in
Sec. III, and obtain critical exponents of the random
bulk system in our formulation. In Sec IV, we calculate
the two-point correlation function in a semi-infinite
geometry at criticality and evaluate the surface critical
exponents both for the ordinary and special transitions.
Here we also refer to the surface scaling relation for ran-
dom exponents. The real-space correlation function is
explicitly obtained in Sec. V, and the conformal invari-
ance of the correlation function is discussed. Section VI
is devoted to the summary and discussions. The numeri-
cal estimate of the surface random exponents are given
there.

where r=(rii, z), S(r) is the classical n-component spin
with arbitrary length, and t(r) denotes the local tempera-
ture which is a Gaussian random variable obeying

r) =~2e' ll 'il sin(q~z+y),

where y is given by

tany=q~/c .

(2.1a)

(2.1b)

(t(r) & =to (1.2a) Expanding the spin S(r) as
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S(r}= f o(q)l(q(r),
1

&K q

we have the Hamiltonian in Fourier space

%=HO+&, +&2
with

%o= ,' f—[to+q ]o(q).o( —vq),
q

~1=-,' f 5t(q1 q2}~(qJ) o(q2}
qiq2

(2.2)

(2.3)

(2.4a)

(2.4b)

2=go f o (q1).o (q2)cr(q3) o (q4)
qiq2q3q4

X 6(q, ~, q2~, q3~, q4J )(2m. } '5

4
X gqll

i=1

where we put vq=(qll, —
qJ ) and

(2.4c)

~(q1J. 12J.&93J.&q4J. )
4 X

g. =+1,i =1-4

4 4

E1E2E3E4 g EJ' tl~ J COS P E~
j=1 j=1

8
g. =%1 i =1-4

t 7

4 4

E1E2E3E4COt g Ejq, J Sin
j=1 j=1

(2.5)

In this Fourier representation, Eqs. (1.2a) and (1.2b) are rewritten as

(5t(q„q2) ) =0 (2.6a)

and

'(5t(q1 q2)5t('q3 'q4} ~ 0o~ 9(1 J'V2J. 93J. 0 J }( ) (q111 q2ll q311 q4ll (2.6b)

with the use of the same function b, given by Eq. (2.&).

Consider an evaluation of a two-point correlation function. In a high-temperature side, one may regard 8o as a non-
perturbed Hamiltonian and set ~1=~2=0 (equivalent to setting go=go=0) as a starting approximation. Then we
identify the two-point correlation function as

'(q1 q2) ~4„4„&=( ~}' '5(qlll+q2ll}Gq ll(Ill 92l} (2.7)

with

0 1 2"
~1J. I2J )

2
(5(~1J. 72J. ) 5('Vl +q2 )]

t0+q1 2

Transforming this function into mixed space (ql, z), we have

QO QO
~ 5(e» —

e2J ) 5(~»+q2l)
dq, J sin(q, Jz, +1P, ) dq2J sin(q2JZJ+ f 2)

(2m ) QO t0+q ~+q1&

(2.8)

+q

—V, + ' ~ —
l

+to+ ~
II V 'o+&

ll
l

Qto+gll c
(2.9)

Using this function as a free propagator which is di-
agrammatically drawn with a straight line, we may per-
form a perturbational expansion with respect to &, and

When we take the random average at each order in
the expansion, in the present model the Gaussian distri-
bution with zero mean enables us to neglect every odd
power of 6t and to rewrite every even power of 6t by a
summation of products of the pairwise average (5t5t }.
This procedure is diagrammatically represented by pair-
ing all 5t insertions with dotted lines in all possible ways
as is shown in Fig. 1, which illustrates the summation of
terms appearing at the fourth order with respect to 6t.

In the case of the bulk system, Lubensky originally de-
rived a renormalizational recursion formula of t0, g0, and

go up to the two-loop order to obtain fixed points and

( ~ n.

FIG. 1. A diagram of a correlation function at fourth order
with the random iteration 5t. This term corresponds to three
second-order terms with respect to god after taking the random
average.
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bulk exponents. Because of the ambiguity in the choice
of momentum cutoff in our spatially inhomogeneous sys-
tem (see Refs. 8 —10), however, here we alternatively use
a formalism of minimal subtraction and dimensional reg-
ularization. ' Below we mainly concern the system at cri-
ticality t0=0. Let us introduce nondimensional coupling
constants

up =K gp, Wp —K gp, (2.10)

where Z& indicates the field renormalization multiplier.
From now on, as a simplified diagrammatic representa-

tion, we will just use a single solid circle for the vertex go
and a single open circle for the vertex gp, which corre-
sponds to a pair of points connected by a dotted line in
Fig. 1. Up to the two-loop order, Fig. 2 lists all the dia-
grams contributing to the bulk I'„', while those contrib-
uting to the bulk I' ' are given from Fig. 2 by inter-
changing solid and open circles. The weight for each dia-
gram is the same as that given by Lubensky for the bulk
system, and also cited in Fig. 2; the above value is for I („)
and the below value is for I ' '. Apart from these
weights, all the integrals appearing in the diagrams are

-4(n+ 8)
4

6
-8(n+ 2)

where @=4—d, d being the spatial dimensionality, and
write the renormalized bulk two-point vertex function
and bulk four-point vertex function as

I'„'(q, , u, w;K)=Z&(u, w;K, A)I' '(q, , up wp'A),

(2.11a)

I'„~(q, , u, w;K)=Z~(u, w;K, A)I'„'(q, up wp'A),

(2.11b)

I'"z(q;, u, w;K)=Z&(u, w;K, A)I' '(q; up wp'A),

(2.11c)

which can be rewritten inversely as u=u(up, wp),
w=w(up, wp). Deriving the renormalization equation
for I z

' in just the same way as the pure system, we in-
troduce the P function

P„(u,w )= K
r)K g

P (u, w)= K
Bw

BK g

(2.13)

The fixed point (u", w") is determined from putting
P„(u*,w*)=P (u', w*)=0. Then four fixed points are
identified: the random fixed point (u'%0, w'%0), the
Gaussian fixed point (u'=w'=0), the pure fixed point
(u "%0, co'=0), and the unphysical fixed point (u'=0,
w'%0).

III. CALCULATION OF FIXED POINTS
AND BULK 0

All the diagrams contributing to the bulk two-point
vertex function I' ' up to two loops are given by Figs.
3(a)—3(c). The renormalization of coupling constants
does not affect I' ' at this order and we may simply re-
place uo and wo by u and w. Therefore, we only need the
renormalization of the wave function here. Let us write
the renormalization factor as

the same as those appearing already in the pure system
and given, respectively, by I((), I (g), and I4(g) in
Amit's book see Chaps. 7—9.

The renormalization of the coupling constants is deter-
mined so as to subtract every pole of I'„z and I '

z at
each order in u and m. We generally write the relation
between the renormalized coupling constants and the
bare coupling constants up to second order as

up =u +u(a, u +a2W)+u(asu +a4uw+a5W )

(2.12a)

wp =w +w(d, w +d2u )+w(dsw +d4wu +d5u )

(2.12b)

Z&=1+b&u +b2uw+b3N (3.1)

2
16(n +6n+20)

5
-12(n+8)
-24(n+2)

9
48(n+2)

The relevant integrals appearing in the two-point vertex
are all expressed by means of E,'~k& „which is given by
Eq. (9-38) in Amit's book. ' Note that the notation u/4!
in his book corresponds to our u since we are using the
semi-infinite version of the Hamiltonian introduced by
Lubensky. Then we straightforwardly obtain

4(n+2)
b

n +2 1
(3.2)

64(5n+22)
22

-96(n+5)
-96(n+2)

42
192(n+2)

FIG. 2. The diagrams of the bulk four-point vertex contrib-
uting to the second loop. Solid and open circles correspond to
the vertex go and the vertex go, respectively.

Now that we have determined the renormalization factor
(3.1) of the wave function let us turn our attention to the
four-point vertex. Also, all the relevant integrals appear-
ing in the four-point vertex are J, and J4, given by Eqs.
(9-37) and (9-39) in Amit's book. ' Thus, we obtain
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e 1+ 25n —248n +64 +O( 3) (3 g )
16(n —1) 128(n —1)

-32(0+2) 8{n+2) e 105n —364n +992n —256
4 n—+ E'

8(n —1) 128(n —1)~
FIG. 3. The diagrams appearing in the bulk two-point func-

tion. Solid and open circles correspond to the vertex go and the
vertex go, respectively.

4(n+8) 6 4 8(n+2)a = a =, d =, d1
E

2
E

1 E' 2
—

E

(3.3)

+O(e'), (3.8b)

and the unphysical fixed point (W*AO and u *=0) be-
sides the Gaussian fixed point (co*= u *=0). So far we
have assumed n) 1. In the case of the Ising system
(n =1), the standard expansion with respect to e breaks
down and an alternative expansion in terms of &e is re-
quired. ' The corresponding random fixed point for the
Ising system is given by

6(n+8) 24(3n+14) 16 21
2 g F2 4g

12(5n +28) 2( 1 1n+ 58)a4-
E2 E

72(n+2) 22(n+2)
~2

30 41 48(n+2)(n+4) 40(n+2)
2 4g 2

(3.4)

(3.5)

(3.6)

u ' =&e/318+ 0(e),
w* =&6@/53+0(e)

(3.9a)

(3.9b)

(3.10)
&o &o

up to the order &e.
Now that the fixed point is determined, next we evalu-

ate the bulk critical exponent i) from the relation [Eqs.
(8-17) and (8-45) of Amit' ]

t) inZ&(u", w*)
7)=1' (El, w )=K

BK

+ ' "+' ' 2+O( s), '=0,
4(n+8) 4(n+g)'

the random fixed point (n %1)

(3.7)

Then, solving P„(u', w*)=P (u*,w')=0, we find the
pure fixed point

il= —2e(b, u ' + b2u 'w'+b&w* )

=8(n+2)u* —2(n+2)u 'w'+
—,
'w'

and, in turn,

(3.1 1)

From Eqs. (2.16) and (3.2), and taking Eq. (2.10) into ac-
count, we find

n(5n —8) 2 265n —1588n'+2904n +1216n —512 3~O 4E' +
I
random . 256( n —1 ) 1024( n —1 )

—+e+O(e ) n =1, (3.12)

at the random fixed point and the usual

(n +2) 6(3n + 14) 1 2 47l= 1+ ——e e+Oe
2(n +8) (n+8) 4

(3.13)

at the pure fixed point. The e term in Eq. (3.12) for n ) 1

is our result for the bulk exponent, although the other re-
sults are the same as the previous ones. '

(c)

IV. RENORMALIZATION OF TWO-POINT FUNCTION
IN THE SEMI-INFINITE GEOMETRY

According to Reeve and Guttmann, we treat the two-
point correlation function G(qi, q2). Diagrammatically,
this function is given by the sum of Figs. 4(a) —4(d). Here
note that Fig. 4. collects only diagrams with different to-
pologies and all the (four-point) vertices should be either

FIG. 4. The diagrams with different topologies, {a)—{d), ap-
pearing in the two-point correlation fUnction in the semi-infinite
geometry. All the diagrams are shown in Fig. 5.
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solid or open circles; all the relevant diagrams are shown

explicitly in Fig. 5. The diagrams consisting only of solid
circles are the same as those for a pure system and the
other diagrams are all new. The corresponding weights
are written together in the same figure. It has been
demonstrated ' that, at the ordinary transition, the value

of c moves toward c=+ oo under the renormalization-

group transformation, while the special transition moves
from c=O associated with mean-field theory to a non-

trivial fixed point, c=c'. Therefore, we start from two
cases: e =+ 00 (the ordinary transition) and c =0 (the
special transition).

From Eq. (2.6), we find that

-4(n+2)

16(n+2)

-8(n+2)

32(n+2)

-8(n+2)

16(n+2)

-8(n+2)

4

~(q» q2l q3l q4l) 4 Q ~1 2~3~4~ X ejqJl
e. =+1 j=1

(4.1)

FIG. 5. All the diagrams relevant to the two-point correla-
tion function in a semi-infinite geometry. Solid and open circles
correspond to the vertex gp and the vertex gp, respectively.

for the ordinary transition and

~(q1J. q2i~q3l~q4l )

4

sgn(q1J. q2J. q3J.q4J. ) g 8 g e q l''
e,. =+1 j=1

(4.2)

for the special transition. The integrals appearing in
Figs. 4(a) —4(d) are given in Eqs. (4.1)—(4.4) and Eqs.
(5.1)—(5.4) of Reeve and Guttmann, which are written as
A —2) here. Then we have

G(q1, q2) =G (q1 q2)+ [ 4(n +2—)up+ wp]A+ [32(n +2)up —8(n+2)upwp+wp]$

+ [16(n +2) up
—8(n+2)upwp+ wp]C + [16(n+2) u 0

—8(n+2)upwp+ wp ]2)

1=G (q1, q2)+[ —4(n+2)u+w]+ —[ —16(n+2)(n+8)u +32(n+2)uw —4w ]A

+ [32(n+2)u —8(n+2)uw+w ]8+[16(n+2) u —8(n+2)uw+w ]C

+[16(n+2) u —8(n+2)uw+w ]2), (4.3)

(4.4)

The bulk g is determined by comparing the local term in
and the zeroth-order term, and we rederive Eq. (3.11).

Next we show that, as a result of renormalization of cou-
pling constants, all the poles in e appearing in the nonlo-
cal term proportional to 5' in A —2) exactly cancels out
mutually. To see this we first notice that the pole in e in
these nonlocal terms appears just in the form

, , (I~+I+I~ I) . (4.5)

The coefficient of this function in A —2) is proportional to

where we used Eq. (2.12) for the renormalization of cou-
pling constants.

To present explicitly the relevant integrals A —S is
relegated to Appendix A. Here one should note that the
renormalization of the correlation function with respect
to Z& of Eq. (2.16), G (q, ,q2)=Z& 'G(q, , q2), has an
effect of just removing the pole of the local term propor-
tional to 5 in S;we write such renormalized S as S:

A: 4(n+2)(n+8)u —8(n+2)uw+w

2P: 24(n+—2)u +6(n+2)uw —
—,'w

C: 4(n+—2) u +2(n+2)uw —
—,'w

0,

(4.6a)

(4.6b)

(4.6c)

(4.6d)

and therefore the summation of all these terms gives zero.
Therefore, we conclude that all the renormalization pro-
cedures done in the bulk random system are enough for
the random semi-infinite system also.

In order to evaluate the surface critical exponents, we
evaluate two functions

Q11(q~~)=G (z1,z2)l p,

Q1 q~) g q(t
I 2)lz -0

z2

(4.7a)

(4.7b)

One can determine the exponents ply
and g~ from the

1+"II 2+g
asymptotic behavior q „1nQ „(q,

~

) and q
~~

qadi

1n the hmtt q
By using the relations
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lo+ I

—lrr I =sgn(q»q») mtn(lq»l, lq»I), (4.8a)

l~+ I+ lr I =sgn(q1, q„)max(lq»l, Iq„l), (4.8b)

we evaluate the contribution of the relevant terms to
Q»(qll) and Q, (qll), to give the values listed in Table I.
Since we needed only the logarithmic correction in deriv-
ing the result given in this table, we first took the loga-
rithmic derivative with respect to A and got the data. In
order to derive r)1 from Q, (qll ), we used the relation

r)ll =2+ [ —4(n +2)u *+w*] 1+—

+8(n +2)(n +9)u * —18(n +2)u 'w*

+ —,
'w* +O(e ),

1) =1+[
—4(n +2)u *+w*] —+—

2 4

(4.10a)

g sinq1z ~ J~ ™dzsinq1z ~
0

(4.9) +4(n +2)(n + 10)u * —10(n +2)u 'w'

In the explicit integration in (4.9), one should introduce a
cutoff function like exp[ —zA 1] in the integrand.

In the following, we separate the argument for the or-
dinary transition and the special transition to avoid the
confusion.

(1) The ordinary transition. First we consider the case
of the ordinary transition. From Table I (top) and the
calculation given in Appendix B 1, we have

+—'w* +O(e ) .
4

(4.10b)

n +2 (n+2)(17n+76) z

n+8 2(n+8)'
E

(4.11a)

For the pure fixed point given by (3.7), we readily obtain

TABLE I. The short-distance behaviors of terms appearing in the correlation function in mixed space. All the relevant terms are

listed in this table both for the ordinary transition (top) and for the special transition (bottom) ~ The first column corresponds to the

terms in Fourier space.

Function X q &q2

qI lnqIA 5

(i~+I-l~ I»

(l~ l»l~ I

—l~ l»l~-I)8'

(l~il —l~ l)»[qii+(I~+I+ I~- I)']A '8'

(l~ I

—l~ )»[qii+(lo+I —ltr I&']A '8'

qIItan

2 2c7+ (T
I qII

lo I+lo I

Ordinary transition
Contribution to Q»(qll)/qll

—1
—2 lnqll A

—
[
—1+ ln2+lnqllA ']

( lnq A 1)

—[
—2+ 4 1n2+ lnq

ll
A '

]lnq
ll
A

—[
—2+21n2+lnqllA ] "q

—[21n2+ 1nqll A ']lnq
ll
A

2—
1nqII A

Contribution toQ, (qll )qll

2 lnqII A

—[1—2 1n2 —1nq
Il
A

1 —I

[21n2+ 1nqllA '] lllqllA

—[2—41n2 —lnqllA ] nqllA

—[1—3 1n2 —1nqllA ']lnqllA

1

——1nq
II
A

1

Function X q 2&q 22

q
2 lnq 2 A 2Q

(l~ I+I~ I)8'

( I
o i I» I o+ —

I

o'- I»l o'
l

)5'

(I~+I+ l~ l)»[qii+(I~+I+ l~ I)']A '8'

(l~+ + l~ l)»[qii+il~+ I

—I~ I)']A '6'

Special transition
Contribution to Q„(all)/qll

1

2 1nqIIA
——[ln2+ 1nq

ll
A '

]

——( qllA
')'

——
[in2+ lnq „A-']lnq

——[21n2+1nqliA ']1nq

Contribution to Q~(qll)qll

1

nq

nq

[2 ln2 —
lnqll A ' ]lnq

ll
A

——
(1nqII A ')

I~+I+I~ I

2 20+ 0 ——1n21nq A
2 —I

II
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ure P1 +2
2(n+ 8}

(n +2)(4n +167) 2+O 3

(n+8)
(4.11b)

which is the same as the one obtained earlier by Diehl
and Dietrich, Reeve and Guttrnann, and Ohno and Ok-
abe. ' Next, inserting the random fixed point (3.8) into
(4.10), we have

3n n (135n —708n +96) 3+ 3
E'

random, 8(n 1 } 1024(n 1 )3
Il

2—3/6e/53+0(e), n =1, (4.12a)

3n n (115n 65—6n +64) 2+ O 3

16(n —1) 2048(n —1)
1 —&3e/106+0(e), n =1 . (4.12b)

Now it is easy to see that the scaling relation 7)ll= 1/v proposed by Bray and Moore' [in the present case this relation
should read as rltl'" ' =1/v"'" ', and v"" ' is given in Eq. (6.2) in Sec. VI] is also violated at the random fixed point,
while the surface scaling relation "' g"""' =Zg"" ' —q"" ' holds up to this order.

(2) The special transition. The argument for the special transition is the same as the ordinary transition. From Table
I (bottom) and Appendix B2, we have

gll [ 4 n+2 u +w*] 1+—+8(n+2)(n+21)u —42(n+2)u w +—'w +O(~ ), (4.13a)

rl~=[ 4(n—+2)u'+w*] —+— +4(n+2)(n+22)u —22(n+2)u "w'+ —", w" +O(e ) .1
(4.13b)

For the pure fixed point given by (3.7), we readily obtain

pure
'Ix

n +2 5(n+2)(n —4) 3 3

n+8 2(n+S)'
n +2 (n +2)(n —7) 3+OE'

2(n+8) (n+S)'

(4.14a)

(4.14b)

which were already obtained earlier. ' ' For the random fixed point (3.8), we have
T

3n 3n(35n +28n+96) 26'+q"'"" = ~ 8(n —1) 1O24(n —1)'
II —3/6e/53+ O(s), n =1, (4.15a)

3n n(125n +32n+32) 2E'

2O4S(n —1)'
3/3e/106+0(E), n =—1 . (4.15b)

~e also confirmed the surface scaling relation q =2g~ —
g~ for the special transition.

V. THE REAL-SPACE CORRELATION FUNCTION: CONFORMAL INVARIANCE

&t has been demonstrated that the correlation function at criticality generally has the conformal invariance' '" in
«al space. Figure 6 illustrates the geometry specifying the two-point vertex or correlation function between two points
r~ =(r~ll, z& ) and r&=(r, ll, zz). As a consequence of the conformal invariance, the two-point correlation (or vertex) func-
tion depends only on the real distance r=~r& —

rz~ and the image distance r=[p +(z&+zz) ]' with p=lr&ll r2lll.
Now we show that this statement actually holds also for the random system.

The mean-field propagator in mixed space is given by
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G (, ')=v' f"," J„(k )J„(k ')
q +k

&zz'I (q z)I(.„(q~(z'), for z (z',
zz'E„(q~(z)I (q~)z'), for z )z', (5.1)

where (Mo= —,
' for the ordinary transition (c = ~ ) and po= —

—,
' for the special transition (c =0); J, I, and K denote the

(modified) Bessel functions. ' Transforming this function into real space by using an integral formula given in p. 686
(6.578.11) of Ref. 21, we get

Io, 2 ~zz (d —1)/2J(d )/ (q—lip)I„(q((
(2m) p 0 0

g(d —2)/2(v )
i )1

—d/2 —[(d —2)/2]ni
)d/2

ZZ e
(U2 1)(d —2)/4

where we put p =
~ r((

—r
I(

~
and

p +z +z'v=
2zz'

(5.2)

(5.3)

By performing the second-order calculation along the same line as in the pure case, ' we finally obtain a complete
form of the correlation function in real space as

G (Z, Z )=(ZZ )( ")/ [f( )(U )+f ( )(U )] (5.4)

"'(u)=
&2m

d 1

e (d —2)m/2 P 1/2

( v
2

1 )(d —2)/4

f' '( )v= 1g2' '(u) f ' " f 'dvy(u —1) ' f ' f 'duy (U —1)
oo ~ y

with

y =1, g' '(v)=1/(2m. ) (v —1) for the ordinary transition,

y =u, g' '(u) =u/(2~) (u —1) for the special transition .

(5.5)

(5.6)

(5.7)

This correlation function has the same form as in the
pure system and satisfies the conformal invariance: It is
only the function of real distance r and image distance r,
in other words, it is only the function of zz' and v. One
can very easily obtain the real-space correlation function
at the random fixed point if one inserts the random values
for the exponents 2) and (M (strictly speaking, we should
use instead the notation g"" 'I and p"" ', but here we
omit all these superscripts); the exponent (u is related to
the usual surface critical exponent 21(( as )M=(2t(~

—1)/2
both for the ordinary transition and for the special transi-
tion. Exactly the same argument also holds in the case of
n = 1 where we need the expansion with respect to &e;
since the exponent

g~~
has been obtained only to the first

order in &e in this paper, the explicit form of the rea1-
space correlation function, Eq. (5.5), might be thought of
as O(&e). However, if this exponent 2)~~

could be ob-
tained up to the second order in &e as well as the ex-
ponent 2I [see Eq. (3.14)], the exact same form of the
correlation function, Eq. (5.5), should also be obtained in
this case.

VI. SUMMARY AND DISCUSSIONS

In this paper we have studied the critical phenomena
of the S model having a Gaussian randomness in the

Zp

FIG. 6. The illustration of the conformal invariance. The
two-point functions depend only on the real distance r and the
image distance r, hence, is the function of only zz' and U.
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semi-infinite geometry. The renormalization-group equa-
tion using minimal subtraction and dimensional regulari-
zation has led us to the surface decay exponents in the e
expansion. The random surface exponents are given in
(4.12) and (4.15) for the ordinary and special transitions,
respectively. We have confirmed the surface scaling rela-
ion gr» &m 2&r»do~ &ra Om and the conformal invari-

ance of the two-point correlation function for both transi-
tions.

Other surface critical exponents such as the suscepti-
bility exponents y", " ' and y", &"

' or the magnetization
exponent PP" ', which are rather relevant in real experi-
ments, are obtained from the surface scaling relations '

r i =&(2 rii»—

(6.1)

Exponent
surface

Pure
Ordinary Special

Random
Ordinary Special

Ill

Qj

$1
$11
Pi

1.60
0.81
0.70

—0.36
0.80

—0.30
—0.14

1.35
0.82
0.23

1.66
0.83
0.68

—0.38
0.77

—0.34
—0.17

1.26
0.78
0.17

TABLE II. Several surface and bulk critical exponents for
the pure Ising system and for the random Ising system in three
dimensions, which are obtained from the direct use of the
a=4 —d expansion up to the first order (for the surface) and
second order (for the bulk).

P, =—(d —2+r)~, )
2

where we omitted the suSx random because these rela-
tions also hold for the pure system. For the random sys-
tem, the bulk correlation exponent should read as

Bulk Pure

0.032
1.24
0.33

Random

—0.009
1.17
0.29

1 + 3n + n(127n 572—n —32) J+O 36'+
v~~«o~= . 2 32(n —1) 4096(n —1)3

,'+ ,'&—6e—/53+0(e), n =1 . (6.2)

The comparison of pure and random exponents are listed
in Table II for the Ising system in three dimensions,
where the random fixed point is expected to be stable be-
cause a&0. The bulk exponents are also given in Table
II for comparison. The effect of randomness is rather
small, but can be observable in experiments.

A short comment will be given on the formulation of
treating randomness. We have obtained all the results
without a replica trick in the present study. The same re-
sult should, in principle, be derived from the replica
theory.

Finally, we mention the effect of surface randomness in
the present result. As far as the bulk upper critical di-
mension is d, & 3, which is expected in the usual case, this
effect is irrelevant as Diehl and Nusser analyzed recent-

I

ly. However, they showed that, at the bulk tricritical
point where d, =3, the effect of surface randomness
indeed affects the pure surface critical behavior. In this
respect, the extension of the present work to the case at
the bulk tricritical point may be the next problem.
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APPENDIX A

The integrals A —2) are evaluated as (the upper sign corresponds to the ordinary transition and the lower sign corre-
sponds to the special transition)

qgqpA = — 1+—(1—eln2)[io+ i' '+ lo i' ']5'+O(e ),

12I ',I,'(q, —j +V )'

1+—(1—e»2) —+—[I~+I '+l~
I

']&'3' l 1

2 2 6 2

I o + I+ I
o.

+ (f~ f+[~ () —(+1—1)+
2 + 2

tan ' ~, '
~

+ —,
' ln[(lo'+I+ lo I) +q&]&

CT + (
+ CT
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2

1+—' (1—12)'—[I I' '+I I' ']~'+

q~qg&= (lo+I+ lo I) +2+»[q~+(lo+I+lo I)']—»[qf+(lo+I —lo I)']1 2

I~+I+I~ I+2
q&

q,
1~++1~ I

(AI)

In the case of the ordinary transition (upper sign), these formulas correspond to Eqs. (4.1)—(4.4) of Reeve and
Guttmann with several corrections in 2): the third term is missing in Eq. (4.4) of Reeve and Guttmann and the fourth
term has a different sign. Furthermore, in the case of the special transition (lower sign), our Eqs. (4.1)—(4.4) correspond
to Eqs. (5.1)—(5.4) of Reeve and Guttmann, in which several corrections are also necessary: the last term both in% and
in C has a different sign. The other formulas are all the same.

APPENDIX B

We give the detailed calculation of gll and g~ in this appendix.

From Table I (top) we derive

1. The ordinary transition

~1&(qll '~qll
—1 —[ —4( n+2)u +w ]( —1+ ln2+ lnqllA

+ lnqllA '[ —e[ —4(n+2)u+w]( —,
' —ln2) —

[
—16(n+2)(n+8)u +32(n+2)uw —4w ](—,

' —ln2)

+[32(n+2)u —8(n+2)uw+w ]( ——", +61n2)

+[16(n+2) u —8(n+2)uw+w ] (ln2)+irrelevant terms+0(e )I .

&~ qll)qll =1+[—4(n+2)u+w]( —
—,'+ ln2+ —,

' ln

+ lnqllA '[e[ 4(n+—2)u+w]( —,
' —ln2)+[ —16(n+2)(n+8)u +32(n+2)uw —4w ](—,

' —ln2)

+[32(n+2)u —8(n+2)uw+w ](—,
' —61n2)

+[16(n+2) u —8(n+2)uw+w ](—,
' ——', ln2)+irrelevant terms+0(e )} .

(8 la)

(Bib)

In this result at second order the square of the first-order term divided by 2f is also included. In order to estimate gll

and g~, one should subtract that squared term; doing this explicitly, one gets

7)ll
=2+ [ —4(n +2)u +w ] 1+— e ln2—

+u [8(n+2)(n+9) —16(n+2)(n+8) ln2]+[8(n+2)u*w* —w* ]( ——94+41n2)+O(e ), (82a)

g =1+[ 4(n+2)—u*+w*] —+ ——eln2
1 e
2 4

+u [4(n+2)(n+10) —16(n+2)(n+8) ln2]+[8(n+2)u*w* —w* ]( —
—,'+41n2)+O(e ) . (82b)

Now we write the coefficient of ln2 as L: The coefficients for Eqs. (82a) and (82b) are the same and read

L= —e[ —4(n+2)u*+w*] —16(n+2)(n+8)u' +32(n+2)u*w* —4w* +O(e ) . (83)

It is easy to see at the pure and random fixed points given, respectively, by (3.7) and (3.8) that this value L vanishes ex-

actly up to order e . Therefore, we derive Eqs. (4.10a) and (4.10b) in the text.

2. The special transition

The argument for the special transition is the same as the ordinary transition. From Table I (bottom) in this case we

derive
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Q»(q~~ /q~t =1+[—4(n+2)u+w]( ln2+ lnq1A

+ lnqlA '[e[ —4(n+2)u+w]( —,
' —ln2)+[ —16(n+2)(n+8)u +32(n+2)uw —4w ](—,

' —ln2)

+[32(n+2)u —8(n+2)uw+w ](—", —61n2)

+[16(n+2) u —8(n+2)uw+w ](1—n2)+irrelevant terms+0(e )] .

Q, (q1 )q 1

= 1+[ —4( n +2 )u +w ]—,
' lnq1A

+ 1nq1A '[e[—4(n+2)u+w] —,'+[—16(n+2)(n+8)u +32(n+2)uw —4w ]—,
'

+ [32(n +2)u —8(n +2)uw+ w ]—",

+[16(n+2) u —8(n+2)uw+w ]—,'+irrelevant terms+0(e )] .

Subtracting the (squared) first-order term as in the ordinary transition, one gets

(B4a)

(B4b)

ri =[ 4(n—+2)u "+w'] 1+——eln2
E'

ll 2

+u'2[8(n+2)(n+21) —16(n+2)(n+8) ln2]+[8(n+2)u'w' —w* ](——", +41n2)+O(e ) (B5)

and Eq. (4.13b) for rii. Again, the coefficient of ln2 in Eq. (B5) is the same as L defined in (B3) and, at pure and random

fixed points, this L vanishes exactly up to order e . Consequently, Eq. (B5) gives Eq. (4.13a) in the text.
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