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Two-mode electrodynamics of superconductors in the mixed state
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The surface impedance of type-II superconductors in the mixed state has been studied, taking into

account the vortex elasticity and nonlocality (long-range interaction of vortices). An electromagnetic

wave penetrates into a superconductor as a superposition of two exponentially decaying modes with

different penetration lengths, in contrast with one mode in a normal conductor or in a superconductor

in the Meissner state. The second mode is an elastic mode of the vortex array; it is crucial for incor-

poration of vortex elasticity and surface pinning into electrodynamics.

The electrodynamics of the type-II superconductor in

the mixed state is governed by the dynamics of vortices.
Elastic properties of vortex lines are of great interest since

they are fingerprints of different phases of the vortex array
(lattice, fluid, glass, and others) and are now intensively

discussed for high-T, superconductors. ' 4 The effect of
vortex elasticity on the surface impedance was studied by
Gorkov and Kopnin for a superconductor in the resistive

state, when the bulk pinning is not important. They
showed that at low frequencies the ac response and the
penetration depth are the same as those of the normal

conductor possessing resistance equal to the flux-flow

resistance pf. In order to determine the differential mag-

netic permeability p dB/dH&1 of the mixed state,
which takes into account the mixed-state diamagnetism
due to circular currents in the vortex-array cell, Gorkov

and Kopnins used the Labusch elastic moduli of the vor-

tex lattice. However, at high frequencies, when the

penetration depth of the wave (the skin-layer width) is

smaller than the penetration depth ~ for the static mag-

netic field, this approach becomes invalid. In this case one

should take into account long-range interaction between

vortices with ~, being its cutoff radius. This nonlocal effect
manifests itself in spatial dispersion of the elastic moduli

which was discussed by Brandt. Nonlocality cancels the

proportionality relation between the average magnetic

field and the vortex density in a nonuniformly deformed

vortex structure. The wave penetration depth becomes

close to the static penetration depth ~ and the ac response

is governed by the vortex motion in this layer. The theory

of the ac response for this case was developed by Gittle-
man and Rosenblump (see also Ref. 10) for the Abrikosov

vortices and by Sonin and Tagantsev" for vortices in the

Josephson-junction network (the Josephson medium).

Recently a general analysis of the electromagnetic wave

penetration into a superconductor has been undertaken in-

corporating the effects of image vortices, bulk pinning,

and vortex creep. tz' All theories of the ac response

presented in the above-mentioned papers assume that the
incident electromagnetic wave generates inside the super-

conductor only one exponentially decaying mode. Howev-

er, the theory that considers simultaneously the effect of
the vortex elasticity and that of nonlocal interaction, re-

quires a model of the ac response that invokes two modes

of the collective field-vortex-lattice motion inside the su-

perconductor. ' The second mode is connected with the
additional degree of freedom related to the elasticity of
vortices.

We have already demonstrated' that the effect of elas-

ticity influences the frequency dependence of the surface
impedance at high frequencies. In the present paper we

present the two-mode electrodynamics approach to the ac
response in the low-frequency limit. We show that the ad-

ditional elastic mode is essential for the derivation of the

correct electrodynamical relations that take into account
diamagnetism of the mixed state and for the analysis of
the surface pinning which is able to strongly suppress the

absorption of the electromagnetic wave in the bulk super-

conductor. The surface impedance has been analyzed, but

the developed approach is relevant also for other experi-

ments related to electrodynamics, such as ultrasound

propagation or vibrating reeds.
Let us consider a type-II superconductor placed in a dc

external magnetic field applied along the z axis normal to

the superconductor surface. Assume that the intervortex

distance a satisfies the condition k»a»r„where ~

stands for the London penetration length and r, for the

vortex core radius. We neglect the normal current j„of
quasiparticles as being small in respect to the supercurrent

j„i.e., j =j,. Then the macroscopic electrodynamics of
the superconductor may be described by the London equa-

tion together with the equation of vortex motion and the

Maxwell equation. All these equations are averaged over

the vortex-array cell:
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Here Bo is the magnetic induction inside the supercon-
ductor, u is the vortex displacement, h is the ac magnetic
field in the x-y plane, q is the friction coefficient for the
vortex motion, pp is the magnetic flux quantum, and

Bp Bp(Hp —Bp)
C44 =&44 = Bol~pl

4x 4z

is the renormalized tilt modulus. Observe, that C~ is
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different from the Labuschs tilt modulus C44 BpHp/4gg,

Hp Bp —4grMp. Using the known dependence of Bp on

Ho, the explicit expression for the renormalized tilt
modulus is

BpH, g In(gg/r, )
C44

4gr In(Z/r, ) ' (s)

ipg kz 2 1 +Pgc
ggga 1+k A, pga

where

PpC44 gigpH, g ill(a/r, ) ppBp

4ggg'rt ln(X/r, ) '
4grg'rt

' (7)

Neglecting the nonlocal effect described by the term
in the left-hand side of Eq. (1),one obtains the one-

mode theory of Gorkov and Kopnin. s Within this theory
the ac magnetic field h is equal to the right-hand side of
Eq. (1) representing the variation of the magnetic-flux
density due to the tilt du/dz of the vortex lines. Whereas
the theories that take into account the nonlocal effect, but
neglect the vortex elasticity in the final expressions for the
surface impedance, 9 '3 correspond to C44 0 in Eq. (2)
and to pg, 0 in Eq. (7). In both cases the dispersion
equation (7) is linear with respect to kz. In general the
dispersion equation is quadratic with respect to k and has
the following two solutions:
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The surface impedance of any conductor is given by the
well-known expression Z (E,/H, ) where E, and Hg are
the tangential components of the electric and magnetic
field at the surface. In the framework of our two-mode
model we take into account the contributions of both
modes to the fields. Then using the Maxwell equation
Bh/8t —ccurlE, we write

Eg+Ez pg hJ kgZ~ 1+
h~+h2 ck~ h~ k2

h2

h)
(9)

where the subscripts 1 and 2 correspond to the contribu-
tions of two modes to the tangential components of the
fields at the surface, the mode 1 referring to the long-
wavelength mode. Since there are two components of the
ac fields near the superconductor surface, a new boundary
condition should be added to the usual electrodynamical
conditions:

U +bu 0,
Z

(io)

where b is the surface-pinning parameter. Without pin-

where H, ~ is the lower critical field.
The eigenmodes of the set of Eqs. (1)-(3) may be

found in the form u cg hex: jcz:exp(ikz ipgt—) where the
wave number k and the frequency pg fulfill the following
dispersion equation:

1 ipg
k~

1 pga+ age

g2 Ng+ Nc g2 N
(i3)

Then the surface impedance and the surface resistance are
' 1/2

(2grpf p pg) '"
C

—l NPPf
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where

Bdp pga
Pf~ P~ (is)

rt pga +pg~ 4grC44

stand for the flux-flow resistance and the differential mag-
netic permeability, respectively. The expressions for Z
and p, follow directly from electrodynamics of the con-
tinuous medium' with the magnetic permeability tg and
the resistance pf.

Let us compare the predictions of the two-mode theory
to those of the one-mode theory of Gorkov and Kopnin
which is expected to be valid in the low-frequency limit.
One obtains the one-mode theory neglecting the second-
mode amplitude hz in Eq. (9). Then the surface im-
pedance in the low-frequency limit is

&/2
l NPf

ckg 4ggp

This expression differs from the one derived within the
two-mode theory, as well as from electrodynamics of the
continuous media by the factor tg.

The reason why the one-mode theory diverges from
electrodynamics of continuous media is following. The
one-mode theory takes into account the diamagnetic prop-
erties (tg &1) of the bulk, but it neglects the surface
currents responsible for the jump of the tangential com-
ponent of the induction B (the averaged magnetic field).
Indeed, in electrodynamics' the tangential component of
the thermodynamical magnetic field H B/tg is continu-
ous, whereas that of B is not. In the low-frequency limit
of the two-mode theory the penetration depth of the addi-

ning b 0, while in the limit of the strong pinning b
When the surface pinning is absent the boundary condi-
tion 8u/8z 0 follows directly from the analysis of the
fields generated by vortices and their images near the sur-
face made recently in Refs. 12 and 13.

Using Eq. (1) one finds that the condition Eq. (10) im-
plies the following ratio of the amplitudes of the modes at
the surface:

h2 (I+A, kg )(1+b/ikg)
(I+X k))(I+b/ikz)

Equations (8), (9), and (11) yield a solution of the
problem in the framework of the two-mode electrodynam-
ics, e.g., the results of Ref. 14 can be obtained from these
expressions. When the surface pinning is weak, b « (kg(,
from (8), (9), and (11)we have

Z g pgg 1 ( —pg,—/i pg)
' ' pga—/i pg

(i2)
c [[I—( pg, /ip—g) ' ] pga/g'—pgJ

'

In the low-frequency limit, pg« pg„ the wave numbers of
the two modes are
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tional mode is much .mailer than the penetration depth of
the basic electrodyn;comical mode, kt«k2. Regardless
that there is only one mode in the bulk, the short-
wavelength elastic m&xie remains important, since it gen-
erates the currents re:~ulting in the jump of the tangential
component of B at the surface. Indeed, for k~&&k2 one
can neglect the term in the first set of parentheses in Eq.
(9) and obtain the following expression for the surface im-
pedance:

Z P
cki

' (i7)

known from electrodynamics, where Jt-ht/(It~+hz) is
given by Eq. (15).

We have found an i.nteresting manifestation of the addi-
tional mode in the case of strong surface pinning
(b ~). In this case from Eqs. (8), (9), and (11)we ob-
tain

Z geo%, 1+
c

Ng

tu, [1+(—iro/ro, ) ' ]

' l/2

In the low-frequency limit ra « co, the surface resistance is

4tr (2xpfco'p) ' '
p, ReZ

c cc
(i9)

Comparing this result to that obtained for the weak
surface-pinning limit [see Eq. (14)], we note that the sur-
face pinning drasticalIly infiuences the absorption of the
incident electromagnetic wave: The frequency depen-
dence of the surface resistance changes from ceto' 2 to
tx:tu3l2 and the absorption is now ca,/to times smaller in

respect to the case of weak surface pinning. This behavior
can be explained as follows.

In the low-frequency regime the absorption is mostly
due to the long-wavelength mode with the penetration
depth

~
k t

' ). If the vortex ends are free to move along the
surface, then the energy of the incident wave goes mainly
into this mode. The leak of the energy into the second
mode is insignificant, therefore its role is of a minor im-
portance. However, the strong surface pinning changes
dramatically the situation. Now the wave energy goes
mainly to the short-wavelength mode, since h &/hz cc Jco in
the low-frequency limit. So the share of the long-
wavelength mode responsible for the dissipation becomes

small. It causes a strong decrease of the energy absorp-
tion, i.e., a decrease of the surface resistance of the super-
conductor. Thus, the surface pinning drastically
inAuences the energy dissipation in the bulk of the super-
conductor. Let us underline that this phenomenon cannot
be described in the terms of the one-mode approach. Note
also that in the limit of co « to, « mtt, Eq. (18) predicts the
magnetic-6eld dependence &Bo for the surface im-
pedance or the effective penetration depth, similar to that
observed by Hebard et al. '6 who explained their result by
the bulk pinning. In order to prove whether the bulk or
surface pinning is responsible for observed dependence,
one may study the frequency dependence of the surface
resistance p, : In the low-frequency limit it is expected to
be cL to2 for the bulk pinning and CX: co l for the surface
pinning.

Our continuous-medium approach is valid for the
penetration depths 2tr/~kt~ and 2tr/~k2~ exceeding the in-
tervortex distance a = (po/Bo) 'l . This is equivalent to
the condition tc1n (a/r, )» max(l, coJtott, co/catt ). It means
that the external magnetic field cannot be close to the
lower critical field H, t (the condition of the dense lattice
k/a » 1) or to the upper critical field H, 2 [ trl n(a /r, ) » 1].
When the inequality 2tr/~k2~ && a is broken, the two-mode
theory fails to describe variation of the magnetic field and
the vortex displacements in the boundary layer of the
width a where the jump of the tangential component of
the magnetic induction B occurs. However, even in this
case one can use the electrodynamical results in the low-

frequency limit co « co, given by Eqs. (14) and (15).
In conclusion, the two-mode electrodynamics of the

mixed state incorporating the nonlocal effects due to
long-range intervortex interaction and the effects of the
vortex-array elasticity has been developed. It has been
shown that in order to obtain the correct macroscopic
electrodynamics of superconductors in the mixed state,
one has to take into account the additional elastic vortex
mode. The new two-mode electrodynamics predicts
surface-pinning-induced suppression of the surface resis-
tance.

We are indebted to E. H. Brandt, M. W. Coffey, G.
Jung, and N. B. Kopnin for interesting discussions and
our thanks to E. H. Brandt who provided a copy of his pa-
per' before publication.
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