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Far-infrared and Raman vibrational transitions of a solid sphere: Selection rules
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The selection rules for far-infrared and Raman transitions of a solid sphere are derived from group
theory. By far-infrared only the spheroidal dipolar modes are excited, by Raman scattering the spherical

and spheroidal quadrupolar modes are observed.

Solids in the form of nanoparticles have particular
physical properties originating from electron or vibration
confinements, and surface effects. Far-infrared (FIR)
spectroscopy, and especially low-frequency inelastic Ra-
man scattering (LFR) are very interesting to study the
geometry, the nature, and the structure of nanoparticles.
With a size of a few nanometers the particles are, in gen-
eral, spherical,! or sometimes ellipsoidal.” Using FIR
and LFR we can observe the vibrational modes of a
sphere or eventually of an ellipsoid.

For a correct interpretation of the FIR or LFR experi-
ments it is necessary to be clear on the selection rules of
transitions. We will determine the selection rules for the
vibrations of a solid sphere. The symmetry group of the
sphere is the group of the proper and improper rotations,
that is isomorphic to O(3). The irreducible representa-
tions are noted D/’ and D.? (see, for example, Heine?),
j=0,1,2,3,...,g is for the even and u for odd by inver-
sion. The dimension of a representation is 2j +1. From
the Wigner theorem,* to each vibration eigenfrequency
corresponds a D/ or D/ representation, and the corre-
sponding mode degeneracy is 2j + 1, the dimension of the
irreducible representation. The 2j+ 1 even or odd degen-
erate modes span an invariant subspace that transforms
according to the irreducible representation D/’ or D/,
respectively.

The vibration modes of a spherical particle were, at
first, studied by Lamb.> Two types of modes, spheroidal
and torsional, are derived from the stress-free boundary
condition of a spherical surface. A more recent theoreti-
cal work of Tamura, Higeta, and Ichinokawa® is an ex-
tension of the Lamb’s theory. The displacements are de-
duced from the motion equation of an elastic sphere.’”’
They are derived from Helmotz potentials—a scalar po-
tential ¥, and a vector potential A —expressed in spheri-
cal coordinates:

X < j(hr)P"(cos6) lgﬁf::g ]exp( —iwt) (1)
and

A=(r¥,0,0) @)
with

W < j,(kr)P(cos6) {‘;ﬁfﬁ ;{’ lexp( —iot) . (3)
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In these expressions j, are the spherical Bessel func-
tions, P/" the Legendre functions, » =w/v; and k =0 /v,,
with v; the longitudinal sound velocity and v, the
transversal one.

The torsional displacement L, is given by the curl of
the vector potential:

L,=VXA. @)

Only the tangential components 6 and ¢ exist.

The spheroidal displacement L, is the combination of
two displacements, L, which is the gradient of the sca-
lar potential y, and L,, which is the curl of the curl of
the vector potential:

L,=(L;;+aL,)=Vx+a(VXVXA). (5)

a is a coefficient determined by the stress-free boundary
condition.

Each vector potential that transforms as the Y;" spher-
ical harmonic corresponds to a torsional mode, from (4).
In a similar manner, a couple comprised of a scalar po-
tential and a vector potential both transform as Y;” corre-
sponds to a spheroidal mode, from (5). Therefore the
2j +1 degeneracy of the vibration model is equal to the
2[ +1 degeneracy of the potential and j=/. Furthermore
from (4), the parity of a torsional mode is different from
the parity of the corresponding potential. On the other
hand, from (5), the parity of a spheroidal mode is identi-
cal to the one of the corresponding scalar and vector po-
tentials. From the parity of the spherical harmonics, and
the irreducible representations of the O(3) group, recalled
before, it is directly deduced that the spheroidal modes
transform according to the following irreducible repre-
sentation of O(3).

D, D", D, . .
and the torsional modes according to

1 2 3
p",D¥,D¥, ... .

The radial displacement is zero for the torsional
modes. The lowest-energy torsional Dé” modes consist
in the rotation, in opposite direction, of two spherical
layers as is shown in Fig. 1. For the lowest-energy odd
torsional D!? modes, they are the two different hemi-
spheres, which rotate in opposite directions (Fig. 2). The
torsional displacements induce shear strength. Conse-
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FIG. 1. Relative displacements in the lower-energy torsional
D{" modes.

quently torsional vibrations exist only in solid spheres
and do not occur, for example, in atomic nuclei and stars.

We are interested here, to solid spherical particles with
a radius R smaller than the electromagnetic wavelength
A, so that the phase of the incident wave has negligible
variation on the sphere. The vibration modes can be ob-
served by one photon absorption (or emission), or by Ra-
man scattering. The absorption (or emission) is electric
dipolar. The electric dipole moment components 3 ;e;x;,
3.:e:yi, and 3 ;e;z; transform according to the irreducible
representation D.". Considering the representations cor-
responding to the vibration modes, the electric-dipolar
transition will create (or annihilate) one phonon of the di-
polar spheroidal modes D\! only.

In Raman scattering the transition operator is the po-
larizability tensor a;;, which is symmetric (a;=a;).
Consequently the polarizability tensor components trans-
form according to the irreducible representations result-
ing from the symmetrical product:3

[Dl(ll)xDl(‘l)]sym:Dg(O)+D;2) .

Therefore, the only observable Raman transitions are
the transitions creating (Stokes) and annihilating (anti-
Stokes) one phonon of the spherical mode D;” or one
phonon of the quadrupolar modes D;?. The torsional
modes are not observed by Raman scattering.

This result contradicts the assertion of Fujii ez al.® that
Raman transitions exist for the D',D{,DJ,...,
modes. The parity is not a sufficient selection rule. On
the other hand, it confirms that the observed Raman
transitions are for the spherical DQO) and quadrupolar
D{? modes."?

Notice that, for the Raman transition that excites a
spherical mode D/®, the polarizations of incident and
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FIG. 2. Relative displacements of the two hemispheres in a
torsional D ? mode.

scattered lights are parallel. On the other hand these po-
larizations can be parallel or perpendicular for the qua-
drupolar D;Z) transitions. This fact allows us to assign
the observed transitions easily.

Many observations of Raman scattering from nanopar-
ticles, in different systems, have been carried out: insulat-
ing nanocrystals in glasses,’ silica particles in silica aero-
gels,'% metallic nanocrystals in alkali-halide crystals® or in
glasses,® or semiconductor nanocrystals in glass.!! The
experimental results are in agreement with these selection
rules based on group theory.

When the particles are ellipsoidal, as observed for
silver particles in alkali halides,? the degeneracy of the
quadrupolar modes D} is lifted, and one observes three
different Raman transitions for the modes m ==2,
m ==x1, m =0, respectively. Obviously the splittings in-
crease with the eccentricity.? It would be possible to ob-
serve the torsional modes D ?’ by Raman scattering if the
shape of the particle was slightly asymmetric due to the
presence of an odd deformation.

The selection rules for far-infrared and Raman transi-
tions from a solid sphere were not strictly stated before.
They are very simple and must be known especially by
experimentalists using low-frequency Raman scattering.
This technique is powerful for the study of matter in the
form of nanoparticles. Due to the special electric, mag-
netic and (nonlinear) optical properties of the solid nano-
particles, much research is now devoted to this domain of
material science.
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