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A lattice gas with long-range R ~3 repulsive interactions is shown to support disk and stripe domains,
as well as complex intermediate domain structures. In a sharp-interface limit we examine melting of
two-dimensional crystals of disk domains, and the analogous destruction of the stripe phase driven by
changing density and temperature. The stripe phase provides an example of a material with two-

dimensional smectic order.

The interplay of attractive and repulsive forces plays a
key role in self-organization processes in ferromagnetic
thin films,? Langmuir monolayers,3”’ surfactant mi-
celles,®° and membranes. !° The two-dimensional dipolar
lattice gas, with competing nearest-neighbor attractions
and long-range dipolar repulsions, furnishes a simple
model for self-organization phenomena:
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The R ~3 dipolar repulsion is chosen to mimic the long-
range interactions in thin ferromagnetic films and Lang-
muir monolayers. The occupation variables ng of lattice
site R take the values 0 or 1 for the lattice gas (or 1 for
the isomorphic spin lattice model).

There is a considerable body of literature on dipolar
continua. »>*% The Monte Carlo studies reported here
begin the elucidation of the behavior of a microscopic
model, the dipolar lattice gas, as a function of tempera-
ture (J7!) and relative repulsion strength (=4 /J).
From our previously reported results for the zero-
temperature phase diagram of the dipolar lattice gas!! the
low-temperature equilibrium domain structure is known
as a function of 1 and fractional coverage p. The studies
reported here show that the equilibrium domain mor-
phology is far richer than considered in previous work.
Simulations of systems as large as 15776 spins indicate
that the equilibrium phase diagram differs from the
mean-field phase diagram®® at the value of repulsion
strength 7 used in our simulations. Of course, from nu-
merical evidence alone we cannot exclude the possibility
that further increase in the system size will alter our re-
sults.

The periodically replicated simulation cell in most of
our work contains 3944 spins taken from a rectangular
(nearly square) area of the triangular spin lattice. In one
case we increased the system size to 15776 spins. The
computations are demanding for several reasons: the
simulation cell is relatively large; a long-range interaction
with all other spins, not just nearest neighbors, must be
calculated for each attempted spin flip; and long runs are
needed to equilibrate the system for certain values of J, 7,
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and u. We found Metropolis Monte Carlo sampling was
enhanced by adding multiple spin flips and by concentrat-
ing attempted moves near domain interfaces.!* The in-
teraction potential is calculated by two-dimensional
Ewald summation. The specific value of n=3 was
chosen so a typical domain size would be a suitable frac-
tion of the simulation cell dimension. The combination
of parameters studied in this work lies in a sharp inter-
face limit in which we can study ordering and melting of
arrays of well-defined domains.

The dipolar lattice gas supports disk and stripe domain
phases (Fig. 1), as well as more complicated domain tex-
tures. We are concerned with translational and orienta-
tional ordering of the domains into superlattices. The
m-fold symmetry of these phases was quantified by the
order parameter

fm= 3 explim¢y)S (k) , (2)
k

where S (k) is the structure factor and the sum over k ex-
tends over the set of reciprocal lattice vectors for the
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FIG. 1. Instantaneous configurations at several values of the
chemical potential u, and with J =9.5, n= % The average cov-
erage and orientational order parameter g, [Eq. (3)] are shown
next to each figure.
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periodic system. Twofold stripe order was also quantified
by a more conveniently accumulated order parameter
that signals long-range interfacial orientational correla-
tion:

g8:= 3 exp(2ifg g )[ng(1—ng)+(1—nglng].
(R,R")

(3)

The sum extends over all nearest-neighbor pairs on the
lattice. The combination of occupation variables in
square brackets identifies those bond pairs at an interface,
and Oy . is the angle between the normal to that inter-
face (along the vector R—R’) and a reference direction.

The stripe domain phase is an example of a material
with two-dimensional smectic order. There has been in-
terest in phase transitions, !* and the topological'>!¢ and
dynamical!’ properties of defects in two-dimensional
smectics. This work is the first demonstration of which
we are aware of a microscopic model exhibiting two-
dimensional smectic order. It is well known that fluctua-
tions cause algebraic decay of translational and orienta-
tional correlations with distance in two-dimensional crys-
tals. Two-dimensional smectics are characterized by ex-
ponential decay of translational order and algebraic de-
cay of orientational order at low temperatures.'* Order
parameters with slowly decaying correlations show up as
full long-range order in simulations with periodic bound-
ary conditions. The special role of fluctuations in two di-
mensions, even near zero temperature, must be borne in
mind when applying our results for a periodically repli-
cated finite system to a truly infinite material.

A constant temperature cut in the p-T phase plane at
J=9.5 reveals a progression of domain morphologies
shown in Fig. 1. Isolated lattice-gas monomers coalesce
into faceted disk domains [Fig. 1(a)] at very low density.
As density increases, the disk domains elongate [Figs.
1(b) and 1(c)], and the snakelike domains [Figs. 1(d) and
1(e)] also seen experimentally in epifluorescence micros-
copy appear.'® Eventually the elongated domains form a
stripe phase [Fig. 1(f)], as quantified by the orientational
order parameter g,.

From the configurations in Figs. 1(a) and 1(b), it is not
apparent whether the disk phase exhibits hexagonal order
of a two-dimensional supercrystal of disk domains. Ac-
cording to the mean-field phase diagram®® we should en-
counter isotropic-to-hexagonal and hexagonal-to-stripe
transitions as the density is increased at this temperature.
We sought a definitive answer to this question by lower-
ing the temperature at p~0.15 and monitoring the six-
fold order parameter f¢ for the location of an isotropic-
hexagonal phase boundary. If crystallization were ob-
served, it would confirm that the configurations shown in
Figs. 1(a) and 2(b) were isotropic. At densities much
much above ~0.15 the question of whether disk domains
form a two-dimensional solid rapidly loses meaning as the
domains elongate.

Unfortunately, spin flips become increasingly rare at
low temperatures and ordinary Monte Carlo sampling is
not practical for J much greater than 9.5. We did obtain
information about the low temperature disk phase by
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FIG. 2. Sixfold order parameter [Eq. (2)] of a system of 16
hexagonal domains as a function of repulsion strength 4. (See
text for further explanation.) An arrow marks the point where
a continuous system of particles with similar R ~ interactions
melt (Refs. 19 and 20). The insets show typical disordered and
ordered configurations.

freezing certain degrees of freedom that would tend to
disrupt the solid, thereby establishing an upper limit for
the isotropic-hexagonal boundary. We investigated a sys-
tem of perfect hexagonal domains with density p=0.15
(see insets to Fig. 2). These frozen disk systems can be
simulated at low temperatures just like off-lattice parti-
cles. Freezing domain shape fluctuations only enhances
crystalline order and drives the freezing temperature to a
higher value than the original lattice model. A system of
16 faceted hexagonal disks, each containing 37 particles,
produces an almost perfect triangular domain crystal
within our simulation cell with density p=0.1501 (Fig.
2). Only the repulsion term controlled by the parameter
A =Jn plays a role in the frozen-domain studies because
nearest-neighbor interaction energy is constant unless
two domains come into contact, which is very unlikely.

The hexagonal order parameter f, for frozen disk
domain as a function of 4 is shown in Fig. 2. Crystalline
order arises in the range 30 < 4 <40. This implies that
70 <J <90 provides an upper limit to the freezing tem-
perature at =2 and p~=0.15. Our lattice results are
supported by available data for two-dimensional continu-
ous particle systems interacting with a pair potential,
v(r)=e(a /r)*,'%20 characterized by one dimensionless
parameter I'=Beo*(mp’)*/2. Here p’ corresponds to
domains per unit area. The continuous system freezes at
[, ~62."% Associating the domains of Fig. 2 with a
continuous system on the basis of the long-range interac-
tion between domains (which is purely r 3,11 we would
expect A,=~25.4 from the continuous system results.
The comparison with our frozen lattice domain calcula-
tions is reasonable, given the inherent differences between
continuous and lattice systems, and supports our conten-
tion that hexagonal disk domain order is not present in
the J=9.5 systems of Fig. 1. It is unlikely that disk
domains will crystallize with increasing density before the
disklike morphology is completely lost for reasons dis-
cussed below.

A transition between the isotropic and stripe phase can
be driven by temperature as well as density. The se-
quence of p=1, variable J configurations in Fig. 3 clearly

shows that the twofold stripe order is lost while the
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FIG. 3. Instantaneous conﬁgurations at several values of the
inverse temperature J at p=. The average order parameter g,

[Eq. (3)] for each run is shown next to the representative
configuration.

domain interface is still sharp. In other words, the stripe
melting temperature at =2 is found to be far below the
critical point, J, =1.10, of the lattice gas without repul-
sions.2! At J=7.5 stripe order as measured by g, is
clearly absent. Stripe order appears to be fixed at J =9.0,
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FIG. 4. Evolution of stripe order parameter g, [Eq. (3)] as a
function of the number of Monte Carlo passes through the sys-
tem (Ref. 13) at J =9.0. Each pass involves 54 attempted moves
per spin (Ref. 13.) A solid and dashed line shows |g, |? for 3944
particles, initialized in a completely disordered high-
temperature configuration in a perfect stripe array, respectively.
Another solid line shows the evolution of a very large 15776
spin system during ~ 10* attempted moves per spin after initiali-
zation as perfect stripes.
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providing a lower limit for the freezing temperature. At
this temperature the system spontaneously orders and
remains ordered (Fig. 4). Because of limitations on sys-
tem size and equilibration times, it is not presently feasi-
ble to determine the stripe melting point with greater pre-
cision. We did check for system size dependence in a sys-
tem of 15 776 spins initialized as a stripe array at J =9.0.
The stripe order was stable for the length of the run (Fig.
4), ~10* attempted moves per spin or 1.7X 108 total at-
tempted moves on the larger system.

Our conjectured phase diagram for =2, which falls in
the Brazovskil class,?? is shown in Fig. 5. The dashed
line is an estimated upper limit to the isotropic-hexagonal
boundary obtained by assuming that the transition tem-
perature scales with density as would the continuous sys-
tem of particles with R ~* repulsive interactions,

%Oc[nj)(P)]l/ZP:;/z . 4)
We have incorporated the fact that the equilibrium
domain size ng, will be a function of density, and used the
domain size of faceted hexagonal domains at zero tem-
perature to estimate this dependence.!! Note that the
dashed line in Fig. 5 does not reach the stripe melting re-
gion (J ~9) until almost half-coverage. By this point the
disklike domain morphology is completely lost (Fig. 1).
The isotropic-hexagonal-stripe triple points are only con-
jectured, and we cannot exclude other possibilities, such
as elongation of disk domains disrupting the solid, forc-
ing an isotropic region to intervene between hexagonal
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FIG. 5. Phase diagram for the dipolar lattice gas appropriate
near 7=3 3, the shape interface limit studied in this work
(I=isotropic, =~ H=hexagonal, =inverted hexagonal,
S=stripe). For comparison, the mean-field phase diagram is
shown in the upper left. The H-S and H'-S boundaries at zero
temperature were established in previous work (Ref. 11.) The
height of the stripe phase region and the direct I-S transition
with no intervening H or H' phases are results of this work.
The I-H-S and I-H'-S triple points are conjectured. The dashed
line indicates an upper limit to the I-H boundary based on scal-
ing of particles with R ~? interactions [Eq. (4)].
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and stripe phases, or long-range orientational order of
elongated domains. It has been proposed that loss of
orientational order in two-dimensional smectic materials
occurs when dislocations (whose presence does not des-
troy orientational order) unbind into disclination pairs. '
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Testing the applicability of this mechanism to stripe
melting in the dipolar lattice gas will be left to future
work. The structures observed during stripe melting are
also highly reminiscent of those found in the ‘la-
byrinthine”” phase of ferromagnetic thin films. »2?
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FIG. 1. Instantaneous configurations at several values of the
chemical potential u, and with J =9.5, n=2. The average cov-
erage and orientational order parameter g, [Eq. (3)] are shown
next to each figure.
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FIG. 3. Instantaneous configurations at several values of the
inverse temperature J at p= % The average order parameter g,
[Eq. (3)] for each run is shown next to the representative
configuration.



