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Coefficients of the second viscosity in bulk liquid helium
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The coefficients of the second viscosity in bulk liquid helium are evaluated explicitly as a function of
temperature via interactions between the anomalous excitation spectrums. The four coefficients of the
second viscosity exhibit a 77! dependence at low temperatures (well below 0.6 K), which is due to
three-phonon processes originating from the anomalous dispersion at very low momenta and tempera-

tures.

Since Peshkov' has confirmed experimentally the ex-
istence of a temperature wave called the second sound in
bulk liquid helium, Landau?® evaluated at first the ordi-
nary second-sound velocity in terms of the macroscopic
thermal quantities and later derived the second sound as
a collective density wave in the elementary excitation
spectrum. Transport coefficients, i.e., thermal conduc-
tivity, viscosity, and other kinetic coefficients, were also
calculated above 0.6 K by means of kinetic equations by
Landau® and Khalatnikov.*

It is well known that at low temperatures and low pres-
sures the thermal properties of superfluid helium are
dominated by low-momentum phonons, which do not
possess the normal dispersion, but rather an anomalous
dispersion. In fact, these two cases are quite different in
microscopic processes. The former is governed by four-
phonon processes (4PP) while the latter is by three-
phonon processes (3PP). Recently, several authors® have
evaluated the temperature variations of the first and
second sound by using the wrong normal dispersion.
However, in more recent articles,® we have derived a
Landau-type elementary excitation spectrums, which has
anomalous phononlike behavior and rotonlike behavior
at low and high momenta, respectively, through the
ring-diagram approximation in two- and three-
dimensional liquid helium. In the bulk case, the obtained
excitation spectrum is given by

E(p)=cop[1+8,p2—8,p > +6p%*+ - -+ ], (1)
(P—Py)?
E(P)=A+—7—, (2)
2u

where A, Py, and pu are the roton parameters, ¢ is the
sound velocity at absolute zero temperature, and 8, and
8, are positive constants which can be determined by the
potential parameters. Here, we have adopted a soft po-
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tential with a Lennard-Jones-type tail, which helps make
a smooth connection between the attractive part and a
soft repulsive core. Using these excitation spectra, we
have successfully derived and explained the various
sounds,’ sound attenuations,® and transport coefficients’
in two- and three-dimensional liquid *He.

Concerning the coefficients of the second viscosity in
bulk liquid helium, Kirkpatrick and Dorfman ' evaluated
these coefficients at very low temperature (naA!>>1) on
the basis of their kinetic equations!! for a dilute
superfluid, where n, a, and A represent the number densi-
ty, s-wave scattering length, and thermal wavelength, re-
spectively. In a previous paper'? we have successfully
evaluated the coefficients §;, {,, {3, and {4 of the second
viscosity in two-dimensional liquid “He as a function of
temperature by solving the superfluid hydrodynamics
through the theory of the kinetic phenomena developed
by Khalatnikov.

In this paper, adopting the above theory, we carry out
a three-dimensional calculation to evaluate the
coefficients of the second viscosity of bulk liquid helium
via 3PP in the region of very low temperatures, which
was not done by Landau and Khalatnikov. Near zero
temperature, the important mechanism is 3PP: the direct
process of emission of a phonon p by p,—p,+p and the
reverse process of absorption of a phonon p by
p>+p—p;. The differential decay rate for 3PP in three
dimensions is defined as

Vi p.dp

, 3)
(27#)®

do="2T|CF|H,|1)I*S(E—E;)
where H, is the Hamiltonian for 3PP.° The transition
amplitude between the temperature-dependent initial
state |I) and final states |F) for the direct process is
given by’

5746 ©1992 The American Physical Society



46 BRIEF REPORTS

172
CoP

PP 1P>

_ 3! (2n#)’
FIHID =5 appn

8(p;—p,—p)

Here n,, is the phonon distribution function with momen-
tum p. In the case of the reverse process, the last bracket
in Eq. (4) should be replaced by [(n, +1)n, n, 1'%, Then

the total decay rate for the direct process becomes

_ mTCo 2
0p = W+ D) [ pipapn, (n, +1)(n, +1)

dp,
—Ej)—=, (5)
" 2mhiy?
where u =(p/c)(dc /dp) is the Griineisen constant. For
the reverse process, npl(np2+l)(np+1) is replaced by

X 8(Ep

(np’ +1 )npznp.
From the total decay rate for the direct and reverse
processes, the collision integral for the 3PP becomes

e
J3PP=_ﬁ(u+1)2fP1P2P8n(n —n, )

Pio P20

dp,
XSEp—E;)——, (6)

(Er (27#)

where 8n is equal to n, —n,

the equilibrium distribution functions for the phonons
with momenta p, and p,, respectively. Since 3PP occur
largely in the small angle events, the phonon distribution,

and n, and n, represent
o’ Pio Po p

which depends on the chemical potential a’,'> can be
written as
n={exp[(a'+pc)/kyT]—1} "1, (7N

and expanding 8n in a power series in terms of a’, we ob-
tain 8n =n —no= —ny(ny+1)a’. The relation* between
the collision integral and the kinetic coefficient can be ex-
pressed by

1 dp
—— | J3pp(n) =a'Tspp (8)
kT f 3pplnt (27h)? 3PP
and solving Eq. (8) for the kinetic coefficient, we get
=3 2
Typp=2meBNu L1 ) py7 ©)

60#'pcd

To obtain the coefficients of the second viscosity, we
follow the calculation in the third way given by Khalatni-
kov and show below only the results near absolute-zero
temperature:

(pr'p2)t
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6 PT3pp ¢ dp
INZ(T) [, ac |
=Z'ph7’ 1 p OC
&,(T) Toor c3p |’ (11
9N, (T) 2
G T=— (el 12)
p°Tapp € Op
ELT)=E(T) . (13)

Here, the Griineisen constant comes from differentiation
of N, with respect to p and can be taken as constant
near absolute-zero temperature. §,(7) and &,(T) are
equal and thus satisfy Onsager’s reciprocity symmetric
principle. N, (T) is the number of phonons per unit
volume at temperature T, and taking up to order p* in
Eq. (1), we can express this as

N(D =0T [1+a,T*~a,T*+a;T*], (14)
where
3
_ 36Xx41£(4) | ks
ao—‘ 3 h— ’
T Co
2
g = 3X6(6) o | ka
Vooagd) e |
3 (15)

_4x8158) o | ks

“T e e |
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For numerical calculations, we have adopted the pa-
rameters which were deduced from the analysis of the
elementary excitation of the bulk liquid-helium data,®!*
as listed in Table I. We have also taken the numerical
value of u to be 1.8.° Using these parameters and substi-
tuting Egs. (9) and (14) into Egs. (10)—(12), we obtain

—4

em=23310 (1), (16)
-5

L =210X00— (1), a7

TABLE I. Parameters for bulk liquid helium.

3

n (A7) A/ky K) g0 (AT m

co (m/s) 8, (AY) 8 (A) 8 (A

2.18X1072 8.616 1.930

0.153m He

238.21 1.51£0.13  3.25+0.20 ~16
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_ 4.355x107°

&3(T) T

A(T), (18)

where
A(T)=1+2a,T*—2a,T*+Q2a;+a?)T*
—2a,a,T°+(a}+2a,a;)TS+ - - . (19)

In Egs. (16)—(18), all four coefficients include various 7-
dependent terms. The T ! dependence also appears as
the main contribution in the coefficient of the first viscosi-

ty,’

_ 315(3)6(2)pc 1

- 5 —1.90x10"' % | (20)
wkplu+1?* T T

This means that as the temperature approaches absolute
zero, the roton contribution disappears, and thus the
main contribution comes from 3PP. Therefore the tem-
perature dependence of the first viscosity coefficient is
changed dramatically from T > to T~ .

Kirkpatrick and Dorfman!® have introduced the classi-
cal kinetic theory technique to derive two-fluid hydro-
dynamics in an expansion of the unknown functions in
terms of orthogonal polynomials, keeping only the first
term, which represents the first Enskog approximation in
the classical theory.!'® They have also introduced an iso-
tropic linear collision operator L that can be divided into
two types of collision processes: an excited particle
scatters with a condensed particle to produce two excited
particle, or vice versa (L,,), and two excited particles
scatter with each other and produce two new excited par-
ticles (L,,). These two processes correspond exactly to
the  processes 3PP  (p;,22p,+p;) and 4PP
(p;+p,=2p;3+p4). The collision operator L, holds only
for very small momenta. When the number of particles
decreases with decreasing temperature, there are not
enough collisions to keep a local equilibrium, and thus
their hydrodynamic solution breaks down, which may
also occur in very dilute classical gases. This means that
Kirkpatrick and Dorfman have not taken into account
3PP, but only 4PP.

A finite lifetime of an elementary excitation in a quan-
tum liquid originates from two processes: one is the col-
lision between elementary excitations, and the other is
the spontaneous decay of a phonon into two, three, or
more phonons. Since the collision probability tends to
zero at very low temperatures, the collision process be-
comes less important and negligible. At very low temper-
atures, the main excitations in liquid “He are phonons.
On the other hand, we note that 3PP are the most impor-
tant process in the anomalous elementary excitation spec-
trum of liquid “He at very low temperatures and very
small momenta.

Before Kirkpatrick and Dorfman, Ma!” and Popov!'®
obtained the same results, i.e., a damping factor on the
order of g>T ~°, where q is the wave number of the dis-
turbance in the calculation of the hydrodynamic eigen-
value describing second-sound propagation. Comparing
this with that of Kirkpatrick and Dorfman, we find the
relation ¢?1/p, ~q*T ~°, and thus have n~T >, where
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FIG. 1. Temperature variation of the coefficient of the first
viscosity (1) and the four coefficients of the second viscosity, §;
(=&,), &, and &5. The curves represent only the magnitudes of
these coefficients, where the units are g/cms for 7 and §,, cm?/s
for & (=&,), and cm®/gs for &s.

p, is proportional to T*. Popov has also derived a 7~°
dependence of 7 through the fundamental integral
analysis, which turns out to be mainly the same contribu-
tion from 4PP in Landau-Khalatnikov theory. '’

In the calculation for 7(7T) and &(T) given by Kirkpa-
trick and Dorfman, 7(T) is proportional to T >, while
the thermal conductivity «(T) is proportional to T2, and
all four coefficients of the second viscosity have only a T
dependence for very low temperature. However, Egs.

logie %{—;—n +(Z2+ p2Ea-1081) )

‘
2k n

>

ol 02 03 oa 05 06
T(K)

FIG. 2. Coefficients of the first and sound viscosity as a func-
tion of temperature in the functional form by which they appear
in the absorption coefficient of second sound given by Khalatni-
kov. The quantities p, and p, are the superfluid and normal
densities, respectively.



46 BRIEF REPORTS

(16)—(18) include not only T terms but also an important
T~ ! dependence. As T—O0, their four coefficients tend
directly to zero. However, Eqs. (16)—(18) show a diver-
gence, which is quite contrary to their results. We em-
phasize again the difference between contributions from
3PP and 4PP. The discrepancy in the results obtained by
us and by Kirkpatrick and Dorfman is due to the fact
that their hydrodynamic solution accommodates only
4PP, which does not appear at very low temperatures in
the Landau-Khalatnikov theory, and breaks down when
3PP are included, while our theory includes only 3PP,
which are the main contribution to the transport
coefficients near zero temperature and at very small mo-
menta. We note that there are generally thirteen in-
dependent dissipation coefficients.’’ Here we only con-
sider five coefficients and do not discuss the pressure and
frequency variation?! of the coefficients of the second
viscosity.

Figure 1 illustrates the temperature variations and
magnitudes of the four coefficients of the second viscosity
and the coefficient of the first viscosity. The above five
coefficients are all positive. For very low temperatures
(well below T <0.6 K), the condition £}<¢,¢; holds.
Comparing the order of magnitudes for the four
coefficients, we can write §{3>§;>(,, and all four
coefficients have larger values than that of the coefficient
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of the first viscosity. We note that the thermal conduc-
tivity (x) and five coefficients, as mentioned above, for
thin liquid-helium films have the same properties as those
for bulk liquid helium. 12

Figure 2 represents the values of the coefficients?? of
the first and second viscosity as a function of temperature
in the functional form by which they appear in the ab-
sorption coefficient of the second sound given by Khalat-
nikov. The behavior of this curve increases moderately
as temperature decreases in the range 7' >0.2 K and rap-
idly diverges near zero temperature. It shows a similar
behavior to that in the high-temperature region (7 >0.6
K).

In conclusion, the coefficients of the sound viscosity in
bulk liquid helium exhibit a 7! dependence for temper-
atures below 0.6 K, like that of the first viscosity, which
is due to 3PP originating from the anomalous excitation
spectrum of bulk liquid helium at low momenta and low
temperatures. However, there are no experimental re-
sults. A precise measurement of the temperature varia-
tion of the second viscosities would be desirable.
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