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CoefFicients of the second viscosity in bulk liquid helium
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The coefKicients of the second viscosity in bulk liquid helium are evaluated explicitly as a function of
temperature via interactions between the anomalous excitation spectrums. The four coeScients of the
second viscosity exhibit a T dependence at low temperatures (well below 0.6 K), which is due to
three-phonon processes originating from the anomalous dispersion at very low momenta and tempera-
tures.

Since Peshkov' has confirmed experimentally the ex-
istence of a temperature wave called the second sound in
bulk liquid helium, Landau evaluated at first the ordi-
nary second-sound velocity in terms of the macroscopic
thermal quantities and later derived the second sound as
a collective density wave in the elementary excitation
spectrum. Transport coefficients, i.e., thermal conduc-
tivity, viscosity, and other kinetic coefficients, were also
calculated above 0.6 K by means of kinetic equations by
Landau and Khalatnikov.

It is well known that at low temperatures and low pres-
sures the thermal properties of superAuid helium are
dominated by low-momentum phonons, which do not
possess the normal dispersion, but rather an anomalous
dispersion. In fact, these two cases are quite different in
microscopic processes. The former is governed by four-
phonon processes (4PP) while the latter is by three-
phonon processes (3PP). Recently, several authors have
evaluated the temperature variations of the first and
second sound by using the wrong normal dispersion.
However, in more recent articles, we have derived a
Landau-type elementary excitation spectrums, which has
anomalous phononlike behavior and rotonlike behavior
at low and high momenta, respectively, through the
ring-diagram approximation in two- and three-
dirnensional liquid helium. In the bulk case, the obtained
excitation spectrum is given by

E(p)=cop [1+5tp —52p +5~ + . j,

tential with a Lennard-Jones-type tail, which helps make
a smooth connection between the attractive part and a
soft repulsive core. Using these excitation spectra, we
have successfully derived and explained the various
sounds, sound attenuations, and transport coefficients
in two- and three-dimensional liquid He.

Concerning the coefficients of the second viscosity in
bulk liquid helium, Kirkpatrick and Dorfman' evaluated
these coefficients at very low temperature (naA') )1) o, n
the basis of their kinetic equations" for a dilute
superAuid, where n, a, and A, represent the number densi-
ty, s-wave scattering length, and thermal wavelength, re-
spectively. In a previous paper' we have successfully
evaluated the coefficients g„g2, g3, and g4 of the second
viscosity in two-dimensional liquid He as a function of
temperature by solving the superAuid hydrodynamics
through the theory of the kinetic phenomena developed
by Khalatnikov.

In this paper, adopting the above theory, we carry out
a three-dimensional calculation to evaluate the
coefficients of the second viscosity of bulk liquid helium
via 3PP in the region of very low temperatures, which
was not done by Landau and Khalatnikov. Near zero
temperature, the important mechanism is 3PP: the direct
process of emission of a phonon p by p, ~p2+p and the
reverse process of absorption of a phonon p by

p2+p p&. The differential decay rate for 3PP in three
dimensions is defined as

E(P)=b, + (P —Po)
(2)

V dp2dp
dco= )(,F~H, ~I ) ['5(E —E )

(2M)
(3)

where 6, I'0, and p are the roton parameters, co is the
sound velocity at absolute zero temperature, and 5& and
62 are positive constants which can be determined by the
potential parameters. Here, we have adopted a soft po-

where H3 is the Hamiltonian for 3PP. The transition
amplitude between the temperature-dependent initial
state ~I) and final states ~F) for the direct process is
given by
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Here n is the phonon distribution function with momen-

tum p. In the case of the reverse process, the last bracket
in Eq. (4) should be replaced by [(n +1)n n ]'~ . Then

the total decay rate for the direct process becomes
ETCp

(u +1) p,p2pnp (n +1)(n +1)

9Nph ( T)
g((T) =

P~3PP

9%2h( T)

9Xph( T)
g3( T}=

P I 3PP

~ Bc
c Bp

2

~ Bc
C BP

2

Q BC
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(10)

(12)

where u =(p/c)(BC/Bp) is the Griineisen constant. For
the reverse process, n (n +1)(n„+1) is replaced byP) P2

(n +1)np npP) P2 P

From the total decay rate for the direct and reverse
processes, the collision integral for the 3PP becomes

7TC p
J3pp = (u + 1 )2 P,P2P5n(n np )—2' P 10 P20

&4(T)=&i(T) ~ (13)

Here, the Gruneisen constant comes from difFerentiation
of N~h with respect to p and can be taken as constant
near absolute-zero temperature. g, (T) and (4(T) are
equal and thus satisfy Onsager's reciprocity symmetric
principle. Nph(T) is the number of phonons per unit
volume at temperature T, and taking up to order p in
Eq. (1), we can express this as

X5(EP E;)—(2M)'

where 5n is equal to np n, —and np and np representPo' P&o P2o

the equilibrium distribution functions for the phonons
with momenta p& and p2, respectively. Since 3PP occur
largely in the small angle events, the phonon distribution,
which depends on the chemical potential a', ' can be
written as

n = [exp[(a'+pc)/ks T]—1]

and expanding 5n in a power series in terms of a', we ob-
tain 5n =n no= ——no(no+1)a'. The relation between
the collision integral and the kinetic coefficient can be ex-
pressed by

a&=
3 X6!g(6)

4!g(4) co
'3

k~4X 8!$(8)
4!g(4) 2

Cp

a3= 5 X 8!$(8)5
ka

4!g(4} co

4

X h(T)=aoT [1+a&T —a2T +a3T ],
where

3
36X4!g(4) ka

ap=
co

(14)

(15)

1
J3pp(n) 3

=a I 3pp,
p

8 (2M)

and solving Eq. (8) for the kinetic coefficient, we get

3!mg(3)(u + 1)

pcp

(8)

(9)

For numerical calculations, we have adopted the pa-
rameters which were deduced from the analysis of the
elementary excitation of the bulk liquid-helium data, '
as listed in Table I. %e have also taken the numerical
value of u to be 1.8. ' Using these parameters and substi-
tuting Eqs. (9) and (14) into Eqs. (10)—(12), we obtain

To obtain the coefficients of the second viscosity, we
follow the calculation in the third way given by Khalatni-
kov and show below only the results near absolute-zero
temperature:

( ( )
6.313X10

~ (T) 9 156X10 ~( )

(16)

TABLE I. Parameters for bulk liquid helium.

n(A )

2.18)&10 '
5/kg (K)

8.616

q, (A ')

1.930 0.153m H,

co (m/s)

238.21

5i (A) 5, (A)
1.51+0.13 3.25+0.20

53 (A)
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(16)—(18) include not only T terms but also an important
T ' dependence. As T~O, their four coefficients tend
directly to zero. However, Eqs. (16)—(18) show a diver-
gence, which is quite contrary to their results. We em-
phasize again the difference between contributions from
3PP and 4PP. The discrepancy in the results obtained by
us and by Kirkpatrick and Dorfman is due to the fact
that their hydrodynamic solution accommodates only
4PP, which does not appear at very low temperatures in
the I.andau-Khalatnikov theory, and breaks down when
3PP are included, while our theory includes only 3PP,
which are the main contribution to the transport
coefficients near zero temperature and at very small mo-
menta. We note that there are generally thirteen in-
dependent dissipation coefficients. Here we only con-
sider five coefficients and do not discuss the pressure and
frequency variation ' of the coefficients of the second
viscosity.

Figure 1 illustrates the temperature variations and
magnitudes of the four coefficients of the second viscosity
and the coefficient of the first viscosity. The above five
coefficients are all positive. For very low temperatures
(well below T &0.6 K), the condition gf &(2(3 holds.
Comparing the order of magnitudes for the four
coeScients, we can write g3 )g, ) g2, and all four
coefficients have larger values than that of the coefficient

of the first viscosity. We note that the thermal conduc-
tivity (a.) and five coefficients, as mentioned above, for
thin liquid-helium films have the same properties as those
for bulk liquid helium. '

Figure 2 represents the values of the coefficients of
the first and second viscosity as a function of temperature
in the functional form by which they appear in the ab-
sorption coefficient of the second sound given by Khalat-
nikov. The behavior of this curve increases moderately
as temperature decreases in the range T & 0.2 K and rap-
idly diverges near zero temperature. It shows a similar
behavior to that in the high-temperature region ( T )0.6
K).

In conclusion, the coefficients of the sound viscosity in
bulk liquid helium exhibit a T dependence for temper-
atures below 0.6 K, like that of the first viscosity, which
is due to 3PP originating from the anomalous excitation
spectrum of bulk liquid helium at low momenta and low
temperatures. However, there are no experimental re-
sults. A precise measurement of the temperature varia-
tion of the second viscosities would be desirable.
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