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Superconductor —normal-metal —supercondcutor junctions and the vortex problem
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We present a method for generating wave functions for inhomogeneous superconductors. The method
is based on the Andreev approximation to the Bogoliubov —de Gennes equations. Bound states for the
superconductor —normal-metal —superconductor junction and the single vortex are discussed. The follow-

ing simple expression for the bound-state energy as a function of the angular quantum number p is de-
rived: E„=h(r„),where r„=p/k» =p/kF is the classical turning point. The agreement with recently
reported exact numerical wave functions and energies is excellent.

This Brief Report has to do with the Bogoliubov —de
Gennes (BdeG) equations of space-dependent supercon-
ductivity. ' In what follows we will present a method for
generating approximate wave functions for these equa-
tions. First, we will present a general technique for con-
structing approximate solutions for any inhomogeneous
problem. We will then apply the method to the problem
of the quasiparticle states in the neighborhood of a vortex
core which has recently been experimentally probed us-
ing scanning tunneling microscopy. These authors
detected a zero-bias anomaly (peak in the local density of
states at E =0) when probing the vortex core (r =0 re-
gion). Theoretical discussions of this problem were given
first by Overhauser and Damien using a semiempirical
self-energy approach and then by Shore et al. and Gygi
and Schluter using a numerical method for solving the
BdeG equations. Related theoretical work has been done
by Klien. The most recent work of Gygi and Schluter
has explained the hexagonal symmetry reported in Ref.
2(b). They constructed approximate Bloch states due to
the crystal lattice (or vortex lattice) using their numerical
solution of the BdeG equations. In this paper we derive a
complete set of bound and scattering states for the BdeG
equations using methods based on the Andreev approxi-
mation. We then compare our wave functions with
those of Refs. (4) and (5) and find excellent agreement us-
ing only two adjustable parameters.

We begin the treatment with a brief exposition of the
Andreev approximation which will be used to generate
the proposed approximate wave functions. Much work
has been done for one-dimensional inhomogeneities using
this method. This SN, SI, and superconductor —normal-
metal —superconductor (SNS) interfaces have been treated
by various authors. We will first give a general deriva-
tion of the Andreev approximation and then look
specifically at the SNS junction for the pair potential
b(z, T)=h„(T)tanhi(z/g)i. This problem will provide a
basis for our treatment of the vortex problem in cylindri-
cal coordinates where b,(r, T)=b, (T)tanh(r/g) is the
usual first guess.

The principal idea behind the Andreev approximation
is to separate out the rapidly and slowly varying parts of

the wave function. Thus the normal part of the quasipar-
ticle wave function varies over a distance z —A,F, the Fer-
mi wavelength, while the superconducting part varies
over a characteristic distance z -g, the coherence length.
The validity of the Andreev approximation is based on
the condition A~/g && 1. We believe that using variation-
al trial functions based on this approximation will optim-
ize what is a relatively simple approach to inhomogene-
ous superconductors by choosing the wave-function pa-
rameters so as to minimize the BdeG energy functional as
well as optimize self-consistency.

Our starting point will be the BdeG equations in the
form

I cr,H~+cr„b E„lI $=0—
where n, o. , cr„are Pauli spin matrices, Hz is a normal
conductor Hamiltonian, f is the spinor of quasiparticle
amplitudes u and v, 6 is the pair potential connected to
the u and v by the self-consistency condition
b, = Vgu„u„*(1 2f„), V is th—e effective electron interac-
tion, f=(e~ "+1) ' is the Fermi function, with E„mea-
sured relative to Ez, and P—:1/kT.

We restrict our present treatment to the case where
Hz=( —A' /2m )V, i.e., the effective one bod-y potential
felt by the normal electrons has been approximated by a
constant and subsumed into the Fermi energy EF in the
usual way. We now proceed to define, as well as separate,
the rapidly and slowly varying parts of f. Let u =

P&f&,

u =Pzf 2, where o,H&P =eP and the spinor P = ( &' ),

comprise the normal conductor's quasiparticle states that
vary on the scale of the Fermi wavelength. The spinor

f=(f '
) represents the superconductor quasiparticle

2

states that vary on the scale of the coherence length g.
Inserting this form into Eq. (1) we find

I2VPi Vfi+PiV'fi l « e)4ifi+~kz—f.=0—

(2)

2V$2 Vf2+/~V f2 I (E+e)$2f2+hp, f—, =0 .
2m

Now we can define what we mean by rapid and slow
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variations. Note that (Vf, ( -g ', ~Vfz( -g ', while
IV&11 &F' and ~Vpz~-A, F'. Therefore, since A,F &&g',
we may safely ignore the V f 1 and V fz terms compared
to the Vp, Vf, and Vpz. Vfz terms. ' Equation (2) now
becomes the Andreev approximation in its most general
form,

tion for the single vortex. The coordinate system ap-
propriate to the vortex problem is cylindrical and it will
be more convenient to work directly with the radial equa-
tion when invoking the Andreev approximation. "

Using essentially the notation of Gygi and Schluter we
have

42
1

~ Vf (E—e)f—+b, f =0,1
y

2

(3)

ikz; e
Uq„k =e e Upnk, ~

ikz; 8
V„„k =e e V„«.Vf, (E+—e)f, +4 f, =0 .

m 1

These first-order equations govern the quasiparticle
motion when A,F «g. We suggest in this report that us-
ing the solutions to Eq. (3) as trial functions with various
variational parameters will relax the A.F «g restriction
and thereby optimize the Andreev method. Another vir-
tue of this approach is to generate convenient and
effective sets of basis functions to use in inhomogeneous
superconductor problems.

If the superconducting part of the wave function varies
in only one dimension, Eqs. (3) become particularly sim-
ple. Letting z be the requisite variable and assuming that
fi and fz depend only z, then $1=$2=exp(ikF r),
uF=irikF/m, and E EF 0,

]
ifiuF — Ef1+6f—2=0,

d2—
ifiuF Efz+b f1=—0 .

z dz

(4)

These equations can be exactly uncoupled and subse-
quently solved as shown by Bar-Sagi and Kuper. ' '

They used b(z, T)=h„(T)tanhaz for z) 0 to represent
the SI interface and a was chosen to approximately satis-
fy self-consistency for T= T, . Thus they used
a(T) =v'2/go(T), where gu(T)=fiuF Ib „(T)is essentially
the BCS coherence length. The solutions to Eq. (4) are
given by associated Legendre functions in terms of the
variable y =tanh(az ) and the results are

where n is a radial quantum number and p is half an odd
integer. The functions U„„k =r '

u„„k and"2 "2
V„„k =r' U„„k satisfy the equations

2 "2

(i -2)'+l 2m

dr r fg
2+ 2 2 P,«

(~+ i )'+-' 2m

dr r
2+ 2

+
2 E~«

fg 2 V„.k,

2m
2 hUp« —0.

We now apply the same argument that led to Eqs. (4).
Letting U=pif 1, V=pzfz, the normal conductor func-
tions p, and $2 now satisfy

(~'-+ l) Zm
,+, —,E„kdr2 r2 $2 P 2

(&++ l) 2m
(8)

where p =p —
—,
' and p+ =—p+ —,'. The solutions to Eq.

(8) are Bessel functions times r
The superconductor functions f, and fz satisfy the

first-order equation with notation now suppressed;

pram( )
. Il +m

n —m

p+m( )+ ii +m
n —m

' 1/2

pjm( )

J
' 1/2

p*„(y)

1 del(") df1 42(r)
+h(r) fz(r)=Efi(r),

m 1 dr dr
1 r

a' 1 dA(r) dfz +h(r) f1(r)=Efzy(r),m 2 p r

(9)

where n =5„/iiluFza and m =n(1 E lb, }' . We note—
that both bound states, m (0, and scattering states,
m )0, are included in Eq. (5). The one-dimensional
solutions are useful in their own right for a variety of in-
terface problems. ' In particular the solutions for
b, (z)=b„~tanh(az)~ have interesting bound states for
SNS problems. Specifically we make note of two particu-
larly simple solutions of the BdeG equations. For E =0
we easily find that f= A (,')sech"(az), where
A '=((~f, ([ +[)fz)~ )' . Also for E=b „we find thatf= A (,') [tanh(az )+i ]

We now proceed to construct a variational trial func-

and E=E„„k and depends on p through $1 and $2."2
These equations can now be uncoupled in a straightfor-
ward way which would lead to a complicated set of
second-order equations for f1(r) and fz(r). Instead we
proceed more simply as well as consistently and evaluate
the functions p, and pz in Eq. (9} using their asymptotic
forms. This can be justified as follows:
p(r/AF }=/((g/AF)(rig) }and since r Ig is the appropri-
ate variable for Eq. (9) and g/A, F ))1 then we can use the
asymptotic forms of P, z. In the simplest case Eqs. (9) be-
come
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df, (r)—i fiv„—Ef, (r)+ b (r)f2(r) =0,
GT

df2(r)
iA'v» Ef—2(r)+b(r)f, (r)=0 .

QT

(10)

We can now identify the parameters of Eq. (10) with
those of Refs. 9(b) and 9(c). This allows us to make use
of those solutions for f, and f2. We have

f, (r) = A
~

P„(y—) i— P +„(y)—

f2(r) = A2 P™(y}+i P+ „(y)—

where now y
—=tanh(ar ), n—:b, „/A'v» a. We suggest that

these functions will provide a useful set of trial functions
for variational solution of the vortex problem. %'e note
in this connection that only the parameters a and U» ap-
pear in Eq. (11) as possible variational parameters. How-
ever, a linear variational calculation involving all of the
basis functions I'+„allows for a complete solution of the
problem.

In this connection it must be recognized that the BdeG
operator O, H~ +0. 5 is not positive definite and there-
fore the appropriate functional to be used in a variational
calculation is ((o,H&+cr, b, ) ). This was first pointed
out by de Gennes. ' In general, of course, one must mini-
mize the free-energy functional subject to self-
consistency.

The previous discussion serves a primarily heuristic
purpose. In a future work, ' we present a more careful
analysis. Following the work of Bardeen et al. ,

' we in-
voke the functional form of Caroli and co-workers, " '

f=gH"" '(k»r )+c.c. with asymptotic form

can be used approximately by joining them at x =0.
The boundary condition analysis of Ref. 12 now ap-

plies; g is real at r =r„,or x =0, in order to ensure that f
goes into an ordinary Bessel function. This condition in
turn requires that (m +n) be zero or an integer. It can be
shown' that the optimum value of E is given by
E„=b (r„). We note that this remarkably simple for-
mula for the bound-state energy, namely

E„=+6(r„), r„=p/k», p=+ —,', +—'„.. .

is independent of the form b, (r) =h, tanh(ar ).
In the simplest case of I= —n the wave functions are

P„"=sech"(y). Since our main interest in the present
work is to establish feasibility of the trial solutions to the
vortex problem, we will use an empirical procedure for
determining the variational parameters embodied in the
preceding equations. A beginning estimate of a is taken
from Refs. 9(b) and 9(c) on the one-dimensional BdeG
solutions and vF is the same as that used in Refs. 4 and 5.
In Fig. 1 we compare our variational functions and ener-

U10(X) /U40(X)

0
{a)

H„"''"-exp +i J "dr'P(r') /(r' r„')'", —
P

where p(r):—(ktt/r }(r r„)'/ and r„=p/—k tits the
classical turning point. Using this method the equation
for g becomes

(r2 2 )1/2

U 1 /7 (X) /V1/2(X)

0

{b}

X=r/r

0Z g+~oxg=Eg .
dT

(12)

In terms of the new
x =g '(r —r—„)'~ we obtain

independent variable

dg b,(x) E—2io., + O.„g= g .' dx oo

(13)

b,(x)=b tanha(g x +r„)'~
tanho. T„, x ~0

C

A„tanhagx, x ~ (x (14)

The wave functions of Eq. (11) are valid for x~ ~ but

Equation (13) can now be identified with our preceding
equations [(4) or (10)]. Thus, using y =—tanhax, which
goes to tanh (ar/g) for r ))r„, we have

0
(c}

60

FIG. 1. (a) The density
~ U„~ =

~ J„+,/2(KF„}~'. These curves
replicate to within graphical accuracy the corresponding plots
in Ref. 4. For these large values of p the P„part of the wave
function is essentially unity. (b) The functions

U, /2
=Jo{kFr )sech(r/() and V, /2

=J, (krr )sech(rig). These
curves replicate to within graphical accuracy the corresponding
plots in Ref. 5. (c) E„=A(p/k» ). Solid curve is 5(r„)courtesy
of M. Schluter. Open circles are exact E„courtesy of J. Shore
and M. Schluter.
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gies to those calculated numerically in Refs. 4 and 5. The
agreement is excellent to the graphical accuracy reported
in Refs. 4 and 5.

In summary we have presented a method for generat-

ing approximate wave functions for BdeG equations.
Special solutions for the SNS junction are used to study
the vortex problem. These solutions should be useful for
a variety of studies of the vortex state.
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