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Surface fractal dimension for percolation clusters: A Monte Carlo study
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Monte Carlo methods have been used to determine the fractal dimension which characterizes the in-

tersection of percolation clusters with the lattice surface at the critical point. A comparison is made

with earlier exact enumeration results. In two dimensions surface scaling laws for cluster statistics have

been directly verified.

I. INTRODUCTION

It has previously been shown that the difference be-
tween the fractal dimension d, which characterizes the
intersection of percolation clusters with a lattice surface,
and the bulk fractal dimension df may be expressed in

terms of the bulk critical exponents y and v and the sur-
face critical exponent y1 by'

V1 =(df —1)—d, .

In previous work we used estimates for y&, y, and v, ob-
tained from exact enumeration data, to calculate df —d, .
(The difference in these fractal dimensions can also be ex-
pressed in terms of the bulk and surface order parameter
exponents P and P&. Watson has estimated P& from
Monte Carlo data. )

In this study we have generated large percolation clus-
ters attached to a surface and hence obtained direct esti-
mates of df —d, in two and three dimensions. This has al-
lowed a more precise estimate of this difference in three
dimensions than that obtained from exact enumeration
data. By an analysis of the surface cluster data, we have
verified the scaling form for surface cluster statistics in
two dimensions.

II. SIMULATION AND ANALYSIS

A modified Leath algorithm was used for growing
clusters. A point on the surface of the lattice was chosen
as the seed point. During the growth process, sites in the
perimeter of the growing cluster (which have not previ-
ously been visited) are visited and occupied with proba-
bility p =p, . This growth process terminated when the
list of sites to be visited was empty or the cluster reached
another boundary of the lattice. Clusters that terminated
in the latter manner were considered to have died un-
naturally and were excluded from the cluster statistics.
Small clusters (less than 1000 sites in two dimensions or
500 in three dimensions) were also excluded, since these
do not have enough sites to allow a meaningful analysis
of the fractal dimensions.

We expect that, for sufficiently large clusters, the total

and r is the root-mean-square distance from the seed.
Since, in general, we do not expect two clusters to have
exactly the same value of r, we binned clusters according
to their value of r. The size of the bins was chosen so
that each bin contained at least 50 clusters. The value of
r used in the analysis was the average value of r in each
bin and the corresponding average (N, /N) calculated
for each bin.

For each bin i we calculated

D; =ln(N, /N);/lnr; .

TheerrorE; inD; is

E; =lnA /lnr;+o;,

(4)

where 0.; is the statistical error associated with bin i. The
average (over bins) of D; and its standard deviation was
plotted as a function of 1/(minimum value of (N ); in the
bins used in the average). This procedure was chosen be-
cause for large clusters where the systematic error
(ln A /lnr; ) is small, the statistical error is large due to the
relatively small number of clusters available for analysis.
Figure 1 shows typical plots of this type. The plot is ex-
trapolated to infinite cluster size to obtain the final esti-
mate for D. These are summarized in Table I.

TABLE I. Summary of results for two- and three-
dimensional lattices.

Lattice
Cluster

size range
Number

of clusters df dg

Triangular
Square
Simple cubic

1000—150000
1000-150000
500-1250

6000
8500
8500

1.20+0.05
1.18+0.05
1.34+0.04

number of sites in the cluster N and the number of cluster
sites in the lattice surface N, are related by

(N, /N) = A.

where A is a constant,

D=d
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