PHYSICAL REVIEW B

VOLUME 46, NUMBER 9

1 SEPTEMBER 1992-1

Surface fractal dimension for percolation clusters: A Monte Carlo study
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Monte Carlo methods have been used to determine the fractal dimension which characterizes the in-
tersection of percolation clusters with the lattice surface at the critical point. A comparison is made
with earlier exact enumeration results. In two dimensions surface scaling laws for cluster statistics have

been directly verified.

I. INTRODUCTION

It has previously been shown that the difference be-
tween the fractal dimension d; which characterizes the
intersection of percolation clusters with a lattice surface,
and the bulk fractal dimension d, may be expressed in
terms of the bulk critical exponents ¥ and v and the sur-
face critical exponent ¥, by'"?
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=(d;—1)—d, . (1

In previous work we used estimates for v, ¥, and v, ob-
tained from exact enumeration data, to calculate d,—d;.
(The difference in these fractal dimensions can also be ex-
pressed in terms of the bulk and surface order parameter
exponents 3 and f3,. Watson® has estimated B, from
Monte Carlo data.)

In this study we have generated large percolation clus-
ters attached to a surface and hence obtained direct esti-
mates of d,—d; in two and three dimensions. This has al-
lowed a more precise estimate of this difference in three
dimensions than that obtained from exact enumeration
data. By an analysis of the surface cluster data, we have
verified the scaling form for surface cluster statistics in
two dimensions.

II. SIMULATION AND ANALYSIS

A modified Leath* algorithm was used for growing
clusters. A point on the surface of the lattice was chosen
as the seed point. During the growth process, sites in the
perimeter of the growing cluster (which have not previ-
ously been visited) are visited and occupied with proba-
bility p =p.. This growth process terminated when the
list of sites to be visited was empty or the cluster reached
another boundary of the lattice. Clusters that terminated
in the latter manner were considered to have died un-
naturally and were excluded from the cluster statistics.
Small clusters (less than 1000 sites in two dimensions or
500 in three dimensions) were also excluded, since these
do not have enough sites to allow a meaningful analysis
of the fractal dimensions.

We expect that, for sufficiently large clusters, the total
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number of sites in the cluster N and the number of cluster
sites in the lattice surface N, are related by

(N,/N)=4r?, )
where A is a constant,
D=d;—d,, (3)

and r is the root-mean-square distance from the seed.
Since, in general, we do not expect two clusters to have
exactly the same value of r, we binned clusters according
to their value of r. The size of the bins was chosen so
that each bin contained at least 50 clusters. The value of
r used in the analysis was the average value of r in each
bin and the corresponding average {N,/N) calculated
for each bin.
For each bin i we calculated

D;,=In{N,/N),/lnr; . 4)
The error E; in D; is
E,=InA/lnr;+o,;, (5)

where o; is the statistical error associated with bin i. The
average (over bins) of D; and its standard deviation was
plotted as a function of 1/(minimum value of (N ), in the
bins used in the average). This procedure was chosen be-
cause for large clusters where the systematic error
(InA /Inr;) is small, the statistical error is large due to the
relatively small number of clusters available for analysis.
Figure 1 shows typical plots of this type. The plot is ex-
trapolated to infinite cluster size to obtain the final esti-
mate for D. These are summarized in Table I.

TABLE 1. Summary of results for two- and three-
dimensional lattices.
Cluster Number
Lattice size range of clusters dy—d;
Triangular 1000-150 000 6000 1.20+0.05
Square 1000-150000 8500 1.18+0.05
Simple cubic 500-1250 8500 1.34+0.04
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FIG. 1. The average (over bins) of D, {D ), plotted against
10°S where S=1/(minimum value {N ) in each bin) for (a) tri-

angular and (b) simple cubic lattices. The dashed lines indicate
the standard deviation.

III. SCALING ANALYSIS

Generalizing the standard scaling theory for bulk per-
colation,’ we expect the number of clusters of N sites, N,
of which are in the surface, to scale as

nyn =N "¢(eN°,eN"), 6)
where

€=p.—p, ©)

o/0,=d/d;, (8)
and

= “’—d"f“ﬁ +1. ©)

Hence, for e=0 and N very large we expect

r

nN‘NSNN_ S (10)
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FIG. 2. A plot of Inny N, against InN for the triangular lat-
tice. The slope gives the value for 7.

We have been able to verify this form for the two-
dimensional lattices and obtain estimates

7,=1.48+0.06 (triangular) , (11
7,=1.5310.06 (square) (12)

from the data (see Fig. 2), consistent with the value of
7=1.53, obtained by using the scaling relation (9) and the
exact value of d,=1.89. In three dimensions, due to a
lack of data for sufficiently large clusters, there is too
much curvature in the plots of Inny N, VS InN to allow us

to estimate 7.

IV. SUMMARY

The aim of this work has been to directly measure the
geometrical properties of the intersection of large per-
colation clusters with a lattice surface. These properties
are characterized by the difference d,—d; (noting that
d;—d;=1 for a Euclidean object). Our estimates for
d;—d; in two and three dimensions are given in Table I.
In two dimensions our results are consistent with the
values obtained from conformal invariance theory and
Eq. (1). In three dimensions our value is 1.3410.04,
lower than the value 1.5310.09 obtained earlier by using
exact enumeration data and Eq. (1). The series result is
based on a relatively small number of terms and, as such,
the error estimate represents only the apparent conver-
gence in the analysis. Therefore we consider the Monte
Carlo estimate to be more reliable.
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