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The behavior of holes in the one-dimensional (1D) t-J model differs substantially from the one in pla-
nar correlated systems. We show that within the 1D model one can recover some essential properties of
2D systems by including longer-range spin exchange. Be means of analytical calculations for the aniso-
tropic exchange and the exact diagonalization of small systems, it is established that this generalization
leads to the large mass enhancement for a single hole, to the hole binding at strongly reduced J/t, and to
substantial changes in the phase diagram at electron densities n & 1. It is shown that the longer spin ex-
change changes qualitatively the phase-separation line J,(n), which obtains an n dependence analogous
to the 2D systems, i.e., opposite to the one in the 1D t-J model. The correlation exponent E~ calculated
in the Luttinger-liquid regime J &J,(n) indicates also that the region of dominant pairing correlations
can move even to J/t &1.

I. INTRODUCTION

Unusual electronic properties and the unknown mech-
anism of superconductivity in copper oxides have stimu-
lated numerous studies of low-dimensional models for
strongly correlated systems. Of particular interest is the
ground state of the prototype t J(Ref. 1-) and Hubbard
models on a planar lattice. So far much better under-
stood are 1D systems. Their typical feature is a separa-
tion of charge and spin excitations ' in the low-energy
regime. Several models show such phenomenon in the
whole energy range: the Luttinger model, the Hubbard
model in the limit U/t ))1, or equivalently the t-J mod-
el at J/t ((l.

Properties of 2D systems appear to be quite
different. There are several indications for a stronger
coupling between spin and charge degrees of freedom, at
least beyond the low-excitation regime. Hole masses are
found to be strongly enhanced for J/t «1.""Two
holes added to the undoped antiferromagnet (AFM) seem
to bind in a singlet in a broad range of J/t. ' There is
also enough evidence for essential differences in the phase
diagram. The phase diagram of the planar t-J model has
been analyzed so far by the means of the exact diagonali-
zation' and by the high-temperature expansion. " The
shape of the phase separation line is still to some extent
questionable, in particular near the half filling n (1.
Nevertheless all results show, that on increasing J the
phase separation takes place first at n (1, while J, (n)
monotonically increases toward lower densities n~0.
This is just opposite to the behavior found in the 1D
model.

In this paper we show that several 2D phenomena can
be simulated within a generalized 1D t-J model, where
the nearest-neighbor exchange J is supplemented with
longer-range exchange terms JI, l ) 1. Such a model can
be advocated in terms of the 2D t-J model, which can be
reduced to the generalized 1D model after a mean-field-
type decoupling between chains. This procedure and the
model are described in Sec. I. Section II is devoted to the

analysis of single hole and hole pair properties. The
difference to the usual t-J model can be best understood
and approached analytically within the simpler model
with an anisotropic (Ising-like) spin exchange, while the
isotropic case is studied by the exact diagonalization of
small systems. Of particular interest are the strong re-
norrnalization of the coherent mass and the appearance
of the hole binding at modest J!t&1. These effects are
quite established in the 2D t-J model, where they appear
mainly as a consequence of the local AFM order across
the hole. In 1D similar effects may be achieved by a
longer-range spin exchange. Results for other electron
densities n and for the phase diagram are presented and
discussed in Sec. III. One of the most interesting obser-
vations here is that in the generalized model the phase-
separation line behaves as in 2D. Before the onset of the
phase separation we find as well a regime dominated by
pairing correlations, which can now appear even at
J/t (1.

II. MODEL

In this paper we consider the following model, which is
a generalization of the 1D t-J model,

H= t g (c;,c—;+, , +H. c. )
l, S

+ g (
—1)' 'Ji g (S, .S, +i ,'n, n, +i)—, —

I E

where JI, l ) 1 denote the spin exchange beyond nearest
neighbors. The signs are already chosen so that JI )0
enhance the AFM ordering. In Eq. (1) the density-
density correlations are subtracted in all exchange terms
to keep the analogy with the usual t-J model.

The underlying idea is straightforward. The exchange
Jt, l ) 1 can establish an AFM (Neel) ordering across the
hole. This is the case in 2D where it is achieved by an in-
direct exchange around the hole. It is evident however
that on a chain the long-range AFM order, which exists
in a planar system at small (vanishing) doping, can be ob-
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tained only within an infinite range L~oo model. On
the other hand, discussing the finite doping more realistic
are finite range models L-a ( ~, where a denotes the
average hole-hole separation.

In a more formal way we can establish the relation
with the planar t-J model on the level of the mean-field-

type approximation (MFA). Let us assume a system of
1D correlated chains coupled only via the spin exchange
J, with an additional external inhomogeneous field h, act-
ing on the central 0th chain,

H= gH„+J gS„; S„+, ,
—QSLh, , (2)

where H„represents the t-J Hamiltonian for the nth
chain. Performing the MFA-type decoupling of the in-
terchain spin exchange term and calculating the local
spin averages within the linear response to the effective
mean fields on each chain, we obtain a set of equations in
the wave vector q representation

(S„;) =y, h &„—Jy, ((&„',, ) + (S„',, ) ), (3)

where y is the susceptibility of the 1D t-J model. If
there is no spontaneous ordering for h =0, i.e., if
2Jg & 1, the set of Eqs. (3) yields the solution

(gz )
y h

Ql —4J y
(4)

Treating in an analogous MFA also the longer range
1) 1 spin exchange in the generalized 1D model (1), with
the same additional external field as in Eq. (2), we get as a
result the correspondence

J — y e i(v m+)l(~ 0 Qyo 4J2) I ) 1

q

which reduces for small J to

J — ~ i(q+m)12J2yo l ) 1
1

N q
q

(6)

Since at low doping g has a maximum (singularity) at
q-~ we reproduce the desired form with Jl)0 only

slowly decreasing with l.
It is evident that the previous analysis where the

correspondence between models has been established on
the level of the linear response is appropriate only for
qualitative arguments within the paramagnetic phase,
characterized by a short-range AFM order. On the other
hand at T=0 the singularity of y at q =2k~ leads in Eq.
(3) to the instability of the assumed paramagnetic state
toward a spin-ordered phase. This tendency to ordering
in 2D is however overestimated due to the MFA-type ap-
proach and in particular due to the neglected interchain
hopping. Nevertheless we expect that hole properties are
mostly governed by short-range AFM order, so that the
proper description of the longer-range order is not so cru-
cial.

III. SINGLE HOLE AND TWO HOLE STATES

(g)
I I &r I

I I
4 4 &) (b) I 4 4 (t)

I )r

FIG. 1. Several spin configurations as they evolve by motion
of a single hole and a hole pair, respectively.

The main novel feature of the longer-range spin ex-
change in the model Eq. (1) is the spin string effect con-
nected with the hole motion, typical for 2D systems, '

but not present in the usual 1D t-J model. ' This is best
seen in the Ising-type model with an extreme anisotropic
spin exchange, where we replace

S; S;+l~S S+( .

Without holes the ground state is in this case an ordered
Neel spin configuration. The advantage of the Ising case
is that the problem of one and two additional holes, i.e.,
N& =1,2, can be reduced to a potential problem and
treated analytically.

Let us for illustration first discuss a single hole N& = 1

case for a specific exchange range L =3. Starting with a
localized hole at the origin r=0 in a Neel spin back-
ground, as shown in Fig. 1(a), one can generate different
configurations by hole hopping, as presented in Figs. 1(b)
and 1(c) (for distances r =1,2). The corresponding poten-
tial energies, expressed relative to the Nz =0 system, are

co=Ji+Jz+J
e, =t + —,'J, +J +J3,
eq —so+ —,

' J) + —,
' J~+2J3,

~r+3 ~o+ pJ]+ 2J2+ p J3

while e „=e„. It is easy to see that e„ increases with dis-
tance until ~r ~

=L, if we choose all Jt )0. This is a typi-
cal string effect, which has the correspondence with the
analogous phenomenon found in 2D with the long-range
AFM order. In the latter case however the energy in-

creases linearly to arbitrary distances (if one neglects
loops). Therefore, to simulate the ordered 2D state we
would need in 1D an infinite range L ~~.

It is now easy to calculate the ground-state energy Eo
(NI, = 1) by solving the potential problem with local ener-

gies Eqs. (8) and hopping matrix elements t between
neighboring localized states. The solution is always a
bound state of the hole (holon) and the AFM domain wall

(spinon). '

There is however another topologically different
configuration for open boundary conditions, as shown in
Fig. 1(d). Here, the position of the localized hole coin-
cides with the AFM domain wall, the configuration
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representing thus a system with a single holon but
without spinons. Such a configuration is freely propaga-
ting, since the potential energy is not the function of the
distance r. Hence the solution for the energy is

0.0

-05—

Eo(Nq =1)= 2—t+eo+ ,'J2—+J3 . (9)
-1.0—

Although Eo is higher in the localized case (t =0), the
solution becomes the stable one for smaller JI /t.

An analogous analysis can be performed for a hole pair
Nz =2. Corresponding configurations are presented in

Figs. 1(e)—1(g) (r =1,2, 3), whereby the potential energies
Z„ for holes at the distance r are

-1.5-

-2.0
0.0 0.5 1.0 1.5

)/t
2.5 3.0

I
=

—,
' JI+2J2+2J3,

Z2 —el+ —,
' Jl+ —,

' J~+J3,
Z3 F, +—,'J, +J +—,'J3

&r &4 ZI+ 2 JI +J2+2J3

(10)

FIG. 2. Binding energies eb in units of t vs J/t for L =2,3.
With open and solid circles we present numerical results, as ob-
tained from Eqs. (11) and (12), respectively. Dashed curves
represent exact results in the Ising limit. Solid lines are guides
to the eye only.

It is evident that Z, also increases with r until it reaches
the plateau at r & L. Taking into account the hopping be-
tween states with different r )0, we calculate the
ground-state energy Eo (N&=2). Due to the hard-core
repulsion between holes requiring r )0 a hole pair forms
a bound state only above certain threshold JI /t & J&, /t.

This threshold is strongly dependent on the spin ex-
change range L. Let us consider further in this section a
model with equal J& =J, l ~L. In this case we get the fol-
lowing threshold values for the pair binding: J, /t =4.00
for L=l, J, /t=0. 93 for L=2, and J, /t=0. 31 for
L =3. The rapid decrease of J, with L can be attributed
partly to larger cumulative spin exchange due to the in-
creasing range as well as to the broader potential well
with the width d-2L. Underlying prerequisite is a
longer-range Neel-type spin coordination across holes,
which is absent for L =1. It should be noted that the
binding of the hole pair is enabled by the efticient corre-
lated pair hopping allowing for a large (negative) kinetic
energy (or small effective pair mass), as found in 2D sys-
tems as well. '

The isotropic case, Eq. (1), cannot be analyzed analyti-
cally. Hence we evaluate the quantities of interest via the
exact diagonalization of small 1D systems. It is now well
established that the ground state in short chains is in gen-
eral at a nontrivial wave vector qo.

' This can be ob-
tained by studying the dependence Eo(8) on the phase 0,
entering kinetic term of Eq. (1) as t ~ t exp(+i 8)

Let us investigate further the question of the ho1e bind-
ing in the isotropic case. It is known that for the usual t-
J model the binding of two holes appears at I/t-3. 5
(Ref. 12), which is the value very close to the result
within the Ising limit J/t =4.00. In Fig. 2 (open circles)
we present numerical results for the binding energy

eb =Eo(Nq =2) 2EO(Nq = I )+Eo(N~ =0—),
as obtained for Nh =14 sites and L =2, 3. It should be
noted that here the energy minimum for N& = 1 is at non-
trivial Oo, while for Nz =0,2 it is at Oo=0. For compar-
ison also the results in the Ising limit (dashed curves) are

Zb =Eo(Nh =2)—2EO(Nq = 1)

2NI —1 Eo(Nq =0), (12)

and results (solid circles) are also shown in Fig. 2. Al-
though the onset value for binding J, /t is substantially
larger, it is still in the regime J, /t (1 for L =3. We ex-
pect that the analysis via Eq. (12) gives more reliable
threshold values J, /t, being compatible with the evidence
from the density-density correlations. In Fig. 2 we also
notice, that in the region J, &J &J' Zb from Eq. (12) fol-
lows closely the analytical curve in the Ising case. On the
other hand, above the (Ising-case) cusp J & J*, e& from
Eq. (11) gives a better agreement, while Eq. (12) yields un-
physically large binding energies. These observations
confirm that in a finite 1D system the numerical analysis
should be adapted to the investigated regime, e.g., to the
holon-spinon decoupling at J, &J(J*.

presented. The cusp in the latter curves (for L =2 it ap-
pears at J &3t) at J=J' comes from the change of the
character of the stable single-hole state, as described
above and represented by Figs. 1(a)—1(c) for J&J' and
by Fig. 1(d) for J &J, respectively. Such discontinuity
naturally does not exist in the isotropic case.

From Fig. 2 (open circles) the resemblance to the 2D
result with e&

——J is evident. We notice however that
the binding calculated via Eq. (11) is overestimated due to
the odd-even effect in the particle number. Namely, a
single hole in an even chain introduces in a system an ad-
ditional spinon, not present for N& =2. This artificially
enhances the binding. Related is the observation that the
onset of the binding eb does not coincide with the evi-
dence from the hole density-density correlations which
appears only at somewhat higher J/t

To remedy the even-odd effect one can choose in the
evaluation of the binding energy only systems with an
even number of electrons, but with a different number of
sites NO=N2, N, =No+1. The expression (11) should be
then modified
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FIG. 3. Coherent hopping integral t,*/t vs J/t for different I.
as obtained by the exact diagonalization of the system with
N=16, NI, =1.

Let us further consider the coherent motion of a single
hole, N& =1. The coherent mass m,* and the related hop-
ping integral t,*=(2m,') ' can be calculated via the cur-
vature of Eo(e) around the minimum, '

B'E,(e)
2t,*=

B8 e=eo
(13)

IV. PHASE DIAGRAM

The 1D t-J model at small J/t falls into a universality
class of Luttinger liquids, ' where the asymptotic be-
havior of correlation functions is determined by a single
nontrivial correlation exponent E . The same should
also hold for the generalized t-J model at JI /t «1, since
the spin exchange is still of the short range.

The phase diagram of the 1D t —J model has been in-
vestigated in Ref. 12. Using the exact diagonalization

In this way it has been shown that in the t-J model
(L = 1) the hopping remains only weakly renormalized, '

i.e., t,* & t even for large J/t ))1. In particular the value

t,*=0.938t at J/t =2 is known via the Bethe ansatz exact
solution. ' On contrary results change dramatically on
increasing L, as shown in Fig. 3. It is obvious that t, It is
decreasing strongly with L. At the same time the kinetic
energy and the related incoherent hopping t, are only
weakly reduced in the investigated regime J!t& 1 for all
considered L.

The origin of this renormalization has the analogy to
the one in 2D. While for L =1 the spin configuration is
(nearly) unperturbed by the hole motion, ' the spin
coordination over the hole is changing toward more
AFM-like (Neel-like) for L & 1. In particular this holds
for larger J)J*. As in 2D the hole coherent motion can
happen in the latter regime only due to spin flips (not
present in the Ising case) erasing the spin strings. It
should be however noted that the dependence of t,* on
J/t does not follow the one expected in planar sys-
tems, i.e., t,*/t o- t/J for J/t «1. This has the origin
in the fact that on a chain at J/t (&1 very large L )) 1

would be needed to induce a longer-range AFM ordering
across the mobile hole.

method the phase separation line J, ( n ) between the
Luttinger-liquid phase and the phase separated region
has been calculated. In the latter region which appears at
J)J, the separation into an undoped Heisenberg chain
and an empty chain takes place. The critical values were
established at J, /t ~ 2.0 for n &(1 and at J, /t =3.5 for
n ~1. Within the Luttinger-liquid phase the correlation
exponent K was found to vary continuously, from

Kp z
at the boundaries J=0 and n =0, 1, to K

while approaching the phase separation line J, ( n ). This
indicates that in the vicinity of the phase separation
J J, there is a region of dominant pairing correlations
characterized by K & 1, ' as confirmed also by Monte
Carlo calculations. The slope of the phase separation
line J,(n ) in 1D (Ref. 12) is opposite to the one in 2D."

To calculate the ground-state energy of the model
equation (1) as a function of the electron density
n =N, IN we use the Lanczos diagonalization method on
a chain with N=14 sites. To reduce the finite-size oscil-
lations we use periodic boundary conditions for
N, =4k+2 electrons and antiperiodic ones for N, =4k.
We present results for two different sets of parameters.
In the first we choose L=2 and Jg=J] while in the
~~co~d we put L =3 and J, =

—,'J, =
—,'J, . Note that we

use here for L =3 smaller J3 to prevent too steep varia-
tions in the phase diagram.

We determine the phase separation line by calculating
the compressibility ~, which can be expressed in a finite
system as'

Eo(N, +2)+Eo(N, —2) —2EO(N, )
(14)

4

The discrete second derivative is calculated taking into
account only states with even N, to avoid pronounced
even-odd finite-size effects. On the other hand we can
connect in the Luttinger-liquid-regime ~ to the
Luttinger-liquid parameters K, and the charge velocity
v, (Ref. 3)

1 7T Vc

n'~

We can numerically determine also the charge stiffness

(15)

BE (0)D=
2N gg~

Vc
(16)

Using the relations Eqs. (15) and (16) we can evaluate nu-
merically both K and v, .

The phase separation line J,(n) in the phase diagram is
determined by the divergence I~~ ~. In Figs. 4(a) and
4(b) we present J, (n ) for the L =2 and L =3, respective-
ly. Results, obtained numerically for N = 14, are
represented by dots. Besides those we include also exact
results for the phase separation in the two limiting cases.

(a) n~0: The problem of two electrons N, =2 in an
infinite chain can be solved exactly. Corresponding criti-
cal values are J, /t =2.00 for L = 1, J, /t =3.24 for L =2,
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FIG. 4. Phase diagrams for (a) L=2 J2=J& and (b) L=3,
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J
&

~ The phase separation lines J, ( n ) are denoted
with solid lines. Presented also are points of constant K~, con-
nected with dashed curves. At n =0 and n =1 exact results for
X, =2 and Nz =2 (Ising case) are plotted.

and J, /t =2.00 for our particular choice L =3.
(b) n~1: In Sec. II we already presented results for

Nz =2 in the Ising case and for the corresponding thresh-
olds J, /t. We note that for the case L =3 discussed here
we get J, /t=0. 47. For the isotropic case exact values
for J, are not available and we can only rely on the exact
diagonalization results as discussed in Sec. II.

Comparing Figs. 4(a) and 4(b) with the phase diagram
of a standard t-J model in Ref. 12 we find, that slopes of
the phase separation line J,(n) are opposite. In the t-J
model the phase separation takes place first by introduc-
ing electrons into the empty band. ' On the contrary in
the effective model Eq. (1) for L ~2 the system becomes
unstable first by introducing holes to the half-filled band.
The same tendency can be seen already from the exact re-
sults for N, =2 and N„=2 (Ising case) discussed above.
The main difference between different L appears at n ~ 1,
where the phase separation line moves toward much
lower values J, with increasing L. The effect of longer-
range spin exchange is less pronounced at n «1. It
should be noted that in the latter regime the model is
more artificial, since the derivation as presented in Sec. II
does not apply here.

There is a strong similarity of the phase diagram in
Figs. 4(a) and 4(b) to the one of the 2D t Jrnodel ob--
tained in Refs. 10 and 11. On increasing J/t the phase
separation in 2D appears first at low hole densities n —1

and after that J, increases toward n ~0 ending at
J, -3.8. The lower critical value J, (n = 1) is however far
from being settled, claimed to be J,—1.2 from the high-
temperature expansion" or even J, =0 in Ref. 10.

While constructing J,(n) in Figs. 4(a) and 4(b) we in-
cluded known binding thresholds for N, =2 and (approxi-
mate) for Nh =2. Still there remains a possibility that
pair binding (either of holes or of electrons) happens be-
fore the phase separation. This question seems to be
open even for few electrons in the 1D t-J model. Of par-
ticular interest is the behavior at n~1. Because of
finite-size effects the exact diagonalization results for the
model Eq. (1) cannot resolve between the pair binding
and the phase separation. Therefore we performed an
analysis of several 1D few-body models with the interac-
tion being of the potential type as in Eq. (11). Results in-
dicate that the pair formation and the phase separation
energy emerge together in these cases, which are however
not general enough.

In Figs. 4(a) and 4(b) we also present contours of con-
stant Ep Comparing results again with the 1D t-J
model' we observe, that the region of dominant (super-
conducting) pairing correlations, which according to the
g-ology appear at E ) 1, moves with increasing L to-
ward lower and physically more relevant values J/t & 1.
Furthermore in the case L=2 the area of the regime
dominated by pairing correlations in the phase diagram
increases in comparison to the 1D t-J model.

V. CONCLUSIONS

In preceding sections we have shown that the 1D gen-
eralized t-J model with longer-range spin exchange simu-
lates several properties of the 2D (or higher D) t Jmod--
els, in particular those which are connected with the
AFM short-range order and with the phenomenon of the
spin string formation. Thus we find a clear correspon-
dence of the large mass renormalization, the hole bind-
ing, and the phase separation in the generalized 1D mod-
el to those in planar models.

The hole pair formation can appear for L ) 1 even at
J/t & 1. This can be attributed to the attractive potential
which is a consequence of the perturbed spin background
possessing short-range AFM order. The attraction has
the range l-L, at least in the Ising limit. Note that
there is no such spin string effect in the standard 1D t-J
model. ' The same is the origin of the close relation be-
tween 1D and 2D phase diagrams, and in particular of
the similarity between the phase separation line in 1D
generalized model (for L ~2) and the one speculated for
2D 10, 11

We should however mention that certain features of
higher-dimensional correlated models cannot be repro-
duced by Eq. (1). This is the case with the onset of the
ferromagnetism and of polarized states at J/t «1, n ~ 1

which arise in D ) 1 due to loop-like motion of holes. It
has been shown, that the latter effect can be also simulat-
ed in 1D by allowing for the longer-range hopping of
electrons, e.g., the next-nearest-neighbor hopping t' & 0. '

Most interesting regime in 2D strongly correlated sys-
tems is that of low hole doping n ~ l. It is clear that here
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our model with fixed range I. yields the proper qualitative
trend, but cannot be used for quantitative comparisons.
To represent the onset of AFM long-range order at n ~1
it would be thus more appropriate to use variable L and
renormalized JI decreasing with I.. This can lead to
modifications of the phase diagram at n (1. The thresh-
old J, /t for pair binding can move even to lower values,
as found in 2D t-J model. ' While our analysis of the
model (l) seems to indicate on the coincidence of the pair
formation and the phase separation, this still remains an
open question, in particular for more general (higher-D)
models. In the generalized 1D t-J model the pairing
correlations become dominant as the precursor of the

phase separation. We have shown that this can happen
even at J/t (1 for reasonable I.. On the basis of this
finding it is tempting to speculate that pairing might exist
even in the physically relevant regime of more realistic
planar models.
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