PHYSICAL REVIEW B

VOLUME 46, NUMBER 9

Flux-flow resistivity in model high-temperature superconductors

K. H. Lee and D. Stroud
Department of Physics, The Ohio State University, Columbus, Ohio 43210
(Received 6 April 1992)

We calculate the resistivity of a model “high-temperature superconductor” consisting of a simple-
cubic arrangement of superconducting “grains” coupled together by resistively shunted Josephson junc-
tions. The effects of temperature are simulated by Langevin noise in each junction. We find a strong
magnetoresistance for magnetic fields both parallel and perpendicular to the applied current, in agree-
ment with the results of Kwok et al. [Phys. Rev. Lett. 64, 966 (1990)]. When the magnetic field B and
the current density J make an angle ¢, the resistivity at sufficiently high temperatures roughly obeys the
law p(B,T,$)=po( B, T)+ Ap sin’(¢) in agreement with experiment. The resistivity is strongly dependent
on current density. At zero magnetic field it is found to satisfy the scaling relation
E=E"'72F  (JE~'®y/cky T), where E is the electric field, c is the speed of light, J is the current densi-
ty, d is the dimensionality, and F are scaling functions which apply above and below T,.. The dynami-
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cal critical exponent is estimated for this model as 1.5%0.5.

I. INTRODUCTION

Kwok and collaborators! have recently studied the
resistivity p,, of single-crystal YBa,Cu;0,_5 with both
current density J and magnetic field B applied parallel to
the ab plane. In untwinned single crystals, for tempera-
tures T < T,y where T, is the temperature at which su-
perconducting fluctuations first become substantial, they
found a roughly sin’¢ angular dependence on the angle ¢
between B and J:

Pus(B, T;$)~po, (B, T,0)+ Ap(B, T)sinp (1)

with Ap>0. It is not surprising that the resistivity is
greatest for perpendicular field and current, since this
configuration maximizes the Lorentz force acting on the
flux lines.2 However, even for fields parallel to the
currents, Kwok et al. found a substantial magnetoresis-
tance Ap,, (B, T,0)=p,,(B,T,0)—p(0,T,0), the origin of
which is unknown. Their results are reproduced in the
inset of Fig. 1.

In this paper, we present a simulation of flux flow resis-
tivity in a very simplified model of a “high-temperature
superconductor.” We qaulitatively reproduce some of the
features observed by Kwok et al.,! including the sub-
stantial magnetoresistance with B parallel to J. Further-
more, in zero magnetic field, we find that the current-
voltage characteristics satisfy a scaling relation proposed
by Fisher, Fisher, and Huse,? with dynamical critical ex-
ponent z=~1.5+0.5, and correlation length exponent
v~0.7£0.2. The latter value agrees with expectations
for the classical three-dimensional (d =3) XY Hamiltoni-
an, which is the static limit of our dynamical model.

The remainder of this paper is organized as follows. In
Sec. I we summarize our model. Section III describes
our results. A brief discussion follows in Sec. IV.

II. MODEL

Our model consists of a simple-cubic network of
N=(L /a)® superconducting grains coupled together by
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resistively shunted Josephson junctions. Current [ is uni-
formly injected into each node on the X =0 face of the
network, parallel to one of the planes of the network and
extracted from the opposite face (at X=L). Temperature
is simulated by a Langevin-noise current of the appropri-
ate strength, added in parallel to each junction. A mag-
netic field B is added in the XY plane at an angle ¢ to the
X axis.

The equations describing this model system have been
given previously.* They are

V..
Ilj(t)=ﬁ+lc,l]Sln(91—6]_AI])+IL,U(t) N (2)
_ A - .
ZIijZIi,ext ’ (4)
J
=27 (7,
Aij— ¢0 x[ A dx . (5)

Here I;;(?) is the current from grain i to grain j at time ¢;
Vij=V;—V; is the potential difference between grains i
and j; I.;; is the critical current, R;; is the shunt resis-
tance, and I, .;(z) is the Langevin-noise current of the
(ij)th junction; 6, is the phase of the order parameter on
the ith grain; x; is the position of the ith grain;
®,=hc /2e is the flux quantum; and A is the vector po-
tential. Equation (1) describes the total current through
Jjunction (ij) as the sum of a normal current through the
shunt, a supercurrent, and a Langevin-noise current.
Equation (2) represents the Josephson relation between
current and phase. Equation (3) is Kirchhoff’s Law,
which enforces current conservation at each “grain.” Fi-
nally, Eq. (4) describes the magnetic phase factor, which
must be added to the phase difference between grains i
and j to ensure gauge invariance in the presence of a vec-
tor potential.

We assume that the noise currents in a given junction
have &-function correlations in time® and that noise
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currents associated with different junctions are uncorre-
lated:

2kgT
(I (DI (), = R 8t —1)8;.1s » (6)
ij
where 8., is a Kronecker & function and (---),

denotes an average with respect to a canonical ensemble.®

Equations (2)—(4) can be combined into N equations in
the N unknown phases, which can be solved by straight-
forward iteration in time, as described in several previous
papers.’ Periodic boundary conditions are imposed in the
two transverse (Y and Z) directions. A magnetic field B
is applied in the XY plane, making an angle ¢ with
respect to the direction of current flow along the X axis,
using the gauge A =B cos¢ YZ+B sin¢Z)? .3 We assume
that all critical currents and shunt resistances are identi-
cal and equal to I, and R, respectively. Resistivities are
obtained by computing the voltage differences across the
cubic sample, averaged over the sample faces and aver-
aged over a time interval of order (500-1000)7, where
To=%/(2eRI,.) is the natural unit of time. The equa-
tions of motion are iterated in time steps of typically
AT =0.057;, starting from random initial phase
configurations for each temperature, current, and mag-
netic field. The Langevin-noise current in each time step
is drawn from a uniform distribution between I, /V At
and —1I,, /V'At, where I,, is a cutoff current chosen to
satisfy Eq. (6).

III. RESULTS

Figure 1 shows the resistivity p=(¥ ) /I of the net-
work, calculated as a function of temperature for zero
magnetic field and for a magnetic field f EBaz/d)O:%
(that is, at a field corresponding to 1 of a flux quantum
per plaquette) at a current level per junction I=0.11,.
The results shown come from averages over two indepen-
dent runs, each with a different Langevin random number
seed, as least-squares-fitted to a polynomial of the form
>’ _,a,T"in the range 0.1 <kzT/E; <2.0.

At zero magnetic field, p drops sharply near
kpT =2E;, where E;=#l_/(2e) is the Josephson cou-
pling energy for a single junction. To understand this
drop, we note that in the limit of zero current our model
corresponds to the three-dimensional (d =3) classical XY
model with Hamiltonian H =—E;3 (;;ycos(6; —6;) (the
sum running over all distinct nearest-neighbor pairs of
grains). This model is known to have a phase transition
into a phase-ordered state at a temperature kzT.(B =0)
=2.21E,;.'° In our calculation, the sharp drop in resis-
tivity occurs slightly below this temperature because of
the finite current density.

Figure 1 also shows the magnetoresistivities p(B,T)
with fields parallel and perpendicular to the current at

=1, fitted to a polynomial as at zero field. Clearly, the
network resistivity at any temperature is increased by a
magnetic field, whatever the orientation of the field rela-
tive to the current. In our model, such behavior occurs
because the field substantially lowers the superconducting
transition temperature 7,(B) of the cubic network. This
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lowering is due to the “frustration” of the Josephson cou-
pling in the plane perpendicular to the magnetic field.
With a finite vector potential, the coupling energy be-
tween nearest neighbors is —E,;cos(6; —6;— 4;;). In the
absence of a magnetic field, 4;;=0, and the coupling en-
ergy of all the junctions can be minimized simultaneous-
ly, by a parallel arrangement of phases. Correspondingly,
the superconducting transition temperature of the net-
work is maximized for zero field. When a magnetic field
is present, it is no longer possible simultaneously to max-
imize all the Jospehson-coupling energies for all the junc-
tions. This “frustration” causes the ground-state energy
to be less negative in a field at zero field. The transition
temperature is correspondingly reduced.

Our resistivity curves are broadened over a much wid-
er temperature range than are the experimental resistivi-
ties. We attribute this difference to the absence of
temperature-dependent coupling between grains in our
model. We believe that the experimental measurements
correspond to a strongly temperature-dependent cou-
pling, which leads to a much narrower temperature width
of the transition than in our model. This point is dis-
cussed again below.

The static properties of this frustrated d =3 XY model
have been previously calculated by Shih et al.!! and by
Li and Teitel,!! using Monte Carlo methods. For small
values of the frustration f, both groups found that 7,.(B)
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FIG. 1. Resistivity p(B,I,T,¢) of an 8 X8 X8 sample of cou-
pled Josephson junctions at a current level of 0.10/, vs temper-
ature. Three curves: zero magnetic field; f = %, ¢=0 (B parallel
to the current); and f=4%, $=90° (B perpendicular to the
current). p is defined as the voltage drop per junction, divided
by the applied current per grain. Temperature is given in units
of E;/kg, where E; is the coupling energy of the junction,
E,=#I_/(2e). f is the flux per plaquette, in units of the flux
quantum. The points shown are least-squares polynomial fits to
an average over two independent runs, each with a different
Langevin random-number seed. Inset: measured resistivity of
YBa,Cu;0,_; at an applied field H =0, and at H =1.5 T, with
currents parallel and perpendicular to the field, as quoted in
Ref. 1.
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indeed falls off with B, just as suggested by the above ar-
gument.

Since T, is reduced in the presence of a field, the resis-
tivity is expected to be nonzero no matter what the direc-
tion of the current relative to the field. This reduction is
shown in Fig. 2, where p(B, T) is plotted as a function of
angle for several temperatures at f =4 and I =0.11,. In
order to reduce the noise associated with the Langevin
simulation, we have plotted a least-squares fit of the
quantity

1[p(B,T,$)+p(B,T,m—)
+p(B,T,m+¢)+p(B,T,2m—$)]

to a polynomial of the form 37 _;a,¢" in the range
0<¢ <m/2. This form takes advantage of the symmetry
of p since p must be symmetric about ¢ =17 and ¢=7.
For a given B and T, Fig. 2 shows that p is largest when
B and I are perpendicular because of the extra resistivity
produced by flux flow arising from the JXB (Lorentz)
force acting on the flux lines. But even when B and J are
parallel, the magnetoresistance is nonzero. This finite
“phase-slip” resistivity'? might still arise, however, from
a kind of fluctuating Lorentz-force-driven flux flow. In
this picture, above the freezing temperature of the flux
lattice, the vortex lines are mobile and floppy. Hence, al-
though oriented parallel to the applied field on average,
the vortex lines also have components of their length at
an angle to the applied field. They could therefore ex-
perience a Lorentz force even when current and field are
nominally parallel.

Figure 2 shows that at relatively high temperatures
(kg T~1.4E,) the resistivity has a roughly sin’$ angular
dependence for this applied current. This dependence is
similar to that found by Kwok et al.! but is noisier, prob-
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FIG. 2. p(B,I,T,¢), plotted at several temperatures as a func-
tion of angle ¢ for I=0.11_, f=B /<1>0=§. Temperature is in
units of E;/kg. The different points at a given angle and tem-
perature represent the resistivity at ¢, 7—¢, m+¢, and 27— ¢,
while the solid curves represent least-squares polynomial fits to
the data.
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FIG. 3. Same as Fig. 1, but for f=1. The polynomial fits are
averaged over five independent runs.

ably because of random fluctuations in our Langevin cal-
culation averaged over a finite time.

At lower temperatures (kT =0.6E;) at this current
density, p is very small except for ¢ == /2. This tempera-
ture probably lies below T.(B) for this field, but the flux
lines are only weakly pinned by the periodic lattice.
Hence, they can be set in motion by the relatively small
current of 0.11,, provided that the current is perpendicu-
lar to the magnetic field lines to maximize the Lorentz
force.

Our remaining results (Figs. 3 and 4) are consistent
with this picture. The results in Fig. 3 are least-squares-
fitted to polynomials as in Fig. 1, except that an average
is taken over five different Langevin random-number
seeds. Doubling the field to f=1 is expected to lower
the zero-current transition temperature slightly!! and
hence further to broaden the resistivity curve at any finite
current. Indeed, Shih et al.!! estimate the zero-current
transition temperature at f =1 to be (1.05%0.05)E, /kp,
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FIG. 4. Same as Fig. 2, but for f=
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in good agreement with our findings at finite current den-
sity. Similarly, we have found that doubling the current
level to 0.2, lowers the apparent zero-field transition (as
measured by the sharp drop in resistivity) and broadens
the low-temperature tails of p at finite fields (not shown in
the figures). In general, the dissipation is quite non-
Ohmic: the restivities p={ V) /I are generally larger at
I=0.2I, than at I =0.1I,. This is consistent with the
picture that larger currents more easily depin the vortex
lines than do smaller currents, and hence produce greater
dissipation per unit current. The striking plateau in the
resistivity at f =, with J1B is also consistent with this
picture: the zero-current transition occurs near
kg T =1.05E,; the plateau below this temperature is sim-
ply flux-flow resistivity produced by depinnig the vortex
lattice that forms at lower temperatures. The second de-
crease in resistivity near k37T =0.1E, occurs when the
depinning current rises above the applied current density
of 0. 11, per junction.

To further investigate the non-Ohmic character of the
I-V characteristics, we plot in Fig. 5(a) the resistivity p
at zero field and at several current levels. As expected,
the application of a higher current lowers the apparent
superconducting transition temperature, as measured by
the position of the sharp drop in the resistivity: the
larger the current, the lower the apparent transition tem-
perature. Several authors>!® have predicted that the I-V
characteristics of a homogeneous superconductor at zero
magnetic field can be scaled onto a single universal curve
described by the relation

JE T,

— g1z
E=¢ Fs ckgT

) (7

where E is the electric field, J is the current density, c is
the speed of light, d is the dimensionality, F (x) and
F _(x) are scaling functions which apply above and below
T,, and £ is the correlation length characterizing the
transition. It is expected that, near the transition temper-
ature, & will vary according to a power law,
Ex(|T—T.|/T,)”". In the present problem, since T, is
the transition temperature of the d =3 XY model, we ex-
pect v= 2, 10,14

In Fig. 5(b) we show a scaling plot of the variable
p(J,T)=E /J. According to Eq. (7), p should satisfy

JEC T,

T d*—Z*ZF

(8)

Figure 5(b) shows that Eq. (8) is well obeyed over the lim-
ited current range considered, with T,=~2.21E;/kg,
z=1.5%0.5, and v=0.7£0.2. The error bars are simply
subjective estimates of the amount by which our ex-
ponents could be changed while still allowing satisfactory
collapse of the data onto two scaling curves. The value of
v is in the range of the expected value v=0.67.1%!* For
2, the value of 2.0 has been proposed.> We cannot explain
why our apparent value of 1.5 deviates from this predic-
tion. Possibly our model is in a different dynamical
universality class from that considered in Refs. 3 and 13.
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FIG. 5. (a) Resistivity p(B =0, T) as a function f of tempera-
ture, for an NXN XN lattice of Josephson-coupled grains
(N =8) at several dc current levels 7, all given in units of I.. (b)
Plot of the scaled variable p|T —T,|*!™? as a function of the
scaled current I|T —T,.|~%"/I,. A good fit is obtained using the
values z =1.5, v=0.67, T, =2.21E; /kp. (c) Log-log plot of the
time-averaged voltage {(¥)/(NRI.) as a function of the dc
current density I/I, at T=T.=2.21E;/kg. R is the shunt
resistance. The plot can be fitted to a straight line with a slope
x=(1+z)/(d —1)=1.25.
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More likely, we have simply not reached the asymptotic
small-current critical regime in which scaling (with the
true z) would be valid.

Further evidence of the scaling form is shown in Fig.
5(c), which shows a plot of V(I) at T=T,=2.21E;/kp.
At this temperature, since £— «, Eq. (7) can be shown to
predict a power-law temperature dependence of the form
E «<J*, with x =(1+z)/(d —1). The results of Fig. 5(c)
are well fitted by x =1.25, corresponding once again to
z=1.5.

IV. DISCUSSION AND CONCLUSIONS

Many features of our results are qualitatively con-
sistent with experiment. For example, in agreement with
Kwok et al., we find (i) a nonzero longitudinal magne-
toresistance, (ii) a substantial difference between trans-
verse and longitudinal magnetoresistance, and (iii) an ap-
proximately sin’¢ angular dependence of the magne-
toresistance at certain temperatures. As far as the
current dependence of the transition, Blackstead and col-
laborators'? have reported a lowering of the transition
temperature of YBa,Cu;0,_s with increasing current,
analogous to what we find here. To our knowledge, no
detailed experimental verification of the scaling behavior
at B =0 has been carried out as yet.

In a magnetic field, our transitions are broadened over
a far greater relative temperature range than are the ex-
perimental transitions of Kwok et al. This is undoubted-
ly due to the simplified nature of our model. In contrast
to experiment, our model has an isotropic, temperature-
independent coupling between the ‘“‘grains,” and it has a
periodic pinning which is an artifact of the simple-cubic
grain lattice. Because the real material has a strongly
temperature-dependent coupling, the transition occurs
over a far narrower temperature range than in our model.
As has been discussed by Tinkham and Lobb, !> for exam-
ple, the difference between a granular picture and the
more traditional fluctuation viewpoint is more linguistic
than physical. The “grains,” in our language, are to be in-
terpreted as volumes of superconductor of dimensions
comparable to the coherence length, and the coupling
can be deduced from estimates of the Ginzburg-Landau
critical current density of the homogeneous superconduc-
tor. The periodic pinning is an artifact of our model, but
it could be removed or reduced by introducing disorder

in the coupling strengths. Likewise, the absence of an-
isotropy in our model is probably of only quantitative
significance.

An incidental result of our model is that, when ¢=0,
the zero-temperature critical current is rigorously in-
dependent of B and equal to I, per junction. The reason
is that, since there is no frustration parallel to the field,
one can twist each phase difference between grains up to
/2 without causing a phase slip. This surprising result
agrees with experiment. For example, a recent study'
shows that the low-temperature critical current density of
BiSrCaCuO in the ab plane depends only on the com-
ponent of B in the ¢ direction, not on the ab component.
The authors of this study conclude that since the parallel
component of B is irrelevant, the planes are effectively
decoupled at low temperatures. Our results show, how-
ever, that this result follows even from an isotropic three-
dimensional model in which the coupling is the same in
all three directions.

To summarize, we have presented in this paper an ele-
mentary model, based on a three-dimensional network of
coupled resistively shunted Josephson junctions, that de-
scribes some observed features of the magnetoresistance
of high-temperature superconductors. The results, both
numerical and analytical, are in qualitative agreement
with a considerable range of experimental data for
YBa,Cu;0,_5, and possibly also for other high-
temperature superconductors. Thus our model
represents a natural starting point for further studies,
especially on the kinds of defects which will be most
effective in pinning the flux lines and reducing flux-flow
dissipation. We will present the results of such studies
elsewhere.!’
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