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A theory of the nonlinear electrodynamics of isotropic high-x type-Il superconductors containing an
array of vortices is presented. The theory generalizes a self-consistent approach to vortex dynamics
wherein the effects of nonlocality, vortex inertia, pinning, flux flow, and flux creep are treated in a
unified fashion. We derive and solve a single vector partial differential equation describing the non-
linear response of a type-Il superconductor at frequencies well below the gap frequency. The genera-
tion of nth-order harmonics due to bilinear field nonlinearity is discussed.

This paper is concerned with the nonlinear electro-
dynamics of isotropic type-II superconductors in the
mixed state. Our phenomenological theory self-
consistently includes the coupling of the superconductor
response and the vortex lattice dynamics. The theory
which we present generalizes our theory of linear
response' “® and leads to increased knowledge of elec-
tromagnetic screening and dissipation processes in type-I1
superconductors.

In this work we take into account nonlinearity present
in the equation of motion of the vortex lattice and its con-
servation law for vortex density. The nonlinearity which
we concentrate on is bilinear in the electrodynamic fields;
such a combination of vortex density and velocity occurs
in the vortex continuity equation. Other nonlinearities
arise in the field-dependent coefficients such as the dc con-
ductivity, penetration depth, pinning potential, and
viscous drag. The dependences of the latter two quantities
mean that in general the vortex dynamic mobility? is non-
linear in the fields. In this paper we briefly indicate how
these nonlinearities in principle can be accommodated.

This paper is a condensation of a report’ that provides a
fuller exposition, including a more detailed discussion of
the reduction and nature of our governing partial
differential equations and results in the linear response re-
gime. The work on linear response most closely related to
the present theory is Ref. 6, while Ref. 8 is related con-
cerning the treatment of nonlinearity. The present theory
generalizes these and is primarily directed to the study of
the dynamics of Abrikosov rather than Josephson vortices.

We assume that a London treatment of Abrikosov vor-
tices is valid, using a continuum approximation of the
London equation with vortex term.® Our theory employs
a general vortex equation of motion with a complex-
valued dynamic mobility.? This function is taken to be a
scalar in this treatment. For a discussion of the related
vortex diffusion coefficient and related complex diffusion
constants, see Ref. 6. The dynamic mobility allows for the
simultaneous inclusion of the effects of vortex inertia, pin-
ning in a periodic potential, flux flow, and flux
creep.>*>10 Restrictions on the form of the pinning po-
tential, which uses an average potential height, are dis-
cussed elsewhere.

Nonlinearity resulting from magnetic history or critical
state effects is not treated here. In particular, the vortex
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displacements should not be large in comparison with the
intervortex spacing. The frequencies of interest are much
less than the superconducting gap frequency ~A/h so
that pair-breaking effects are not present. Under these as-
sumptions, we are able to derive a single vector partial
differential equation (PDE) describing the nonlinear
response. This approach leads to the formulation of an
initial-boundary value problem for one of the total (or
net) fields or densities. Once one of these quantities has
been found, the others follow from various electrodynamic
relations such as Maxwell’s equations. This procedure is
illustrated in a particular geometry.

We solve the nonlinear vector PDE in a planar geo-
metry and discuss the generation of the nth-order har-
monics due to bilinear field nonlinearity. Specific results
for complex penetration depths and amplitudes are given.
The fields and densities are presented explicitly for the
second harmonic.

Our theory includes quasiparticle excitations through a
normal current density contribution. Since the normal
fluid is accounted for, our results hold through the transi-
tion temperature or upper critical field. In particular,
when the normal state is reached, our partial differential
equations reduce to the usual diffusion equations for the
magnetic induction or current density. As discussed else-
where,> the lack of a continuous superconductor to
normal-state description is a fault of many other theories.

The theory given here is potentially applicable to a wide
range of experiments involving vortex dynamics. It is usu-
al in rf experiments to determine whether they are in the
linear or nonlinear regime. However, the information on
the amplitude dependence is often not analyzed. Speci-
fically, if pinning is not too strong, so that a critical state
is avoided, and the dynamics tend to be dominated by
creep, flux flow, and/or the normal fluid, the present
theory may provide an adequate description. The types of
experiments that may be amenable to such an analysis of
their nonlinear behavior include surface impedance, rf
permeability, and vibrating reed.'' ~'3

As we consider those situations where flux-flow losses
dominate over hysteretic ones, we expect fairly strong fre-
quency dependence of derived quantities such as the total
power loss, which is calculated in Ref. 7. By contrast, in
theories of bulk-pinning hysteretic losses, use of the Bean,
Kim, and other models for the critical current density
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yield very little or no frequency dependence. '*

We present the governing nonlinear equations in our
theory and, under the above assumptions, combine them
to yield a single nonlinear vector partial-differential equa-
tion for the magnetic induction. To model the electro-
dynamics of the superconductor we use Maxwell’s curl
equations,

VXE=—B, VxH=1J, m
and the supercurrent source equation®~°

1
Hor?

VxJ,=— (B—B.), (2)

where B,.En(x,t)¢ol§0 is the local vortex magnetic field,
n(x,t) is the local areal density of vortices, Bo =By/By is
their local direction, and ¢ is the flux quantum. We fur-
ther employ the two-fluid equation

J=J,+J, 3)

where the normal current density is given by the constitu-
tive relation J, =on(E, o,(B,T) being the local electrical
conductivity of the normal fluid. The coupling of vortex
motion and the total current density J is completed by the
inclusion of a vortex equation of motion, which we take to
be given by the general relation

vix,t) =j.(0,B,T)f(x,1) 4)

where v is the vortex velocity, /i, is the (complex) dynam-
ic mobility,>*™® and the Lorentz force f(x,r)=J(x,t)

X ¢oBy is the driving force per unit length.
It is well known® ™% that Eqs. (1)-(3) apart from the
vortex equation of motion can be combined to give a gen-
|

eralized diffusion-London equation for the magnetic in-
duction B(x,?):

VB=D,;'B+(1/A2)(B—B,). ()

In writing Eq. (5) we have assumed the normal-fluid con-
ductivity to be a constant and have set the normal-fluid
diffusion coefficient D(B,T) =pni/uo. Rewriting Eq. (5)
as

B, =B—A2V:B+D,'\2B 6)

gives the local variation of the vortex density. In particu-
lar, Eq. (6) shows how the vortex and total magnetic fields
differ due to the incomplete Meissner effect (A=0) and
the presence of the normal fluid. We ignore the B depen-
dence of the London penetration depth A. This point is
discussed further on.

In order to combine Egs. (4) and (5) a relation between
the vortex velocity and magnetic induction is required.
Such a relation is provided by the vortex continuity equa-
tion (conservation of flux lines),

B o v (B,xv), @)
ot
which is equivalent to Faraday’s law with E, =B, Xv be-
ing the induced electric field. Upon taking the time
derivative of Eq. (5) and using Eq. (7) we have

VB=D;'B+(U/AD)IB+V+(B,xv)]. (8)

The vortex velocity v can be eliminated in favor of B from
Eq. (8) by using the equation of motion (4) and Faraday’s
law (1). Then using Eq. (6) for the vortex induction B,
gives a single nonlinear vector PDE for the total magnetic
induction B(x,?):

AV2B—A2D 7' B— B=(pod./10)V* ({B—12V2B+ D 'A?B} x [(Vx B) x Bol) . 9)

We have written the linear terms in Eq. (9) on the left-
hand side. In linear response theory, the B, terms (in cur-
ly brackets) on the right-hand side (RHS) of Eq. (9) are
replaced by By, the constant applied magnetic induction.
Then Eq. (9) can be immediately integrated once with
respect to time and the result agrees with the governing
vector PDE derived in Ref. 6.

It is possible to include the displacement current term
in Ampere’s law (1) in the derivation of the generalized
nonlinear flux diffusion-wave equation (9).” However, in
the following the corresponding term in Eq. (9) is not re-
tained.

The nonlinear terms on the RHS of Eq. (9), which are
due to the motion of the vortices, have a special structure
(when A is assumed to be independent of B). Each term
on the RHS is bilinear in the field and its derivatives.
This fact has several important implications. In particu-
lar, the bilinearity is key in deriving an analytic solution in
a specialized geometry, to which we now turn.

Here we present an application of Eq. (9) to planar
geometry. The superconductor is chosen to occupy the
half space x =0 and the applied magnetic field, a com-

-
bination of static and time-varying fields, is taken to lie
along the z direction. (We assume for convenience that
any static field producing vortices satisfies Bo/uo= 2H,\
where H,, is the lower critical field.) .

For this geometry, where B(x,t) =B(x,1)Z, By=Z, and
J(x,t)=—(§/u9)dB/dx, Eq. (9) becomes

r28.,B—ADy'B—B
= — (goflo/10)9x{[B —220,xB+ Dy 'A2B18,B} ,
(10)

where the notation 8,=9/dx is used. Equation (10) is a
basic one-dimensional (in space) nonlinear PDE investi-
gated in this paper. The bilinearity present on the RHS of
Eq. (10) is reminiscent of equations which arise from cer-
tain nonlinear evolution and wave equations when Hiro-
ta’s method of solution'®'? is applied. This is an extensive
subject— we note that the direct algebraic method of solv-
ing nonlinear PDEs (Refs. 18 and 19) has many similar
features.

Before considering the nth-order harmonics, it is useful
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to check the linear dispersion relation that results from
Eq. (10). Taking B =B+ B, with B < By, we have the
linear equation

xzaxxBl_lan?lél_Bl=—;_w(i?caxxBl, an

where we have introduced the complex effective skin
depth 8..=(2p,./uow)'"? and the complex effective resis-
tivity associated with vortex motion and creep,*~®
po(w,Bo, T) =Boposi.(w,By,T). By taking for the rf or

semi-infinite geometry, Eq. (11), or Eq. (14) below, e.g.,
could be solved by Laplace transformation with respect to
x.® The complex phenomenological penetration depth
given in Eq. (12) generalizes that of several other theories
of dynamic vortex response (e.g., Refs. 8, 12, 20, and 21).
We proceed to examine the complex penetration depths
which arise in our theory for nonlinear vortex response.
We first obtain the equation governing the jth-order har-
monic (j = 2). We employ an infinite formal expansion

microwave induction B, =bge ~**'e ~** we obtain BCx1) i B (x.1)e" (13)
- x) = n xy €
., A FiS "0
=—I-W (12) in powers of an arbitrary parameter ¢ where Bo=const.
- nf

for the_complex self-consistently determined penetration
depth A =A(w,Bo,T). (Here the square of the normal-
fluid skin depth is given by 6% =2D./w.) Due to the
J

Upon substituting Eq. (13) into Eq. (10), equating sepa-
rately the coefficients of like powers of ¢ to zero, and not-
ing the simplifications arising for terms with m =0 and
m =n, we find the recursion relation

~ n—1
A za.\‘.\'Bll —A an? Ién - Bn + if wgu%'a.v.\' B,=— ¢;)l# - 9, { E [Bm - }\28.\‘.\' B, +Dy IAZBm]a.\‘Bn—m ] . (14)
0 m=|

Due to the special bilinear form of the RHS of Eq. (14),
this equation can possess solutions of the form
Bj~Bjoe ~"'e ~/P* where the complex wave number p
and amplitudes Bjo are to be determined by solving a non-
linear recursion relation. We recall that in the direct alge-
braic method'®!® the solution of a nonlinear PDE with
constant coefficients can be built up from the exponentials
solving the linear part. The solution of the PDE (10) is
similar.

An approximate field dependence of the London
penetration depth is?> A%(B,T)=12(0,7)/[1 — B/
B.»(T)]). As can be seen from Eq. (9) or (10), the in-
clusion of such dependence results in factors 9.A>
=21(81/0B)d,B which generally remove the bilinearity
of the RHS of these equations. The inclusion of the Lon-
don penetration depth’s field dependence thus complicates
the analytic solution for the field although in principle it is
still possible. It is expected that the results presented here
will nonetheless be applicable over a wide range of field, at
least for the known high-temperature superconductors,
due to their large values of upper critical field.

For the case of the second harmonic, bilinear terms in
only B, appear on the RHS of Eq. (14). The solution for
the second harmonic, subject to the boundary condition
B,(x =0,1) =0, can be found in the form

By(x,1) =Bape ~20!(¢ ~ /M — p ~¥/h2y (15)

Using the same form of B, as above gives a solution’ pro-
vided that A, =A,

2 A2+ Lisk e
= 16
2 =42
and

b¢ X284 —2ir2652)

=0 12 Ol a7

4Bo (3124 3i82 —4ir*5y°
The similarity of Eq. (16) to Eq. (12) can be noted. In

-
fact, in certain_special cases, typically at high tempera-
ture, we have A,(w,Bo,T)=A(2w,Bo,T). This approxi-
mate relation will hold in the normal state, due to the
form of the normal-fluid skin depth, or when viscous flux
flow dominates the vortex dynamics. For then the com-
plex penetration depths are dominated by the flux-flow
skin depth &,=(2Bogo/ponw) ', ~>'* where n is the
viscous drag coefficient (e.g., Ref. 23). At T=T,,, the
field-dependent transition temperature, or Bo=B8,,, the
upper critical field, 8, vanishes and so does B .

Once the magnetic induction has been found, the other
fields and densities follow from various electrodynamic
relations. We have found that B(x,t)=B¢+B,(x,t)
+ B,(x,t) is given by

B(x,t) = Bo+boe ~1@e ~¥/
+ Byge ~ ¥l (e _ZX/’-‘—e_X/i’). (18)

The resulting total rf current density from Ampere’s law
is

bo _.. _
Jy(x,1) = =% iwtg =¥k

MoA
+ 50, dier| 2, o L~ (19)
Ho A A.z

and the resulting total electric field from Faraday’s law is
Ey (x,t) = —Xiwboe _iw’e _X/i'*'Bzto(z)e —2iwt
x(— ;_i(’_z"/i+i2e —.\'/iz) . (20)

The vortex velocity field is given by Eq. (4), so that in-
tegrating with respect to time yields the displacement
field.” As shown in Ref. 7, Eqs. (19) and (20) can be used
to compute E- J losses in the superconductor. Such a cal-
culation generalizes the usual surface resistance (R;) cal-
culation to a nonlinear regime. By using Eq. (6), the vor-
tex density n(x,t) can be computed’ and we find, e.g.,
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that the ratio |8../A| gives a measure of the vortex density
variation in linear response. The vortex density variation
and displacement vanish at T=T,; or Bo=B,,, as they
should.

There are several difficulties associated with the analyt-
ic solution of Eq. (9) in general geometries even for linear
response, due to the vector nature of the equation. For a
discussion of these topics in the context of linear response,
Ref. 6 may be consulted. A brief discussion of the ap-
plication of the nonlinear equation (9) to cylindrical
geometry is given elsewhere.’

In summary, our self-consistent approach to vortex dy-
namics, including the effect of nonlocal vortex interaction,
has been generalized to a nonlinear response regime. This
nonlinear theory does not include critical state effects so
that pinning should be weak for it to apply. We discussed
the possible application of the nonlinear theory to rf ex-
periments involving vortex dynamics. We derived a single
vector partial-differential equation, Eq. (9), describing the
nonlinear response in the mixed state and discussed the
appearance of nth-order harmonics due to bilinear field
nonlinearity. The solution of the nonlinear PDE, includ-
ing complex penetration depths and amplitudes, was
presented for a special planar geometry.

All aspects of our previous linear response theory are
recovered in the limit of small driving forces. In addition,
our results for nonlinear response hold through the transi-
tion temperature or upper critical field; when the normal
state is reached, our governing partial differential equa-

tions reduce to the usual diffusion equations for the mag-
netic induction or current density.

In this paper we concentrated on problems where at-
tenuation of the applied radiation dominated. We men-
tioned how the displacement current term in Ampere’s
law could be included if desired, which might be impor-
tant at higher frequencies (e.g., in the infrared range).
Furthermore, since we know that our linear response
theory for attenuation-dominated problems can be extend-
ed to finite thickness samples,** we can expect that it can
similarly be extended to propagation-dominated problems.
The latter theory could be useful in the description of,
e.g., microwave transmission and reflection measure-
ments.

It is then possible to expect that our nonlinear response
theory of radiation flow through a type-II superconductor
can be extended to propagation-dominated problems.
This theory would provide a description of nth-harmonic
generation for transmission-type experiments, possibly in
analogy to that encountered in nonlinear optics.
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