
PHYSICAL REVIEW B VOI,UME 46, NUMBER 9

Gauge theory of the normal state of high-T, superconductors
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Starting with the one-band t-J model and using the slave-boson method to enforce the constraint of no
double occupations, we examine fluctuations about the uniform resonating-valence-bond mean-field solu-
tion. %'e restrict our attention to a temperature region where the bosons are not Bose condensed. The
important low-energy fluctuations are described by gauge fields that are related to fluctuations in the
spin chirality. The fermions and bosons are strongly coupled to the gauge field, leading to a transport
time of order A/k~ T, in agreement with experiment. The model also exhibits a Fermi surface with area
1 —x, where x is the dopant concentration, consistent with the Luttinger Theorem, but the low-lying ex-
citations have a decay width much larger than its energy, in violation of Landau s criterion for a Fermi-
liquid state. Other experimental implications of this model and the possibility of a direct measurement
of the chirality fluctuations are discussed.

I. INTRODUCTION

After several years of intense experimental and theoret-
ical studies of the copper-oxide supereonductors, there is
now a consensus that these materials should be described
as strongly correlated electronic systems. The undoped
parent compound, such as LazCu04, is understood to be
a Mott-Hubbard insulator, with S =

—,
' local moment on

the copper sites which are antiferromagnetically ordered
below 200 K or so. Upon doping with holes in the
copper-oxygen plane, the long-range-ordered antifer-
romagnet (AF) is replaced by short-range order and su-
perconductivity emerges as the ground state. The
magnetism has been extensively studied by neutron, @SR,
and NMR techniques. ' While the origin and the nature
of the superconductivity remains a puzzle, much atten-
tion has been focused on the normal-state properties of
the doped materials at a temperature above the supercon-
ducting T, . As emphasized early on by Anderson, the
normal-state properties are anomalous in the sense that
they do not fit in with conventional Fermi-liquid theory.
One of the earliest anomalies is the linear T dependence
of the resistivity. Optical-conductivity measurements
have revealed a narrow Drude-like peak with a width
which is of order 2k~ T, so that the linear T resistivity is
now understood to be due to a scattering rate that is
linear in T. Recent microwave measurement of the quasi-
partiele contribution to the conductivity below T, have
shown that the scattering rate decreases greatly below
T, . ' This provides strong evidence that the anomalous
scattering rate is electronic in origin and not due to
scattering by some soft phonon.

The spectral weight of the Drude peak only of the con-
ductivity is found to be proportional to the dopant con-
centration x, and can be fitted by x/m, where m =2m, .
The Hall effect has an anomalous temperature depen-
dence which is sensitive to disorder scattering in the sam-
ple. Very recently the Hall data have been successfully
analyzed by the introduction of an additional

temperature-dependent scattering time. Even though
the microscopic origin of this scattering time remains un-
clear, a carrier number which is of order x is extracted by
this analysis. Thus, the transport data can apparently be
understood as being due to x doped holes with a modest
mass and some anomalous scattering rate. This simple
picture was shattered by the availability of high-
resolution angle-resolved photoemission data which indi-
cate the existence of a Fermi surface, with an area con-
sistent with band calculations. Since band theory is con-
sistent with Luttinger theorem, this means that the Fermi
surface area contains 1 —x electrons. The important
point is that the local moment on the copper sites, which
are localized in the half-filled Mott-Hubbard insulator, is
now counted as part of the Fermi surface area when the
system is doped to a metallic state. It is now apparent
that the normal state is a complicated correlated state
which simultaneously displays the localized and extended
nature of the copper moment. It is not at all clear that
this state is describable using conventional Fermi-liquid
theory.

On the theoretical front, Anderson and later Zhang
and Rice have argued strongly that the basic physics of
the copper-oxygen plane can be described by a one-band
Hubbard model. We shall adopt this point of view here.
Furthermore, we take the large-U limit of the Hubbard
model, which reduces to the t-J model. Anderson has in-
troduced the idea of the resonating valence bond (RVB)
to describe the short-range AF state. Baskaran, Zou, and
Anderson introduced a mean-field decoupling of the ex-
change term. They produced a mean-field solution in
which a spinon Fermi surface emerges. A number of oth-
er more elaborate mean-field solutions have been intro-
duced and by now the mean-field theory both at half-
filling' ' and away from half-filling' ' has been con-
siderably clarified. Examples include the flux phase' and
the commensurate flux' phase which breaks time-
reversal symmetry and parity. The latter is related to the
proposal of fractional statistics ' and anyon superconduc-
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II. THE MODEL LAGRANGIAN

We shall begin with the t-J model defined on a square
lattice

H = t g c, c +J—g(S; S —
—,'n;n ), (2.1)

i,j,o.
I& J

where S; = ,'c, tr ttc;&, n—;=g c; c, , and the sum over ij
is over the nearest neighbor. Equation (2.1) is subject to
the important constraint that a given site cannot be occu-
pied by more than one electron. The constraint is con-
veniently implemented using the slave-boson
method

c, =f;b; (2.2)

where, is a fermion operator that carries the spin label

and b, is a boson operator that can be interpreted as

creating a vacancy. The constraint of no double occu-
pancy is now replaced by

gf; f; +b, b, =l, (2.3)
t, o

which can be implemented in a functional integral formu-
la over a complex b field and a Grassmann f field with
the integration over an additional field A.; on each site,

Z = f d A,; db; db;*df; df;* exp —f (Xo+H)dr
0

tivity. ' It would seem a hopeless task to determine
from first principles which of the many proposed solu-
tions is realized as a solution to the t-J model. In this pa-
per we set for ourselves a rather more modest goal. We
want to ask the question: Given a mean-field solution
and by including fluctuations around it, can we obtain a
description of physical quantities which are consistent
with the rather severe constraints set by experiments?

Baskaran and Anderson ' recognized that fluctua-
tions about the RVB mean-field solution are naturally
gauge theories. This point was elaborated in a paper by
Ioffe and Larkin, and we shall draw heavily from the re-
sults of this work. We find that, even though the spin
and charge degrees of freedom are separated on the
mean-field level, they are strongly coupled by the gauge
field. In order to reproduce the photoemission data, we
need a mean-field theory with a spinon Fermi surface
which obeys Luttinger's theorem. This leads us to con-
sider the uniform RVB state. ' A short version of this
work was published earlier. One of our main results is
that a linear T resistivity emerges due to scattering by
gauge field fluctuations. A mathematically related
though physically distinct mechanism for linear T behav-
ior is given by Ioffe and Wiegmann. Ioffe and Kotliar
have also published a work which is very closely related
to the present one.

(2.5)

Alternatively, the same term can be written as

which would lead to the decoupling

D J
= (f iffy

—f ifJ t & (2.7)

At half-filling, there exists an SU(2) symmetry' (an ab-
sence of a down spin is equivalent to an up spin when
there is exactly a single fermion per site), so that the two
decouplings are equivalent. For finite x, the two decou-
plings are distinct. For the bulk of this paper we shall
treat the decoupling g; while assuming that D; =0.
There are two rationales for this. First, it is convenient
formally to extend the spin sum to a sum over N degrees
of freedom, and perform a large-1V expansion. In this
case it is clear that y; scales as N and there is no simple
way of defining D; . Indeed, Grilli and Kotliar' have
found that, in the large-X limit, the mean field yI 'WO,

D, =0 is stable for some intermediate doping concentra-
tion x =J/t. Secondly, if we treat the E =2 case in the
saddle-point approximation, we expect for intermediate
doping that y', J

'WO below a temperature of order J, while

D; may develop d-state symmetry at a lower tempera-
ture, ' so that there should be a temperature range where
y', 'WO but D, =0. Schematically the mean-field phase
diagram may look like that shown in Fig. 1. There are
four different regimes. Below the solid line yI. '%0 and,
when D, is d-state symmetric, we have a uniform RVB
state. In region I, (b)%0 and we have a Fermi-liquid
phase, quite similar to that which appears in the heavy-
fermion problem. This region has been treated by Grilli
and Kotliar. ' In region II, D, WO but ( b ) =0. We shall

IV

II

III ~ .

A boson-boson interaction term has been dropped as be-
ing small (of order x ) in the rewriting of the J term.
Equation (2.5) leads naturally to the mean-field decou-
pling'

(2.6)

where

+i A.,-(f,*f, +b,*b, —1), . (2.4)

FIG. 1. Schematic slave-boson mean-field phase diagram of
the t-J model. The solid line denotes the onset of the uniform

RVB state. The dotted line denotes the mean-field Bose-
Einstein condensation temperature of the boson while the
dashed line denotes the onset of pairing of the fermion opera-
tors. The four regions are (I) Fermi liquid, (II) spin-gap phase,
(III) superconductor, and (IV) strange metal phase.
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refer to this as the spin-gap phase because a gap appears
in the spin excitation spectrum. In region III, both
D;~%0 and (b)%0 and when D,Ji.s d-state symmetric,
we have a superconductivity phase where
(c;&c.

&

—c, &c.&)%0. In region IV, (b) =0 and D; =.0.
This is the region we concentrate on in the present work
and we shall refer to this as the "strange metal" phase.
Since it lies above the superconductivity phase, we inter-
pret this to be the normal phase of the superconductor.
This schematic phase diagram is expected to break down
for small doping because we know that the Neel ordered
state is the correct ground state for the zero doping. For
small doping, a Schwinger boson approach may be the
more appropriate treatment since it connects naturally to
the Neel phase. Our hope is that, for intermediate
doping, the schematic mean-field phase diagram shown in
Fig. 1 is a useful starting point.

Restricting ourselves to region IV, we decouple the
Hamiltonian (2.5) by a Hubbard-Stratonovitch transfor-
mation. The presence of two quartic terms can be dealt
with by introducing two decoupling fields g; and y; as
follows. We insert the identity

1=fdx;, dx,', 5(x;, f;*2,—.)'
= f d'9(&d'9(jdx(jdx&J

Iij +ij ~j afia Iij +ij fiat aXe
in Eq. (2.5), where the ri; and i}," are understood to be in-
dependent integration variables taken along the imagi-
nary axis in their respective complex planes. To obtain
the saddle point, each integration contour is distorted in
the complex plane. We then obtain

The ~-flux phase is one where lx,"l is constant but the
sum of the phase of y,- around a plaquette is ~. ' The
dimerized phase is one where only one bond per site is
nonzero. At half-filling, it was found that the dimerized
phase is most stable. The m.-flux phase may be stabi-
lized by introducing more complicated interactions but
the uniform phase is unstable. ' When doping is intro-
duced it has been argued that the commensurate flux
phase is the state that connects naturally to the m.-flux
phase. ' ' This state breaks T and P symmetry and is re-
lated to anyon superconductivity. ' For sufficiently
large doping, x ~J/t, Grilli and Kotliar' have shown in
a large-N treatment that the uniform phase becomes
stable. In this paper we shall restrict out attention to the
uniform phase and consider fluctuations about this saddle
point.

It is clear that fluctuations in the amplitude of y; and
will acquire an energy gap of order J and can be ig-

nored. This leaves the fluctuation in the I, field, which we
write as A,;=iAO+ao(r;) and the phase of X; and rl; .
From Eq. (2.11) we see that the term Fl;,X,', will lock the
phases of g; and y; so that the out-of-phase mode will
again acquire an energy gap. This leaves the in-phase de-
gree of freedom, which we denote by L9;, as the only
remaining soft mode.

With this approximation the total Lagrangian is writ-
ten as X =XMF+X, where the mean-field part XMF is the
saddle-point value and the part which includes the phase
fluctuation X is given by

X= g f p„+iao(r;—) f;
i, cr

Z= f dA, ;dX; dX,*drA drl; db;d"b df; df

Xexp fdrZ—

where

(2.9)

+ g b,' —pz+iao(r; ) b;a7.

rg g —e "f,'fj tXo g e "b—b
(ij),a (ij)

(2.12)

&=&o— X, f; f, t—X, b", b;. +c—.c. "J
0 2 IJ Jcr &o IJ & J

+ rA, (x,'J f)'.f;.}+r}ij(X—;, f;:f,. —(2.10)

X=Lo—
rl, f,' f tX, b, b—j'+"c c—. "0 2 IJ Icr Jcr

By a change of variables (J/2)rl;. =rl; +(J/2)X;J and

(J/2)rl, j =g; +~(J/2)X; EJq. (2.10) can be rewritten as

and the functional integral is over the variables ao(r;),
8... b, , b and f;, f,'. The chemical potentials pF and p~
are chosen to satisfy the conditions ( I /N)g;b b, =x and.
(1/N}g, f,*f, =1—x, where N is the number of sites.

It is worth pointing out that Eq. (2.12) can be obtained
in a simpler way by rewriting Eq. (2.5) as

(2.11) I=——f; f) +2 b; b 2+ lb;tb— . (2.13)

From the second and third terms of this equation we see
that (J/2}il; and tX, play the roles of hopping integrals
for the fermion and boson fields, respectively. Equation
(2.11) is now quadratic in the fields f and b The mean-.
field solution consists of performing the f and b integrals
in Eq. (2.9) and looking for a saddle point in the variables
y,--, g,j., and A, ,-. Generally, the saddle point is given by
A.; =ik0 and distinguished by different symmetries of g;~
and g; . The uniform phase is the simplest case when

g;- =g0 and g, =g,. - =q0 for all nearest-neighbor bonds. '

and decoupling the first term by a standard Hubbard-
Stratonovitch transformation using a single complex fie1d

The price one pays is that a four-boson term (the
second term) in Eq. (2.13) is left in the Lagrangian which
one has to argue away as being unimportant for small x.
The resulting effective Lagrangian is then the same as Eq.
(2.12) except that go is replaced by XD.

We note that Eq. (2.12) is invariant under the local
i p,.( ~) i p,. ( ~)

gauge transformation f, ~f, e', b; ~b;e.
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ao(r;)~ao(r;) —(8/Br)P;, and 0; ~8; —P;+P . This is
because the original problem is written in terms of the
electron operator c;, which is clearly invariant under
this gauge transformation. Thus, we should write
9;~

=
0;~

—P; +Pi and the functional integral can be
separated into an integration over p, and 0;, Integration
over 0; alone corresponds to a fixing of the gauge. This
point was discussed by Ioffe and Larkin. We also note
that the variable ao(r;), which was initially r indepen-
dent, acquires ~ dependence under the gauge transforma-
tion. Equation (2.12) describes fermions and bosons hop-
ping on a square lattice with complex hopping matrix ele-
ments and subject to a scalar potential ao(r;). We note
that the Lagrangian of particles hopping in the presence
of a magnetic field perpendicular to the plane is also de-
scribed by complex hopping matrix elements such that
the sum of the phases around a plaquette
tot 12+ E923 +834+ 84& equals the magnetic Aux

through the plaquette. Otot is, of course, invariant under
gauge transformations. We then introduce the gauge
field variables a and a~ defined in the middle of the
bonds such that

X, = Jd r g f*(r) —p~+iao f (r)
a

81

+b'(r) —ps+iao b(r)

1 f' +ia f

g b*
2m'

+ la~
BxJ.

'2

(2.16)

The bulk of this paper consists of analysis of this
effective Lagrangian. We note that Eq. (2.16) can be writ-
ten down phenomenologically as the simplest Lagrangian
involving fermions and bosons which respect the local
gauge symmetry f~fe', babe', and a~a+@'8. It is
important to note that Eqs. (2.12) and (2.16) describe sys-
tems which satisfy the local constraint (2.3) exactly. This
is clearly demonstrated by introducing the variable.

Q, =gf; f; +b;b; (2.17)

8; =(r —r ) a[(r;+r )/2] .

In the continuum limit this defines gauge fields a„(r,r)
and a (r, r) such that the hne integral f a dl around a
plaquette reproduces O„t. Defining the two-dimensional
curl of a,

and adding a term i A OQ; to X. All correlation functions
of Q; can be generated by taking the functional derivative
of lnZ with respect to Ao. It is clear that Ao appears in
Z as a shift of ao to ao+ A. By a change of variable of
integration, it is obvious that, upon performing the ao in-
tegration, Z is independent of Ao, so that all correlation
functions involving Q; vanish and Q; —1 =0 can be con-
sidered an operator identity. Similarly, we can consider

J, =J;F+J~, (2.18)
(2.14)

we have

2=hco Otot & (2.15)

where co is the lattice constant. Thus, Eq. (2.12) has the
natural interpretation of fermions and bosons subject to a
set of gauge fields (ao,a„,a~ ) that fiuctuates in space and
time.

If x && 1, the number of bosons is small and only long-
wavelength boson excitations are important. In this case
the tight-binding model can be approximated by a contin-
uum model with an effective mass m~ where
co /m~=2t. For fermions only excitations near the
Fermi sea are expected to be important. For simplicity it
is also convenient to approximate the fermion tight-
binding band by an isotropic band with mass mF where
co mF '=2J. For most purposes in this paper, only the
density of states at the Fermi level is important and the
isotropic band approximation does not change the essen-
tial physics. However, very close to half-filling (x «1)
the Fermi surface is nearly a square and nesting proper-
ties are important for consideration of the spin-spin
correlation function. Under these simplifications, we ar-
rive at the following continuum Lagrangian:

which is the sum of the fermion and boson current on
each bond in the lattice problem and everywhere in space
in the continuum theory. By introducing a term 3; to
the Lagrangian, we see that the spatial component of the
gauge field a; is shifted by a;+ 3, so that, upon integra-
tion, Z is independent of 3, and J;=0 as an operator
identity. Thus, the role of the spatial component of the
gauge field is to enforce the constraint that the sum of the
fermion and boson current on each bond must be identi-
cally zero because a fermion hopping to the right is
necessarily accompanied by a boson hopping to the left.
This requirement lies at the heart of the Io8'e-Larkin
composition rules which relate physical response func-
tions to fermion and boson response functions as we shall
discuss later.

III. PHYSICAL MEANING QF THE GAUGE FIEI.D

Bay

Bx

Ba„
Bp

(3.1)

Up to now the gauge field a has been introduced as the
phase of y;. and appears to be an abstract mathematical
entity. The field a itself is not gauge invariant and has no
direct physical content, but the "magnetic flux" h associ-
ated with a defined by

h=VXa
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1234 (Ilu23X34X41 ) (3.2)

From Eq. (2.9), y; is conjugate to the operator f, f, so
that

P1234 (f142af243pf 3yf4yf 4sf'ls )t (3.3)

In fact, let us consider the simpler case of three sites
forming a triangle

P123 ~f laf 2 f213f313f3yf ly ) (3.4)

and relate this to physical observables. For this purpose
the following identities are very useful:

f;tJ;P= ,'P;'6 P+S; a—I3, (3.5a)

f,J';~p= —,'(2 —p;)i3 p
—S; o p, (3.5b)

where p;= QJ;J;~, S—;= ,'f~~o' &f;& —are the fermion
density and the spin operator on site i and o & are the
Pauli matrices. At half-filling, p=1. It is worth pointing
out that, away from half-filling, the electron spin opera-
tor is still given by f cr pf&, even though the electron
operator is represented as c =f b and the electron den-
sity is not p. This is because f o 13f& has the same ma-
trix elements in the constrained subspace as the spin
operator. For example, we can write

s,'=f,',f, ,t, I,'=f,',f, ,(f,',f, , +f,',f, ,),

is gauge invariant and turns out to have a very direct
physical meaning in terms of observable quantities. This
connection was first made explicitly by Wen, Wilczek,
and Zee in the case of the quantum spin model at half-
filling. We shall extend their discussion to the t-J model
away from half-filling. Let us first consider four sites
around a plaquette labeled by 1,2,3,4 in an anticlockwise
manner as shown in Fig. 2(a), and define

which equals f; tf; l. It is possible to derive an operator
identity, relating the operators in Eq. (3.4) to the spin
operator S and p. Defining the operator
P,23 =f—,J'2 f2&f»f3yf, y, we commute f, to be next
to f, y

and use Eqs. (3.5a) and (3.5b):

P123 =TrI t-,'(2 —P2)1—S2.~ jt-,'(2 —P )I—S3 & j

X(—,'P1I+S, .o )I, (3.6)

where I is the identity matrix and the trace is over spin
indices. The trace can be done using the identities
Tr(o, ol )=25J, Tr(o, o Jo„)=2iej„,and we obtain

~123 =—(2 P2)(2 P3)P1 (2 P2)S3'Sl

—(2 P3)S2.S1+P1S2.S3+21S2~ (S3XS,) . (3.7)

As pointed out by Wen, Wilczek, and Zee, the quantity of
interest is P, 23

—P132, i.e., the difference between going
around the triangle in the counterclockwise and clock-
wise directions. Only the last term in Eq. (3.7) survives,
which can be written as P,23

—P»2 =4iE123 where f123
is the spin chirality operator defined as

~123 1 (S2 S3) ' (3.8)

It is an operator which breaks parity and time-reversal
symmetry and plays an important role in the chiral spin
liquid theory where 2,23 acquires a nonvanishing expec-
tation value in the ground state. In the uniform RVB
state we are considering, (2123) 0 and we will be in-

terested in the fluctuations in the chirality and correla-
tion functions of the chirality operators. This is why it is
important for us to establish the relation between P, 23

and P, 23 as operator identities.
The above discussion can readily be extended to the

four-site case. Defining

P1234 f IJ2~f2+3Pf 3yf4yf 4sfls &

we can show that

P1234 1432 21 t(2 P2)~134+(2 P4)~123

+(2 P3)~124 Pl~234 I (3.9)

(b)

FIG. 2. (a) Four sites around a square plaquette with an in-
stantaneous spin configuration. The spin on site 2 points out of
the plane while the spin on site 4 points into the plane. (b) The
tip of the unit vectors representing the instantaneous spin orien-
tation shown in (a) are put on the surface of a sphere. In this
example, spin 2 is on the front hemisphere while spin 4 is on the
rear hemisphere. The path 1234 traces out a solid angle which
can be interpreted as the gauge flux through the plaquette.
Note that, if spins 2 and 4 both point out of the plane, the solid
angles formed by 123 and 341 will have opposite sign and tend
to cancel each other.

~ 1234 4 I 1234 + 2341 + 3412

+P4, 23
—clockwise termsI

= [ (3—2P2)2134+(3—2P4)E123

+(3—2P3)~124+(3—2P1)E234 j ~ (3.lo)

For half-filling, p= l and Eq. (3.9) reduces to the expres-
sion of Wen, Wilczeck, and Zee. In that case, the first
two terms in Eq. (3.9) are the sum of the chirality around
the two triangles formed by cutting the square with a line
through site 1 whereas the last two terms are the
difference of the chirality around the triangles with a
different orientation. Note that site 1 is the starting point
of the "hop" around the square and plays a special role.
To obtain a more symmetrical expression, we can define
an average over the starting point so that
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This expression may reasonably be interpreted as the
chirality operator for a square plaquette.

Now we want to relate E,234 to the gauge field. Start-
ing from Eq. (3.2) and ignoring amplitude fluctuations,
we have

( P p ) 74( (2 23 43 14 ) (3.11)

The combination of 0,-- in the exponent is the sum of the
gauge field variables around a plaquette which is the
gauge-invariant flux 4 through the plaquette and which
becomes the magnetic flux h defined in Eq. (3.1) in the
continuum limit. Comparing Eqs. (3.10) and (3.11), we
see that (sin@) is proportional to the average chirality
(E ]234 ) . Of course, for the ground state we are consider-
ing, this quantity is zero. However, this argument can be
extended to any correlation function of sin+ and of the
chirality. Thus, we conclude that correlation functions
involving sin@ can be identified with correlation func-
tions of chirality. Here the fluctuation in the gauge field
can be interpreted as fluctuations in the chirality through
each plaquette. However, it should be noted that this is
true only for the low-frequency components. For higher
frequencies, the amplitude fluctuation dominates, which
is neglected in Eq. (3.11).

It is important to distinguish the gauge field discussed
in this paper from the staggered gauge field which has
been introduced in the literature. The staggered
gauge field typically arises in the Schwinger-
boson —slave-fermion version of the theory, where two
sublattices are introduced. The spin quantization axis is
reversed on opposite sublattices and a slowly varying sub-
lattice magnetization variable 0 is introduced. The stag-
gered gauge field corresponds to the local gauge transfor-
mation where b —+b e —'~, where + depends on the sub-
lattices the site j belongs to. The corresponding stag-
gered flux h,. =V X a, is then related to the staggered
chirality. On a lattice, the staggered chirality would look

I

like Eq. (3.10) but with the spin reversed on sites 1 and 3.
At half-filling we have

1234,staggered 123 ++134 124 234 (3.12)

This can also be written as (S]—S2).[(SI—S3)
X (S3—S4) ], which in the continuum limit becomes
Q].(03XQ3), the chirality corresponding to the stag-
gered magnetization. The purpose of this discussion is to
emphasize that the staggered flux or staggered chirality is
an object quite independent of the uniform flux or uni-
form chirality and should not be confused with the uni-
form chirality fluctuation evaluated at a staggered wave
vector (Ir, Ir) as is sometimes done in the literature.

In the case of the staggered gauge field, there is an
another interpretation of the staggered flux h, which has
a more transparent geometrical meaning. The instan-
taneous flux is given by the phase C) =

—,
' W(Q„Q2,03),

where 8' is the solid angle subtended by the instantane-
ous sublattice magnetization 0; on the three sites when
the tips of the unit vectors are placed on the surface of a
sphere. ' A similar interpretation can be given to the
uniform gauge field. However, in this case the spin S; are
not in the same general direction and the solid angle be-
tween them can be large, so that the geometrical picture
is not as clear as in the staggered case. Nevertheless, for
completeness we outline the relationship here. In order
to relate the flux to the instantaneous spin orientation, we
need to introduce the coherent state representation of an
S = —,

' spin. The most natural definition is to consider the
spin direction n as specifying a quantization axis so that
the state

l
n ) means that a fermion is occupied with spin

up along the quantization axis n. This is accomplished
by introducing the rotation matrix in spin space D ]3(n)
and defining f' =D„&(n)f&.—Now we can prove the fol-
lowing statement. The operator P123 when evaluated be-
tween the coherent state

l n]nln3 ) —
I n] & I n2 & I n3 )

has the value

1/2 ' 1/2 1 /2
1 +I11 I12 1 +112 Q3 1 +I13 I11

exp —W'(n„nz,n3) —c.c. (3.13)

where

M( ll ] I13)M( 113 111)M ( Ill Il ] ) +co]1st

This follows by first comlnuting f, in P]13 through to
the right. The correction term 6 ~f1 fI]3f3' 3y can easi-
ly be shown to give rise to a real constant which cancels
in Eq. (3.13). Next we express f in terms of f' and, upon
computing the matrix element, it is obvious that all the
spin labels on f ' are spin $. We then obtain

tended to P,234 P1432 and by comparison with Eq.
(3.11) we are led to the identification of the gauge flux
through the plaquette with the solid angle traced out by
the instantaneous spin orientations. An example is
shown in Fig. 2(b). However, this geometrical picture
breaks down if any two spins are nearly antiparallel, in
which case the amplitude term (1+n].nz)'/ nearly van-

ishes and the solid angle undergoes large fluctuations.
The chirality remains small even in this case and is prob-
ably a more useful concept.

M(n~, n])=[D(n3) D(n])]]]
—i(]/ ) W(nl'82's3) ]/2=e (1+n].nl)

from which Eq. (3.13) follows. This discussion can be ex-

IV. GAUGE FIELD PROPAGATOR
AND THE REIZER SINGULARITY

In the remainder of this paper, we will explore the
physical consequence of the eff'ective Lagrangian, Eq.
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(4.1)

and similarly for Ils. Here JF=if (V/2mF)f+c. c. is
the fermion current operator and pF=f f. It is con-
venient to choose the Coulomb gauge V a=0, in which
case the spatial part of the gauge field is purely trans-
verse. In Fourier space, we have

D;, (q, cv) =(5;, q;q, /q')D —(q, cv),

where the retarded propagator

D (q, cv) = [IIF(q, cv)+ IIii(q, cv)]

(4.2)

is the inverse of the sum of the fermion and boson polar-
ization. For example, II (q, co) =icvcr (q, co), where cr is
the transverse conductivity. In a normal Fermi liquid,
the current-current correlation response function [first
term in Eq. (4.1)] cancels the diamagnetic term [second
term in Eq. (4.1)] in the q, co~0 limit and we can write,
for vFq (&E'F,

HF(q ~) i~~F1(q ~) XF'V (4.3)

where gF is the Landau diamagnetic susceptibility of the
Fermi system which equals 1/(24m. mF ) for a free fermion
in two dimensions (2D). That this identification is
reasonable can be seen from the definition gF =8M /Bh,
VXM =JF, and VXa=h. Thus, in Fourier space
IIF=c)(JF)/c)a=q yF is the appropriate co~0 limit in
Eq. (4.3). The first term in Eq. (4.3) describes the dissipa-
tion and crF, (q, cv) is the real part of the conductivity. It
is convenient to introduce an inverse lifetime y by
parametrizing crF, (q, cv)=pF/(mFy ) as the static limit
of the conductivity which is valid when co (y . We have

(2.16). In earlier discussion of this model, ' the bosons
are assumed to bose condense so that (b ) =ho. In this
case, the electron operator c =bf =bof and we end

up with a Fermi-liquid theory very similar to that
developed for the heavy-fermion problem. In this paper
we work at a finite temperature and assume that the bo-
sons are not Bose condensed. It turns out that the gauge
field fluctuations are now centered at low momentum and
energy, leading to interesting new physics.

We begin by performing perturbation theory in the
coupling between the fermions or bosons with the gauge
field. In order to do this, we first obtain an expression for
the gauge field propagator D„„(r,r)=(T,a„(r,r)a„(0))
by integrating out quadratic fermion and boson fluctua-
tions. The time and space components (labeled i,j ) of the
gauge field decouple and we shall concentrate on the spa-
tial components only, since the time component is
screened by density fluctuations and will give rise to only
a short-range force. The spatial part D; is given by
D; = (IIF + II& ), ', where

II/; (r, r) = —( T„[J-F (r, r)JF (0,0)—5; pF5(r)5(r)] )

nisms such as disorder or inelastic scattering at finite
temperatures. Equation (4.4b} describes the familiar Lan-
dau damping so that cr F,~2pF /(mF v~q) in this limit.

A similar expression is obtained for

11&(q,cv) = licvlo;i(q, cv„)—y&q',

where

n (0)
Xg 48~m~

'

(4.5)

(4.6)

where n (e) is the Bose occupation factor. We note that
n (0)=T~z/T for T)&T~z, where T&z'=2~x/mii is the
mean-field Bose condensation temperature and that yz
diverges for T « T~~. In 2D, the free Bose gas does not
Bose condense at any finite temperature. However, with
any repulsive interaction a superfluid transition occurs
below which y~q should be replaced by p, /m, where p,
is the superfluid density. This is because the two terms in
Eq. (4. 1) no longer cancel each other due to the
Anderson-Higgs mechanism. Thus, the form Eq. (4.5) is
valid only above the superfluid transition, which, as men-
tioned earlier, corresponds to the onset of a Fermi-liquid
phase in the present problem. In the remainder of this
paper we shall restrict our attention to the high-
temperature phase where Eq. (4.5) is valid. In this re-
gime, the boson conductivity is given by

cr =x' /q (4.7)

D (q, cv)=[icvcr(q) —ydq ]

where

k /q for q/) 1
o (q}=

ko/ for q/ & 1,

(4.8)

(4.9a)

(4.9b)

where / is the Fermion mean free path and ko is of order
kF which for small doping is of order the inverse of the
lattice spacing. This is the form that we shall use in the
remainder of the paper. We also note that, for T ) T~E',

yd is dominated by yF which is temperature independent.
The restriction to T ) T~E' is the most serious drawback
of this work because, if we assume that the boson mass
corresponds to a hopping matrix element equal to J, we
have [see Eq. (6.2) for a more detailed discussion]

for q ) /~ ', where /~ is the mean free path due to scatter-
ing mechanisms. Comparing Eqs. (4.7) and (4.4b) shows
that crz& «0.

+& and we should ignore its contribution
from here on. We also introduce the parameter
gd =gF+y~ (we emphasize that yd is not the physical
diamagnetic susceptibility g of the system, the latter be-
ing given by g '=gF '+gz ' as shown later). In the re-
gime T )T~z, we shall adopt the following form for the
retarded transverse gauge field propagator:

for q ((v~r,„) (4.4a) T~F' =4+xJ, (4.10)

vFq/2 for q ) (vFr„) (4.4b)

where ~„is the transport time due to scattering mecha-

which is a temperature of order 1000 K. For our theory
to apply to any reasonable temperature, we need a mech-
anism to suppress the onset of superfluidity (i.e., suppress



5628 PATRICK A. LEE AND NAOTO NAGAOSA

the growth of ys as temperature is decreased). We shall
later argue that the inelastic scattering of the bosons by
gauge field fluctuations provide just such a mechanism.
For the time being we shall proceed to explore the physi-
cal consequence of Eq. (4.8).

The gauge field propagator Eq. (4.8) turns out to be
similar in form to the transverse photon propagator in a
metal. The difference in that case is that the photon has
its own dynamics and a term (I/8m )F„/e is added to
the Lagrangian such as Eq. (2.16). The photon is coupled
to current fluctuations in the metal and in three dimen-
sions the propagator is

P (q, co)= —
[ co —+c q ico—o(q)+ydq2] (4.1 1)

where in our notation gd of a 3D free-electron gas is
gd=e kz/12m m. For co«ez the co term can be ig-
nored and yd/c =r, (UJ;/c) is the standard Landau di-
amagnetism which is much less than unity. Thus, we
have the same functional form as Eq. (4.8) except that yd
is replaced by c . The important point is that the spec-
tral weight of excitations of gauge fluctuations for pure
metals of the form

ImP (q, co)=
a'+Cq' ' (4.12)

if we use cr(q) q',-has a divergent weight for small q
and co. That coupling to these low-frequency fluctuations
would lead to deviation from Fermi-liquid theory was al-
ready recognized by Holstein, Norton, and Pincus in
1973, who showed that the specific heat is proportional to
(v~/c) TlnT instead of the standard yT term. These
effects were rediscovered by Reizer, who found singular
corrections to density of states and conductivity due to
scattering by transverse photons. Mathematically this
phenomenon is quite similar to the interaction correction
effects in disordered metals discovered by Altshuler and
Aronov, in which case the diffusion pole gives to low-
lying spectral weight of the form Im(ico+Dq ) ', where
D is the diffusion constant. It is worth noting that, for
transverse photons, Eq. (4.12) is limited to 3D because,
even if the metal is two dimensional, the electromagnetic
field is generally 3D, unless special effort is made to
confine the electromagnetic field to a thin layer. Thus,
the gauge field in the strongly correlated metal offers a
unique opportunity to explore the consequence of these
low-lying excitations in 2D because, in our case, the
gauge field is confined to the plane. Secondly, in the elec-
tromagnetic field case, the effect is down by the ratio
(U~/c), whereas in the case of gauge field the coupling
constant is of order unity because the speed of light does
not appear in Eq. (4.8). Thus, this anomalous scattering
term becomes the dominant scattering mechanism in our
case.

We begin by calculating the self-energy X(k, Q) of the
fermion Green function due to scattering by the gauge
field in two dimensions. The Feynman diagram is shown
in Fig. 3. We focus on the imaginary part of X" evalu-
ated on the mass shell Q=ek, which is simply the Fermi
golden rule for the probability of emission of gauge field
excitations

~0
~ ~ ~ ti ~ ety ~ ~ ~~

FIG. 3. Self-energy correction to the fermion or boson prop-
agator. The dotted line represents the gauge field.

dk'
X"(k,ek)= f dco f [n(co)+1][1—f(ek )](2~)'

X (k+ k') (k+ k')it(2m~ )

X(5 i3 qqp—/q )ImD (q, co)

X 5(el ek co), (4.13)

where q=k' —k, n (co) and f (co) are the boson and fer-
mion occupation numbers, and we have used the vector
coupling vertex (k+k') a(2m~) ' in Eq. (2.16). As usu-

al, only states k' near the Fermi surface contribute and it
is convenient to introduce the variable gk =ek —p:

(k, el )=
2 f dcof dg'd8[n(co)+1][1 —f(g')]

2mmF

(coq/kp) ~k X q~
X

co + (yd q /kp )

X 5(gk —g' —co), (4.14)

where L9 is the angle between k and k' so that
q =2k~sin(8/2), N(0)=mj;/2m is the density of states,
and Eq. (4.8) in the clean limit Eq. (4.9a) has been used.
First we evaluate Eq. (4.14) at T =0. It is clear that the
integrand is dominated by small q, in which case

X"(k,e~) = —Cg

where the constant C=(k~/mz)yd kp ' . The impor-
tant point is that an analogous calculation of X" due to
scattering by screened longitudinal or any other short-
range interaction would have yielded the standard
Fermi-liquid result proportional to g. The anomalously
large scattering rate given by the above equation results
from the abundance of small q and co fluctuations in the
transverse gauge field. We remark that, if in the disor-
dered limit Eq. (4.9b) were used, we would have obtained
X"-gk, a result familiar in the interaction effect life-

time.
Next we evaluate Eq. (4.14) at finite temperature T and

we encounter a surprise. The g and 8 integrations are
evaluated as before and, for co & T, the bose factor n (co)
can be approximated by T/co. Now we find

—kpN (0) 4 coq /kp
X"(k,e„)=, dco dq

2n.m~ «co'+ (yd q'/k p
)'

(4.15)

The q integration can be done by scaling, yielding
co

'
gd ko ' . The co integration then gives the re-

sult
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&kX"= —CkT dao co
0

(4.16)

which is a divergent integral. Since the small-q and co

limits of the integrand have been treated accurately, there
is no possibility of a cutoff to cure the divergence. The
origin of the divergence can best be understood by con-
sidering the fermion Green function in space and time.
We can use the Gorkov approximation to write

G(r, t) G(r=e, t)(exp i f x dl
L

(4.17)

where L is a straight-line path connecting (0,0) and (r, t)
and 60 is the Green function without gauge field. We
note that G(r, t) is not gauge invariant under the gauge
transformation f ~f e' and any further discussion
must be done in fixed gauge. Once the gauge is fixed, we
can compute ( exp( ij~ a dl ) ), by averaging over gauge
field fluctuations. This is done in Appendix A where we
show in two dimensions that this quantity vanishes when-
ever r%0. Thus, in two dimensions, the fiuctuating gauge
field is sufhcient to make the Green function vanish
everywhere except when the spatial points coincide at
any finite temperature. The divergence of X" is an indi-
cation of this general feature.

The vanishing of G(r, t) need not cause as much con-
cern as it first appears because G itself is not gauge invari-
ant. It would typically appear in the intermediate state of
a diagrammatic calculation of a gauge-invariant quantity
and the divergences should cancel for any physical quan-
tity. This is illustrated by considering the transport time
instead of the self-energy. Since ~t,

' is the momentum re-
laxation rate, it is given by Eq. (4.14) with an additional

q factor in the integrand. The q integration now gives
cu leading to

for gk & kT,"'" T" kT, (4.18)
)Sk

As expected, the transport time which enters into the ex-
pression for fermion conductivity o.F is now finite, even
though it is still enhanced compared with the usual
Fermi-liquid result.

The discussion of the boson lifetime proceeds along
similar lines. The boson self-energy Xit(k, to„)is the same
as in Eq. (4.13) except that 1 —f(ek, ) is replaced by
1+n(tok. ) and ek is replaced by tok in the 5 function,
where cok is the boson dispersion. At finite temperature
T) T~E, ~k is typically of order k~T and the typical
momentum k=(m~kiiT}' . A typical scattering then
involves a momentum transfer of (mitk&T)' or less.
From Eqs. (4.8) and (4.9a), we see that the energy transfer
~ scales as ydq k0 ' so that the typical energy transfer is
yd(m~kTT) kp &&k~T. Thus, we can make the qua-
sielastic approximation that typically ~k.=&uk and

q =2k sin(8/2). Changing the variable J d k'=
mit Idcok d8, we ob.tain

1 =kg T/(mitted ) .
tr

(4.21)

We remark that, unlike the fermion case, this result is in-
dependent of whether the clean or disordered limit is
chosen in Eq. (4.9}. We also note that the result that r„
is proportional to k&T is a special feature of two dimen-
sions. It has been pointed out that the boson transport
scattering rate due to fermion particle-hole excitations
gives a T law. Thus, the scattering due to gauge field
dominates over any short-range interaction.

To emphasize the importance of gauge invariance, we
derive the boson transport time in another way. We con-
sider the boson density-density correlation function

IIit = —( T,[b (r, r)b(r, r)b (0)b(0)]), (4.22)

which, unlike the boson Green function, is gauge invari-
ant. The other gauge-invariant correlation functions of
interest are the fermion density-density correlation func-
tion

IIF= —(T,[f (r, r)f (r, r)f (0)f (0)]) (4.23)

and the physical electron Green function

G (r, r)= —(T,[f (r, r)b (r, r)f (0)b(0)]) . (4.24)

In a space-time Feynman path formulation, II& is
represented by a closed path in space-time which begins
at (r;, r; ) and ends at (rf, rf ). This represents the propa-
gation of the added particle-hole pair at (r;, r; ) to (rf, rf )

in a first quantized picture. In general, the added particle
can exchange with existing bosons in the ground state
which are represented by paths wrapping around the
periodic imaginary time direction. These exchange pro-
cesses can be represented by closed paths which wrap
around the imaginary time axis n times. However, for
T & T&E, the exchange probability is small and we con-
sider only the simple loop which is restricted to the
domain (O,P) in r space. In a gauge field each path r, (r)
is weighted by e', ~here

where the last factor k comes from the vector coupling
k-a. Now the co integration can be done by scaling and,
provided kT »ydq /kp [which is satisfied because the
rhs is approximately equal to (kT) ~ ], we obtain

k
Xit(k, tok ) = (kit T/m~yd }Id 8 (4.20)

q

The 8 integral f d 8[sin(8/2) ] is again infinite from the
small-8 limit. The transport time is computed in the qua-
sielastic approximation by weighing the 0 integral in Eq.
(4.20) by an extra 1 —cos8=sin (8/2). The integrand is
now convergent and we obtain

k T k, T co(9/kp)k'/ma
XiI(k, co„)= — de d 8

0 co +(y„q /kp)

(4.19)

(4.25)

We restrict our attention to the spatial component of the
gauge field and we have seen that it is a good approxima-
tion to consider quasistatic fluctuations. Thus, we con-
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sider a static but spacially varying "magnetic" field
h =V X a. In Fig. 4(a) we show the projection of a Feyn-
rnan path onto real space. In the static approximation,
each path is weighted by e'~, where P= f a d.l is the flux

through the area enclosed by a loop in the projected
space. To estimate h, we note that the equal-time value
of

& lh l ) =f [n(co) +1]q ImD (q, co)

k~T
for q (q0,

Xd

where

(4.26)

Tk 0

and is small for q )q0. Thus, we envision a spatially ran-
dom h which varies on the scale of q0 '. The mean-
square value of h can be estimated by

(4.27)

We can write &e'~)=exp( —
—,'&P )), where &P ) has

contributions from patches of flux with varying signs.
The flux through each patch is given by & P, ) =

& h )qo
and the number of patches is Aq0, where A is the area
of the closed loop in Fig. 4(a). We therefore conclude
that

where II& =r exp( 2mar /r) is the —density-density

I

I

~(z/m)
I

r/m)

(aj (b)

FIG. 4. Typical Feynman paths, projected onto the two-
dimensional plane, which contribute to (a) the boson polariza-
tion Hz, (b) the fermion polarization II+, and (c) the electron
Green function 6 . The dashed and solid lines refer to boson
and fermion paths. The circle with radius qo

' represents the
scale of the fluctuating gauge field flux.

(4.28)

Note that the length scale q0
' has canceled out in this

expression. Now we can write

(4.29)

correlation function for noninteracting bosons. The free
boson diffuses in imaginary time and typically
r =(r/m~ )' so that typically A =r/rn~ C. ombining
Eqs. (4.28) and (4.29), we see that the boson propagator
has the extra decay due to the scattering by the gauge
field given by the factor

&e' ) =exp[ —(T/ydrn~)r] (4.30)

&
e'~ ) =exp[ —( T/yd )

~ kFr], (4.31)

which can be interpreted as a mean free path I =uFrt„,
where rt„is in agreement with Eq. (4.18).

Next we consider the physical electron Green function,
Eq. (4.24). The zeroth-order calculation is to decouple
this into a product of fermion and boson Green functions,
which is a convolution in Fourier space. The result for
the spectral weight is

ImG (k, co)

= —fdq5(a) —gk+ +co )[n(a) )+f(e„+)], (4.32)

where gk =ek =p~ and co~ =co~ —p~, where

pz = —k&Tin(maT/2nx) is that for the free boson for
T ) T~E. The first term in this expression leads to a peak
centered around the energy ek —

l pz l
with a width of or-

der

&=uF(k'rm~)' (4.33)

This is because the Bose factor n(co ) implies that the
typical coq is of order k~T and the typical q is of order
qo=(k&TmB)' . The 5 function in Eq. (4.32) is then
shifted and broadened by u~qo leading to Eq. (4.33). We
note that, since fdqn(co~) =x, the area under this peak
is given by the hole concentration x.

The second term in Eq. (4.32) gives rise to a continuum
with a threshold

—
lp~ I

2tOF
(4.34)

which extends to —4J with an area of (1—x)/2. We

so that it is natural to interpret the lifetime
r„=(T/gdms) ' as the relevant lifetime for density
fluctuations. This argument, which is qualitative, has the
advantage that the role of gauge invariance is clear. Only
a gauge-invariant loop integral appears, which is finite, as
opposed to the line integral appearing in Eq. (4.17),
which is infrared divergent. Furthermore, this qualita-
tive argument permits a generalization to strong cou-
pling, as we shall discuss later.

A similar argument can be made for the fermion prop-
agator II+(r, r). The difference is that the Feynman path
for a fermion on the Fermi surface is restricted to a tube
of radius kF around the classical straight-line path. If
kF ' (&q0 ', the number of independent patches of fluxes
is now rq0 and the contribution from each patch is

&p;)=&A )(qok~) =TkF /yd .

We obtain
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note that the total area is (1+x)/2 instead of unity. This
apparent violation of the sum rule is because our model is
in the U~ 00 limit and some of the spectral weight has
been pushed to infinity.

We next show how this picture is modified by the cou-
pling to the gauge field. A direct diagrammatic calcula-
tion is not feasible because, as we have seen, the self-
energy corrections are infinite due to low-frequency
gauge field fluctuations with ~ & kz T. In principle, these
infinities should be canceled by vertex corrections so that
the gauge invariance of G is preserved. We have not suc-
ceeded in implementing this calculation and we resort to
the following qualitative discussion. We divide the gauge
field into two regimes: co& T and co) T. For co& T we
can make the quasistatic approximation as before and
compute G using the path-integral method in an explic-
itly gauge-invariant manner. As shown in Fig. 4(c), the
boson paths exhibit a random walk while the fermion
path is restricted to nearly a straight line (the Gorkov ap-
proximation). We obtain

G =Gp ( e ) Goexp[ ( T/gd )I'(r/ms ) ]

Near the quasiparticle peak, we estimate the lifetime by
replacing r =vz~ in the exponent, and we obtain
r;„'=(T/yd) (msmF) ' Thi.s is less than the T'
width due to momentum broadening and is therefore
negligible. For u) T we can use diagrammatic methods.
The calculation is convergent and essentially the zero-
temperature result Eq. (4.16) applies. The dominant con-
tribution is from the self-energy correction to the fer-
mion, which is J(Q/yz) ~ . As shown in Appendix B,
the first vertex correction gives rise to only logarithmic
corrections. The fermion and boson have very different
velocities and sample different frequency domains of the
fluctuating gauge fields so that the cancellation between
self-energy and vertex in the quasistatic limit no longer
applies.

To summarize, ImG (k, Q ) consists of a continuum for

Q & —
ll g I

—(Ikl —kp)'/2mF

and a peak at Q=lkl /2mF —juF. The behavior of the
spectral weight as k moves through kF is shown in Fig. 5.
The peak is severely broadened with a width equal to
max[Q ~ J', (Tma)'~ mF '], which leads to an asym-
metric line shape with a high-energy tail -0 . Thus,
the Landau criterion that the quasiparticle width should
be less than its energy is violated. On the other hand, the
location of the peak in k space is determined by the "spi-
non" Fermi surface which satisfies Luttinger's theorem.
The dispersion of this peak is characterized by a band-
width of 8J. All these features are consistent with the
photoemission data. According to our view, the observed
continuum "background" is intrinsic and, in fact, con-
tains the bulk of the spectral weight. Another interesting
prediction is that, for Ikl )kF, when the peak has moved
through the Fermi surface, the continuum remains with a
threshold which recedes from the Fermi energy as
Ikl kF increases. We also pre—dict that the intrinsic con-
tinuum background is much reduced for inverse photo-
emission (BIS) or for photoemission in electron-doped

k( kF

1/2J1/2

k =kF

M2/3 I1 /3

k& kF

0

FIG. 5. Schematic drawing of the electron spectral function.
The shaded area is the background and the unshaded area is a
quasiparticle-like feature with area x. This feature moves

through the Fermi energy (co=0) as k moves through kF.

V. PHYSICAL QUANTITIES
AND IOFFE-LARKIN COMPOSITION RULES

We are now ready to calculate various physical proper-
ties such as conductivity, Hall effect, thermopower, mag-
netic susceptibility, etc., including corrections due to
gauge field fluctuations. Again it is important that these
physical quantities are gauge invariant. This is best illus-

materials.
The tunneling density of states is readily obtained us-

ing 1(Q)=fdkImG (k, Q) and we find that

I (Q)-x+ IQI/J for Q&0, but contrary to Ref. 50,
1(Q)=x for Q)0. This correction to Ref. 50 has al-

ready been pointed out earlier. ' The asymmetry between
particle and hole in tunneling and in photoemission is not
surprising in the large-U model. An added electron can
only enter a vacant site, so that for 0)0, ImG and I
are proportional to x. On the other hand, it is always
possible to remove an electron so that I is of order unity
for 0&0.

We would like to briefly comment on a phenomenolog-
ical description of the normal-state properties that has
been recently given by Varma et al. Starting from the
linear T dependence of the resistivity (i.e., the transport
scattering rate), they hypothesized that the electron self-

energy is a linear function of m, leading to a marginal
Fermi liquid. Our result shows that, in a concrete model,
it is possible to obtain a linear T transport scattering rate,
while at the same time the electron spectral weight has a
width co which violates Landau's criterion for Fermi
liquid. Essentially the transport time is, in general, not
necessarily the same as the electron lifetime and the hy-
pothesis of the marginal Fermi liquid is not uniquely dic-
tated by the transport measurements.



5632 PATRICK A. LEE AND NAOTO NAGAOSA 46

trated by considering the electrical conductivity„a prob-
lem first treated by Ioffe and Larkin. We have to couple
the physical electromagnetic field A to the electrons,
which are now represented by c =f b . We can couple0' 0
A to f or to b with the standard minimal coupling, but
not to both and the result must be independent of this
choice. By integrating out the gauge fields, Ioffe and Lar-
kin showed that the physical conductivity o. is given by

o —oF +op (5.1)

Alternatively, this result can be obtained by enforcing the
constraint on the current voltage relation. For con-
creteness let us couple A to the fermions. Then

J =o. E+o„E (5.7b}

and similar expressions for the fermions and bosons, re-
spectively. In the experimental configuration for the
measurement of the Hall constant, the current
Jy =Jzy = —

Jzy is zero which determines both e and E
simultaneously as E = —(a B ) 'o,»eB and F»= —(OF) 'cr„eF—e . Putting the expressions for 0, ,
H ~y 7 cg and E' F y we obtain

&F&a &FRaB
H

+F++B +F+XB

and

and

JF aFe——F crF—(—E+e) (5.2) B F
E = o F&a XFRa+XsRa H.

+F +~B +F ++8

Jg =o gag =0 g6', (5.3)

where E and e are the electric fields corresponding to A
and a, respectively. The local constraint means that, on
every bond, the fermion current JF is opposed by a boson
backflow Jz so that

JF+J~ =0 . (5.4)

Thus, we obtain F= —EO.F/(oF+OB) as the average
gauge field which will be produced to enforce the con-
straint. The physical current is J=JF= —Jz,

J=0 FOBI ( crF +O' B')E,
from which Eq. (5.2) follows.

We note that
oB=x r,', /mB.

(5.5)

(5.6)

and OF =(1—x)H/mF so that crF ))cr& Thus. , the phys-
ical resistivity is dominated by the boson resistivity which
is in agreement with experiment in both the linear T
dependence and the scaling of the spectral weight with
hole concentration as seen in Eq. (5.6).

The Ioffe-Larkin argument can be readily extended to
other physical quantities such as the Hall effect. Here a
gauge "magnetic" field h is generated in response to the
physical magnetic field H, in addition to the gauge "elec-
tric" field e. The gauge magnetic field h is determined by
imposing the condition Eq. (5.4) on the diamagnetic
currents JF and J~. The diamagnetic current is propor-
tional to the magnetic field and the diamagnetic suscepti-
bihty, i.e JF,B XF,BhF, B where hF("B) is the magnetic
field which the fermions (bosons) feel and is given by
h HF+h and (hB=h). Therefore, from Eq. (5.4), we
obtain h = Hy~/(yF +yB ).—The Hall constant (we
have adopted a convention where o is calculated for
positively charged bosons) R~(R~) is given by
cr„»I(hFo~) and [ —o /(hBcrB)] which is inverted to
obtain an expression for cr„and cr in terms of the Hall
constant of the fermions R~ and bosons R~, respectively.
Assuming that the electric field E is along the x direction
and the magnetic field H along the z direction, the
currents J„andJ are given by

(5.7a)

The Hall constant R& of the total system is the ratio
E» Io H and is given by

(RsrXB+RsrXF )R~=
(XB+XF )

(5.8}

n"= ll "—ll "(ll "+0")-'ll"F F F 8 F

=(A +A (5.9)

where II z F are the response functions which are irreduc-
ible upon cutting a single gauge field propagator. The
transverse part of these functions is given by HF and II&

where R&= —(1—x) ' and RB=x ' are approximated
by the values for noninteracting fermions and bosons.
Note that, for T & Tzz, y~ ~~ and we have the Ferrni-
liquid result R~=R~. On the other hand, for T & T~~,
using yB = TBBImB T, gF -(1 x)/m—F, we conclude that
the boson R~ dominate so that R&~1/x in the high-
temperature limit. Experimentally the Hall number is
typically a factor of 2 larger than the hole density deter-
mined by chemical means. This difference was explained
recently as possibly due to strong-coupling effects. Ex-
perimentally R~ is found to be temperature dependent
and increase with decreasing temperature. Equation (5.7)
provides a mechanism for the temperature dependence of
R& via the temperature dependence of gz. Unfortunate-
ly, this yields an R& which decreases with decreasing
temperature, contrary to experiment. Ioffe, Kalmeyer,
and Wiegmann have pointed out that, in the presence of
an external field, the scattering by the gauge field fluctua-
tions becomes chiral, leading to a correction to the con-
ductivity tensor o.„yand o.„y This mechanism gives the
correct sign of the temperature dependence. However,
very recently Chien et al. have successfully analyzed the
temperature dependence of the Hall data in terms of a
very simple model involving the introduction of an addi-
tional scattering time. It is not clear how this phenome-
nological model can be accommodated in the gauge field
picture.

Yet another way of deriving the Ioffe-Larkin formula is
by summing diagrams. For example, II is obtained by
summing the two terms shown in Fig. 6 and is given by
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~ ~ 0 ~ ~ 0 ~ 011+

FIG. 6. A diagram for II showing the screening eSect of the
gauge field, shown as the dotted line.

given in Eqs. (4.3) and (4.5), respectively. It should be
noted that there are two limits with respect to the relative
magnitude of

~
co

~
and vq, with v being the velocity of the

fermion or the boson. When ~co~ &&vq, IIF and IIF are
dominated by the first terms in Eqs. (4.3) and (4.5), re-
spectively, and Eq. (5.9) is reduced to the composition
rule Eq. (5.1) for the conductivity. In the opposite limit
~co~ &&vq, IIF and IIF are dominated by the diamagnetic
terms yFq and yBq, respectively, and the orbital contri-
bution to the magnetic susceptibility y =BM /BH is

FIG. 8. The vertex screened by the gauge field.

while for the magnetic vertex the opposite limit ~co~ && vq
is relevant and the factor becomes yB/(yF+yB). This
procedure results in the fermionic contribution

F 2 +B 2HoF o'B/(crF+oB)
XF XB

to the off-diagonal conductivity cr„~. The boson is not
directly coupled to the external electromagnetic field, but
there is a bosonic contribution through the decoration of
the vertices shown in Fig. 9. The decorated vertex is—IIF/(IIB+IIF) times the original one. Therefore, the
bosonic contribution to cr is

X '=XF'+LB' (5.10)

Since yB is temperature dependent, this gives rise to a
temperature dependence in the physical orbital contribu-
tion to the magnetic susceptibility, which can be dis-
tinguished from the spin contribution by the anisotropy
of field dependence relative to the plane. Thus, gauge
theory predicts a temperature dependence in the anisot-
ropy in the magnetic susceptibility. Experimentally there
have been two reports of such anisotropy. ' However,
it is necessary to separate out the contribution due to su-
perconducting Auctuations above the superconducting
T„which complicate the analysis of the data. Ioffe and
Kalmeyer have discussed a fit to the data using Eq.
(5.10). However, their fit seems to require a very high
value of the boson mass mB =10m, which may be incon-
sistent with the spectral weight of the Drude peak ob-
tained from optical conductivity.

For the density-density response function we have

IPF(q, co) = [IIF(q, co) '+IIB(q, co) '] (5.11)

where HF B are the irreducible objects considered in Sec.
IV. It follows that the compressibility dn /d p is given by

' —1 —1 —1

dn

dp
cAl

dP F

dn

dP B
(5.12)

The diagrammatic analysis for the off-diagonal conduc-
tivity cr goes in a similar fashion. The diagrams for cr

contain three external vertices corresponding to E, E
and H as show in Fig. 7. Each of the vertexes should be
the screened one (0 ) represented in Fig. 8 which corre-
sponds to the multiplication of a factor IIB /(IIB+ IIF ) to
the bare vertex. For the electric vertices, the limit

~
co

~
))vq should be taken and the factor is o B /(o F +o B ),

~HOB + OF/(OF++B )
+F 2 2

XF XB

jg =L21E L22V T (5.14)

where a=F,B, e =E+e, e =e as before, j is the parti-
cle current, j& is the heat current, and

L21= TL,2 (5.15)

Summing these fermionic and bosonic contributions, we
obtain

2 F BcrFcrB +BRH++FRH
H =cr HRH,

crF+crB XF+XB

which is nothing but the composition rule Eq. (5.8) for
the Hall constant.

We note that this discussion does not include the
modification of the gauge field propagator in the presence
of the magnetic field. This has been considered by Ioffe,
Kalmeyer, and Weigmann who found important further
temperature-dependent corrections to RH as mentioned
earlier.

Next we consider the thermopower and thermal con-
ductivity. We can write down the linear response func-
tion for the fermion and boson systems:

(5.13)

Ex Ey

r
~ or ~ ~ ~ ~ e( P ~oooo ~ 0 ~

/
/

FIG. 7. A diagram for the fermionic contribution to o „~.
FIG. 9. A diagram for the bosonic contribution to cr„„.The

dashed line represents the boson propagator.



5634 PATRICK A. LEE AND NAOTO NAGAOSA

by the reciprocity relation. The therrnopower
S = E' /VT =L ]2 /L i ] is obtained by setting j =0 in Eq.
(5.13). For physical thermopower, we set j =0, which,
together with the constraint jz+j& =0, implies that
j"=j =0. We can then solve for e and the physical
thermopower S =E/V T:

S =SF+S'. (5.16}

The thermal conductivity is obtained under the condition
of zero particle current flow so that

~ =L22 —L2, (L ) 'L (5.17)

Note that, contrary to electrical conductivity, it is the
thermal conductivity that adds. If we use the free-
particle value for ~"and v, or alternatively, if we assume
that the Wiedemann-Franz law holds for ~, then we ex-
pect ~ to be dominated by ~, since o. ))o. . On the oth-
er hand, the conductivity o. is dominated by o. so that
the Wiedemann-Franz law is not expected to hold for the
ratio ~/o. . Experimentally, the thermal conductivity
measurement is complicated by phonon contributions
and possible phonon dragg effects, but the Wiedemann-
Franz law appears to hold to within a factor of 2.

For free bosons we expect

Sz =-(kz/e)[1 —1n(2rtx/mk&T) j

so that according to Eq. (5.16) we expect S to be dominat-
ed by Sz and to be near kz/e. Experimentally, S is ap-
proximately 0.1k&/e, which is much smaller than the
free-boson prediction. At the same time, it does not
have the linear T behavior expected for Fermi liquid.
There is also a report that S is much less sensitive to a
large magnetic field than that expected from spin split-
ting effect. This would support our contention that the
spinless bosons dominate the thermopower. Neverthe-
less, the thermal transport properties ~ and S are not in
satisfactory agreement with the free-boson prediction.
One possible solution is that the scattering by the gauge
field suppresses the Bose condensation temperature and,
at the same time, the normal state is not describable by a
free Bose gas. However, at present, we do not have a
quantitative description of such a state.

VI. SUPPRESSION OF THE BOSE-EINSTEIN
CONDENSATION TEMPERATURE

AND STRONG-COUPLING EFFECTS

Up to now, we have treated the boson at a temperature
higher than the Bose-Einstein temperature, so that it is
almost a Boltzmann gas. The dilute ideal Bose gas does
not undergo a phase transition at any finite temperature,
but an interacting dilute Bose gas has a transition to a
superfluid phase at a temperature scale given by the Bo-
goliubov theory as '

Writing the total heat current as j&=j&+j& and enforc-
ing the constraint j +j =0 as before, it is straightfor-
ward to show that the physical thermal conductivity
i~= j&/V—Tis given by

(5.18}

Z&XC p

m~ln ln(1/y )
(6.1)

where y =xap/cp, where cp is the lattice constant, ap is2 2

the interaction range, and Eq. (6.1) is valid in the limit
Inln(1/y)» l. Since the double ln dependence is so
weak, it appears that

—227Txc p
TBE

m
=4mxt, (6.2)

where t is the hopping matrix element which corresponds
to a mass of m~(A' /ms =2teo), would serve as a reason-
able characteristic energy scale for Bose condensation.
Our best guess for t is that it is of order J (corresponding
to mz =2m, consistent with optical measurements)
which produces an estimate of Tzz =1500 K for x =0.1.
Thus, it is very important that the true Bose condensa-
tion be suppressed to something of order 100 K in order
for our theory to have any relevance to experiment at all.
We have good reason to believe that the scattering of the
bosons by gauge fluctuations wi11 provide just such a
mechanism for T~z suppression. This is seen by the fol-
lowing physical agreement. The usual criterion for Bose
condensation is that the de Broglie wavelength
A, z. =(m~T/27r) ' becomes comparable to the average
particle spacing. The incoherent scattering by the gauge
field fluctuations introduces an inelastic mean free path l.
For r '=ak~T, we havel=(am~T) ' and, for a&1, I
replaces kz as the length scale within which coherence
between particles can be established and we should com-
pare l with the interparticle spacing. This leads to a
suppression of the Bose condensation temperature.

This line of argument also brings out a weakness in the
perturbation theory described in Sec. IV which was based
on the Boltzmann transport theory, since this theory is
justified only if the mean free path l is greater than the
thermal wavelength. From Eq. (4.21) we see that

t = ( T/m)'~ mzgd /T = A /g, (6.3)

where we have introduced the dimensionless coupling
constant

g =(m~yd) (6.4)

We recall that yd=yz+y~ and g~=(1 —&)/mp,
y~=T~z/TmI, . In the mean-field treatment of the t-J
model, m~ '=J and m~ '= t, which may be renormalized
down to J. In any case, we estimate that g is of order uni-

ty near the condensation temperature and is greater than
unity at higher temperatures. Thus, we need to treat the
coupling to the gauge field in the strongly coupled limit.
This is a difFicult problem but we can make some qualita-
tive progress in the Feynman path formulation. This was
presented in Ref. 53 and here we just summarize some of
the coric1usions. Essentially the picture is that, in the
strong-coupling limit (g » 1 },the important paths are no
longer the diffusive loops shown in Fig. 4(a) but instead
they are almost self-retracing paths. This will minimize
the scattering due to the gauge field at the cost of losing
some entropy. The reduction of the typical area of the
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loop effectively reduces the coupling to an external mag-
netic field by the factor (1+g) '. The Landau diamagne-
tism is then predicted to be suppressed by

y(o)
D BE

(o)

(6.5)

where yz'=T~E'/m&T is the susceptibility of nonin-

teracting bosons. This can be interpreted as a suppres-
sion of TsE by a factor of (1+g} if we write

y~ = T~ElmT. Ioffe and Kalmeyer' have reached simi-

lar conclusions. They calculated yz perturbatively in an
expansion in g and indeed found a reduction from y~'.
They also did numerical studies of bosons in the presence
of the random static gauge field and found that y~ is

strongly suppressed. Thus, there is good supporting evi-
dence for the suppression of Tzz due to gauge field fluc-

tuations, but a quantitative discussion is still not avail-
able.

The strong-coupling theory also improves the agree-
ment with experiment in two ways. First, for resistivity
we found a resistivity saturation phenomenon, where the
boson resistivity

Ply T
ps = min(g, 1) .

X

/
/

/
/

/

~BE

FIG. 10. Schematic illustration of the possible modification
of the mean-field phase diagram shown in Fig. 1 when the in-

elastic lifetime effect due to gauge field fluctuations is taken into
account. The thick solid line is the only genuine transition.

For g ) 1 this removes the temperature dependence of
the coefficient of the linear term in the weak-coupling ex-
pression Eq. (4.21). Secondly, the Hall resistance is also
predicted to be reduced by a factor (1+g) so that
RH =x '(1+g) '. This inay improve the agreement
with the high-temperature limit of the experiment, as
mentioned earlier.

The strong inelastic scattering by the gauge field may
lead to a modification of the mean-field phase diagram
in the following way. Besides the suppressing of TzF,
the onset of the pairing order parameter
D;1 = (f; &f~ & f; &f1 &

) is also s—uppressed by the coupling
to the gauge field. However, immediately below T~E, a
gap appears in the gauge field due to the Anderson-Higgs
mechanism, and the low-frequency scattering mechanism
which suppresses TD' disappears. Thus, it is possible
that pairing D, . appears and the simultaneous appearance
of (b ) and D; means that we have a superconducting
state. Similar discussion applies to the temperatures
below TD and TzE' so that the boundary of the supercon-
ducting state becomes that of the thick solid line shown
in Fig. 10. This provides a mechanism where there is a
finite region in doping concentration where we have a
transition between the strange metal phase and the super-
conducting phase. The Ginzburg-Landau theory for the
pairing of the ferrnions and the bose condensation has re-
cently been developed. ' It is concluded that the only
true phase transition is the superconducting one accom-
panied by the simultaneous appearance of (b ) and D,J..
This is because the gauge field screens the logarithmic
divergence of the single vortex energy if it remains mass-
less. Therefore, a finite density of thermally activated
vortices makes (b ) or D; vanish. When the g. auge field
is massive, such a screening does not occur and ( b ) and
D;~ can become nonzero simultaneously accompanied by

the appearance of the mass of the gauge field. The nature
of the superconducting state has also been discussed.

VII. DIRECT MEASUREMENT
OF GAUGE FIELD FLUCTUATION

I(co, q) ~ (h~ h
~ „)

k~T
q Im. 1

i')o (q}+—ydq
(7.1)

where q is the momentum transfer of the scattered light
or the inverse of the light penetration depth, whichever is
larger. We estimate q =10 cm ' and, if the clean limit
Eq. (4.9a) is used, the characteristic Stoke's shift is

gdq /ko, which is estimated to be around 2X10 sec
too small to be resolved experimentally. It may be possi-
ble to measure the frequency-integrated scattered light, in
which case we predict

dc' I co
T

Xd
(7.2)

From this experiment the temperature dependence of yd

Since the gauge field fluctuation (or equivalent spin
chirality fluctuation) plays a central role in our theory, it
will be highly desirable to be able to measure it directly.
The problem was addressed by Shastry and Shraiman,
who showed that, in a Hubbard model, the spin chirality
fluctuation gives rise to Rarnan scattering in a geometry
where the incident and outgoing polarizations are per-
pendicular to each other. Furthermore, they have shown
how to uniquely extract the chirality contribution by
adding and subtracting various scattering geometries, in-
cluding linear and circular polarizations. From Eq.
(4.8) we predict that the Raman intensity should be
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can, in principle, be measured experimentally. We em-
phasize that our discussion is limited to low frequency.
The high-frequency regime (co= 1) is dominated by am-
plitude fluctuations and should be similar for doped and
undoped samples. Recently, the chirality fluctuation in
undoped samples at high frequency has been observed.

The prospect of experimentally resolving the frequency
dependence of the chirality fluctuation improves if we go
away from the "strange metal" normal state. From Fig.
1 we see that there are three possibilities: (I) the over-
doped regime where the bosons condense and we have a
Fermi-liquid state, (II) the underdoped regime where the
fermions from a pairing state and we have a spin-gap
state, and (III) the superconducting regime where we
have both paired fermions and condensed bosons. We
can describe these three cases with a two-fluid model for
the function o (q, co)

4mp, /m
cr(q, co) = . +o „(q,co),

lN

where

B F
ps ps

PlB PlF

and

(7.3)

(7.4)

~n=n+&n . (7.5)

Tq I (q, co)I q, co
4m.p, /m co +I' (q, co)

where

(7.6)

(7.7)

Since I itself is frequency dependent, it cannot be simply
interpreted as a width. Instead, we can make the follow-
ing estimate. We pararnetrize

Again, we caution that p, and cr„arenot the physical
superfluid density or the physical normal conductivity.
In region (I), p, %0 and cr„becomes small with decreas-
ing temperature, but o„remains finite. In region (II),
p, @0 and o „becomes small but cr„is finite. Finally, in

region (III), both p, and p, are nonzero and o„is
thermally activated. The main point is that, when (7.3) is
substituted into Eq. (7.1), ydq effectively is replaced by

p, because now we have a perfect diamagnet and the en-

ergy scale of the fluctuation is greatly increased. In this
case the Raman intensity is

pends on whether p, /p„ is large or small compared with
unity. We find the half width to be of order
I (co=0)=y~p, /p„ for p, /p„(1 because, in this case,
the assumption that I is cu independent is self-consistent.
On the other hand, for p, /p„)1, the half-width is of or-
der y . In both cases the intensity at co =0 is
Tq o „(q,co=0)/(p, /m) and vanishes when p„ap-
proaches zero.

To summarize, it is more promising to observe the Ra-
man scattering due to chirality fluctuations in the Ferrni-
liquid phase, the spin-gap phase, or the superconducting
phase, where the energy width is of order the fermion or
boson scattering rate y. In the superconducting phase,
the scattering will vanish at low temperature as p„—+0
and the best place to look for this effect is at some inter-
mediate temperature below, but not too far below, T, .

VIII. CONCLUSION

We have presented a model in which a non-Ferrni-
liquid state emerges at a finite temperature. Chirality
fluctuations described in terms of a gauge field play an
important role in determining the physical properties of
this state. The behavior of the single-particle Green
function and the transport properties yields qualitative
comparison with experiments. Recently this model has
been extended to include the spin fluctuation spectrum
and to compare with the nuclear spin relaxation measure-
ment. The major weakness of this model is that we do
not have an adequate description of the boson system
when its bose condensation temperature is suppressed by
strong gauge field fluctuations. A second drawback of
this model is that it is restricted to intermediate doping
concentration and we have no description of how it can
be connected to the antiferrornagnetic state. In our
theory, a spin-gap state emerges as doping is reduced,
which may be in agreement with neutron and NMR ex-
periments. ' Ho~ever, in our theory a gap will appear
in the gauge field due to the Anderson-Higgs mechanism
in the spin-gap phase and our mechanism for the linear T
resistivity would disappear. It seems clear that further
progress on this model requires a deeper understanding
of the effect of strong coupling to the gauge field.
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APPENDIX A

O O'Yq
cr„(q,co) =

CO +fq
(7.&)

where oo=(p„/m)y ' and y is the scattering rate. We
assume for simplicity that p„/m and y are dom-
inated by either the boson or fermion contribution,
depending on the region (I)—(III). Then
I =(p, /P„)(co +y )/y~. The half-width of l(co) de-

In this appendix we evaluate the average of the one-
particle Green function over gauge field fluctuations
(G(r, t)) and show that, in two dimensions, it vanishes
for any r%0. We use the Gorkov approximation, which
states that, in a gauge field, the Green function is
modified by a phase factor G(r, t)=Go(r, t)exp(i4&),
where

dt, a rp t~ t~ 'Io t,
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and r0 is a straight-line path connecting the initial and
final space-time points, i.e., ro(t) )=rt) It. The average
over gauge field fluctuations then reduces to a computa-
tion of (expiq)). We note that G(r, t) is not gauge in-
variant so that the calculation of (G(r, t)) must be un-
derstood as being performed in a fixed gauge, otherwise it
would trivially vanish. We fix the gauge to be the
Coulomb gauge in the following.

In Fourier space we have

rt, ra, t, —dt,
0 t ' ' t

f
i(q r —c»t)

aq~ r
q

2n ~'" i(q r (ot)— (A2}

Since the gauge field fluctuation is Gaussian, we obtain

and

(expi4&=exp( —
—,'(q) &) (A3)

(@'&= g f (a.(q, ~)~t)( —q, —~)&
p 277

2[1—cos(q.r —tot) ]
P~Pp

(q r cot)—
We can now use Eqs. (4.2), (4.8), and (4.9b), which take
the form

k:
q+k

FIG. 11. The erst vertex correction I'"(p+q,p) for the
physical electron Green function.

( 2) ~frdto T toq 2 (rq)
0 277 N +Cq q

X 2[1—cos(q r —cot}]

(q r (ot)— (A6)

We are interested in infrared divergences due to the small

q, co limit of the integrand, in which case

2& f dq frdto Tqr l2
(2n) 0 2~ co +Cq

rTf d q r
(A7)

(2m} q

which is logarithmically divergent in two dimensions.
Thus, we conclude that, for any nonzero r,

(G(r, t) & =G.(r, t)(.")
(a (q, (o)at)( —q, —to)) =0. (A8)

CO Nq=cosh
2k T 2 6 ~a

co +Cq
qaqp

q

where C is a constant. Equation (A4) becomes

(AS)
Note that our calculation has been done in a fixed gauge
and (G) does not vanish in three dimensions. Thus, Eq.
(A8) is not a trivial consequence of the lack of gauge in-
variance of the Green function.

APPENDIX 8

Here we give the evaluation of the first vertex correction shown in Fig. 11. The diagram in Fig. 11 is expressed as

[2(p+q)+k]„(2q+k), k„k„P( ) )(p +q q ) y y P 8 u

XD (k, ico()Gtt(q+k, iso +ito&)G~(iso„+iso +ico&,p+q+k) . (Bl)

[I'"(p +q,p)] =—g —f dx
l~l» x +ck

We express D (k, ice&) in terms of the spectral weight as (lie) fdx[ImD (k,x)l(itol —x)] and we restrict ourselves to
the contribution to I'" from lxl ) T, which we denote by [I'"]

The summation over i coI can be done by contour integration and we obtain

(p+q) q —[(p+q} k][q.k]
mFm g

ntt(x)—
X

[i (CO +CO )+X g + +k][lCO COq+k]

f kp+q+k

[t (~.+~ }+x 0,+,+kl—[i~. 0,+,+k+—~,+k]

n~(coq+k }+
~m +x ~q+k][t~n kp+q+k+~q+k]

(B2}
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The absolute value of [I'"]& is bounded from above as

1 1 k 2(pF+q)q
I[f'"'(p+qs»)l. ~ —X —1

I I» x +ck rrIF+rng

fn~(x) ~

[(co„+co )'+(x —
g + +k)']' '[co' +(x —coq+k)']' '

f kp+, +k

[(~a+con )'+(x —kp+q+k)']'"[con+(kp+q+) coq+k)']'"

ns(~q+k)

[co~ +(x —coq+k) ] [co.+(coq+k kp+q+k) ]
(B3)

We are interested in the infrared divergence of the in-

tegral. The effective infrared cutoff is introduced by ~co„~,

~co ~, ~co„+co ~, q, and the temperature T for the k and x
integrations. The degree of the divergence is analyzed by
a simple power counting. From the factor (x +ck )

x scales as k . Considering g~+q+k=vF. (q+k+5p)
(where p =pc+ 5p with

~ po ~

=kF ) and

(q+ k)'
COq+)

— P +
2m

I

the k integration of each term of [ } in Eq. (B3)
gives f k dk k( l/k k~), f k dk k(l/k k), and

f Tk dk k(l/ k k), respectively. Here the Bose factorv'T

nz(x) cannot be much larger than l because ~x
~

) T, and

the Bose factor nz(co +k) restricts the integration region
within the thermal wave vector ~k ( (2m T)' . There-
fore, the dominant contribution comes from the first term
of[ } in Eq. (B3), which has logarithmic singularity with
respect to ~co„~,~co ~, ~co„+co ~, q, and T. Therefore, we

conclude that the first vertex correction gives to only log-
arithmic corrections.
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