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Dynamic conductivity of strongly correlated electrons: The Hubbard model on a cubic lattice
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The frequency-dependent (optical) conductivity of the Hubbard model on a three-dimensional cubic
lattice is studied through calculations on a small cluster. The interaction strength is varied between the
weak- and strong-coupling limits. Results are reported for the half-filled band, and for small hole dop-
ings away from half filling. The formation of a Hubbard gap is observed. Results are related to aspects
of the current discussion of the metal-insulator transition in bulk systems.

I. INTRODUCTION

This paper is concerned with the frequency-dependent
(optical) conductivity of strongly correlated electrons de-
scribed by the simple, one-orbital Hubbard model in
three dimensions. We investigate these quantities using
exact numerical calculations for a small cluster.

The optical conductivity of the Hubbard model has
been the subject of much recent study in view of possible
applications to cuprate superconductors. Most of the
work has concerned one- and two-dimensional mod-
els. ' ' Much less attention has been given to three-
dimensional systems. Many calculations have used some
type of an exact diagonalization procedure (such as the
Lanczos algorithm). Because those calculations are limit-
ed to a small number of sites, it is apparent that the linear
extent of the systems that can be investigated is much
greater in one- or two-dimensional cases. The calcula-
tions reported here involve a cube with eight sites. Be-
cause the wavelengths of infrared and optical phonon are
very large compared to the lattice constants of crystals,
the wave vector q of a photon emitted or absorbed can
generally be neglected, and one considers the conductivi-
ty only in the case q=0. We will refer to this as the opti-
cal conductivity.

In general, one would like to study the conductivity o.
as a function of the band filling and the interaction
strength U. There are three ranges of energy: (I) low (to
close to zero), in which one investigates the so-called
"Drude weight, " (2) intermediate energies to-t [t is the
hopping integral; see Eq.(5) (below)], and (3) high ener-
gies, co- U, in which case one has transitions across the
Hubbard gap.

If dissipative processes are ignored,

o (to) =D5(to)+ o „s(to),
in which D (a real constant} is the Drude weight and o'„s
is regular as co~0. The first term corresponds to the
possibility of free acceleration in a static field. In a clas-
sic paper, Kohn' showed that, for a large system, D
would vanish for an insulator while it would be finite for
a metal, with the value

OO me b
J Reo' (to)dto —— &01( —r. )lO), (3a)

in which 6 is the nearest-neighbor distance, which will be
taken to be unity in the numerical calculations which fol-
low, Vis the volume assigned to the system, and T is the
contribution to the noninteracting part of the Hamiltoni-
an which we call the kinetic energy from motion in the
direction specified by the index a. In a cubic system, o. is
independent of u. Further, as a convention, we will take
V=Nh where N is the nutnber of sites. Equation (3a)
simplifies

Reo co den= 0 —T 0
0 6%A

(3b)

where n is the number of carriers per unit volume, and
m * is the optical effective mass.

In the Hubbard model for a large system with a half-
filled band, D is expected to be zero for sufticiently large
U, and in the case of a one-dimensional system, it should
be zero for all U) 0. For other band fillings, D should
not be zero. In the case of a finite system, there are
significant complications, which are discussed in several
of the references, "" ' which occur when periodic
boundary conditions are imposed. For a half-full band,
one finds for a ring with 4n sites D(0, and for a ring
with 4n +2 sites, D &0." However, lDl decays rapidly
(essentially exponentially) with the size of the ring. ' In
the case of one-dimensional systems with open boundary
conditions, D =0.

For other band fillings for which D would not be zero
for a large system, the nonzero value of D obtained for a
finite system with periodic boundary conditions is mean-
ingful. In the case of open boundary conditions, for
which D is, strictly speaking, zero, it is shown in Ref. 13
that there is a peak in the optical conductivity at low fre-
quency ("Drude precursor") such that a D can be extract-
ed by integrating over this peak, and this value of D is in
agreement with that obtained when periodic boundary
conditions are employed.

In all cases, the real part of the conductivity in the
Hubbard model is constrained by the sum rule' (in units
in which fi= I),

D =m.e n/m*, (2} where T is the full kinetic energy.
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Equation (3b) should be contrasted with the usual form
of the f sum rule'

f

�00
~ neReo (co)dco=—

0 2 m
(4)

(m being the free-electron mass}. When Eqs. (l} and (2)
are compared with Eq. (4), it is necessary to adopt the
convention that the integral over positive frequencies in-
cludes —,

' of the 5 function at ~=0; i.e., there is a contri-
bution to (4) of D/2. It will also be observed that the
right-hand side of (4) is independent of the electron in-
teraction, while the right-hand side of (3b) depends on the
interaction, and in fact can vanish (e.g. , for a half-filled
band as U~ oo ). The discrepancy is a consequence of
the one-band characteristics of the simple Hubbard mod-
el: The optical conductivity of actual solids at energies of
more than a few volts is dominated by transitions to
higher bands, which are not included in the present mod-
el. Even in many of the physical systems to which the
Hubbard model is intended to apply (antiferromagnetic
transition-metal compounds), the model cannot describe
the charge-transfer transitions (oxygen p states to metal
d) which often define the onset of strong absorption. In
this paper, we will discuss optical transitions across the
Hubbard gap, but it is not clear if there are experimental
observations of this.

The Hubbard model as defined on an eight-site (3d) cu-
bic cluster has been studied previously. Kawabata deter-
mined the spin of the ground state as a function of Ult
for filling from two to eight electrons. ' Spin-correlation
functions and thermodynamic properties were obtained
in Ref. 22. The spectral weight function for the same sys-
tem is described in Refs, 23 and 24. We mill not cite here
the far more voluminous literature on the Hubbard mod-
el on two-dimensional (2D) square lattices of various sizes
but a review of some related aspects of the 2D problem is
contained in Ref. 24.

The remainder of this paper is organized as follows.
Section II contains a discussion of the theory underlying
the calculation of the optical conductivity, and a brief
description of the computational methods employed.
Our results are described in Sec. III. The paper con-
cludes with a brief summary in Sec. IV.

The current operator is obtained by the procedure of
Kohn. ' We consider the interaction with a weak elec-
tric field described by a position-independent vector po-
tential A. Then a gauge transformation is introduced
which eliminates the vector potential from the Hamil-
tonian but modifies the phase of the orbitals. The result
is that the hopping matrix elements in Eq. (5) are multi-
plied by a phase factor, so that (5) becomes

H=t g e
&ij &, cr

—ieA. (R,. —R - )

ia ja+ U g ni/nit

.(p) let
~x ~ ~ ~ij xCt'oCj o

&ij &, o

te 2 eA2
Jx j)j.

A g kijI xciacj a
— Tx

(ij ),o.

(8a)

(8b)

where T„ is the contribution from the first term of (5) due
to motion in the x direction.

The "observed" currents are found with the use of the
density matrix p,

(J)T[p(j(P)+J(D))] (9)

The trace in (9) is evaluated to first order in A, using a
standard procedure' in which one retains only terms of
first order in A. One obtains the complex conductivity
tensor 0.

&,

We now suppose that A is small, and expand the first
term through second order in A. The current J is
defined by

J)l(J(P—) +J(D) )
BH

a ~ a a
a

(a is a rectangular component and N is the number of
sites). The current consists of two parts: one which is in-
dependent of A, j' ' (sometimes called the paramagnetic
current), and one of first order in A, j' ' (the diamagnet-
ic current). We are including only nearest-neighbor hop-
ping in (5), so R; —R. is a nearest-neighbor lattice vector,

In the cubic system of interest here, our convention
is that ~b, ~=1, and b, ; lies along a cube axis. For con-
venience, we take A to define the x direction. Then,

II. THEORY AND CALCULATIONAL METHODS

H=t g c; c. +Urn;&n;& .
(ij ),o i

(5)

The simple Hubbard model is defined by the Hamil-
tonian

llV co+ l 7/ co+ le
where rj is an infinitesimal positive quantity, ( )0 indi-
cates an average with the density matrix in the absence of
the field (ground-state average at T=O), and II &, the
current-current correlation function, is given by

The notation is standard. We consider one orbital local-
ized on each site. Hopping, characterized by a transfer
integral t, is permitted between nearest-neighbor sites.
Interactions occur only between two electrons of opposite
spin on the same site, and are measured by a parameter
U.

ll.~=—y (O~j~" ~m)(m~j' '~0)
m

1

m+Eo —E +iq
1

m —Eo+E +i g

In order that this paper should be comprehensible and
reasonably self-contained, we review briefly some of the
formal aspects of the calculation of the dynamic conduc-
tivity. Much of the discussion is based on Ref. 13.

In a cubic system, only the diagonal terms (a=P) in the
optical conductivity are di8'erent from zero.

We may now let q tend to zero, and separate a into its
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real and imaginary parts.

cr (co)=o„(co)+ioi(co) . (12)

The index a can be dropped for a cubic system, giving

The real part o z is singular at co=0. This leads to an ex-
pression for the Drude weight D [Eq. (1)],

,( T)+2 (13b)

I &0lg. l~ & I'
D= —e ( —T )+2+

N E0—E (13a) For a two-dimensional square lattice, the factor 3 in the
denominator becomes 2. For co )0, we have

~~= "—
& l&0ljl~&l'S(co+Eo E ) (co&0),3' N

(14)

1

3Na)
e2( T&+ y—I(0I jim & I2

1

co+E0 —E
1

co —E0+E
(15)

in which the sum over m is to be interpreted as a
principle-value integral in the case of a large system. In a
finite system, singularities are avoided by approximating
the principal value using

1 N+E0+ E
co+E, +E +i' (co+E, +E )'+&' '

in which a small but finite value of g is retained. The real
dielectric function is obtained from crt by (cgs units}

e( co ) = 1 —4mr t /co . (16)

1 ~ crR(v)
crt(co)= ——P dv

V CO

(17)

[and cra( —v}=crz(v)]. We find from (17) that in the
limit co~ ~

00

lim [cocrt(co)]=—f cr„(v)dv .
Q) —+ 00 77 0

It then follows from (15) that

J "cr„(v)dv= e'( T), —
0

(3b')

which is the f sum rule discussed in the Introduction.
We can now combine Eqs. (3b'), (13b), and (14) to

deduce that if there is no state degenerate with the
ground state

&
I&oljl~ &I'

IE —E0 2

The real and the imaginary parts of the conductivity are
connected by the Kramers-Kronig relations. One of
these asserts that

value of D resulting from evaluation of Eq. (13b) must be
zero. This is a useful check on the numerical calcula-
tions.

In principle, the conductivity for a finite system is a
sum of 5 functions. In order to keep the results finite, the
parameter ri in Eq. (11)was set equal to 0.05.

III. RESULTS

We will consider first the calculated conductivity in the
half-filled band case, then, for systems with one or two
holes. In order to understand the results, it is essential to
understand the level spectrum of the noninteracting sys-
tern. This is illustrated in Fig. 1. As a convention, and
for convenience, we will assume that the parameter t in
Eq. (5) is equal to +1. This is equivalent to scaling U,
and all energies by t, i.e., U~U/t. The single-particle
spectrum contains four levels: the lowest, spatially non-
degenerate, energy —3; two triply degenerate levels of en-
ergy —1 and +1; and a nondegenerate level of energy
+3. The symmetries of the levels from lowest to highest
are I 2, I 25, I », and I &. If the sign of t is negative the
order of the symmetries is reversed but nothing else
changes. The current operator belongs to I ». In the
half-filled band case with U=O, the lowest two single-
particle levels are filled. This situation is reminiscent of a

3t

(3)

This result can also be obtained through use of commuta-
tion rules to evaluate the sum. However, then Eq. (13b)
implies that D=O, as discussed previously.

Numerical calculations for the eight-site cubic cluster
were performed using exact diagonalization. The Hamil-
tonian, defined on this structure, possesses electron-hole
symmetry. It is necessary for this small cluster to employ
open boundary conditions. Therefore, the numerical

(3)

-3t

FIG. 1. Energy-level diagram for the single-particle states.



5502 L. TAN AND J. CALLAWAY 46

m'(n, U)=( —T) /( —T) (20)

This m * is not the usual effective mass of band theory be-
cause the band mass has been scaled out; rather, it is a
measure of the effect of interactions on the integrated op-
tical absorption. Figure 2 shows that, for small U, m*

semiconductor rather than a metal. In the one- and two-
hole cases, the second level is not completely filled: these
cases correspond to metals.

The discussion of Sec. II indicated the importance of
the quantity ( —T ), the ground-state expectation value
of the noninteracting part of the Hamiltonian. Our re-
sults for this quantity are given in Table I. Equation (3b)
asserts, on the basis of this data, that the optical absorp-
tion vanishes as U~ ~ in the half-filled band limit, but
not for the other occupancies.

The numerical values contained in Table I have a sim-
ple explanation for U=O. In this case one is simply add-
ing particles one at a time to the levels as illustrated in
Fig. 1. The first two particles go into the level with
E = —3t; the remainder go into the level with E = —t.
When U is nonzero but small, ( —T ) remains close to its
value in the noninteracting limit, but as U increases
( U & 6), ( —T ) develops a maximum at n =5.

We would like to interpret this data so as to be relevant
to current discussion of the behavior of the quantity
n /m" [(electron density)/(effective mass)] near a metal-
insulator transition. However, there are two limita-
tions which result from the small size of the system we
consider: (I) a sharp transition is not to be expected even
at T=O in a finite system, unless there is a change in sym-
metry of the ground state due to a crossing of levels.
This does not occur in the half-filled band case in the
present model. (2) A gradual transition is partially ob-
scured as a result of the gaps in the single-particle spec-
trum illustrated in Fig. 1.

In spite of these problems, the following interpretation
is plausible: Since (for U ~ 4), ( —T ) increases monoton-
ically with an increasing number of particles for fixed U,
and also since the absorption for small U has a straight-
forward interpretation in terms of single-particle transi-
tions, it is reasonable to define an effective mass as the ra-
tio of ( —T ) for U=O and fixed n to that for nonzero U:

1.3

1.2I*

0

FIG. 2. Variation of the dimensionless effective mass defined

by Eq. (20) with occupancy for U=4t. The sharp change of
slope at n =5 is probably a finite-size effect.

remains close to but larger than unity for all n.
However, the situation is different for large U, since

( —T ) has a maximum at n =5, and decreases rapidly as
the half-filled limit is approached. Calculations of the
spectral weight function for this system ' show the ex-
istence of a narrow band of quasiparticle states for large
U whose width decreases only slowly for large U. In
these circumstances, we believe it is reasonable to consid-
er that the decrease of ( —T ) is due to a decreasing
effective number of carriers. We believe these data sup-
port the idea that a metal-insulator transition occurs only
in the half-filled band case, and as n ~0, rather than as~ 00.

In the noninteracting limit, U=O, the only energy at
which optical absorption can occur is co =2 (in units of t),
corresponding in the cases of interest here (eight, seven,
and six electrons) to a transition between I"z, and 1,5 lev-

els. As U increases, absorption is spread over a range of
energies. However, in the half-filled case, the absorption
moves steadily to higher energies. Figure 3 shows the
calculated optical conductivity for U=1,4,8, 12, and 100.
The strength of the absorption drops, as required by the
data of Table I, and also as is apparent from the factor

TABLE I. The ground-state expectation value of the negative of the first term in Eq. {5). ( —T ) /N
is given for all band fillings and selected values of U.

U

0
1

2
4
6
8

10
12
16
32

100

0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.375
0.375

0.75
0.748 16
0.744 15
0.734 53
0.725 62
0.718 15
0.712 03
0.706 99
0.699 29
0.683 79
0.669 52

0.875
0.871 43
0.863 28
0.843 08
0.824 36
0.808 98
0.796 65
0.786 74
0.772 02
0.743 98
0.72004

1.0
0.99442
0.982 36
0.953 36
0.926 38
0.903 86
0.885 51
0.870 56
0.848 04
0.804 20
0.765 93

1.125
1.11993
1.105 53
1.061 76
1.01543
0.975 98
0.946 51
0.91973
0.884 11
0.821 10
0.772 36

1.25
1.237 31
1.205 99
1.121 33
1.038 07
0.968 57
0.91334
0.869 83
0.807 53
0.69946
0.61653

1.375
1.361 44
1.321 41
1.18041
1.019 89
0.888 72
0.791 10
0.718 60
0.620 91
0.465 88
0.375

1.5
1.485 09
1.439 14
1.246 88
0.990 38
0.797 83
0.669 33
0.577 44
0.452 55
0.239 04
0.078 02
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FIG. 4. Energy of the lowest (major) peak in the optical con-
ductivity peak is shown as a function of U. Long-dashed line,
half-filled band; solid line, one-hole case; short-dashed line, two
holes. All quantities are in units of t.

0.1875-

0.1250
0)

b
0.0625

U ~100
()

p . i l)el
90 95 100 105 110

M/t

FIG. 3. Optical conductivity for the half-filled band case of
different values of U: (a) U=1; (b) U=4; (c) U=8; (d) U=12;
(e) U= 100. Curves are computed with a broadening (g) of 0.05.
In all cases, the Hubbard parameter U and the frequency m are
given in units of the hopping integral t.

co
' in Eq. (10). In the half-filled case, for U) 8 (rough-

ly}, antiferromagnetism is established in the sense that the
antiferromagnetic structure factor is within 10% of its
limit as U —+ ~. The spectrum of the Hamiltonian then
has a separate, low-lying manifold of states which are
spin rearrangements. These states are not accessible opti-
cally. Optical absorption requires transitions to a higher
manifold whose states involve a real (as opposed to virtu-
al) double occupancy, and this requires an energy of the
order of U. The energy of the lowest peak is plotted as a
function of U in Fig. 4. The real dielectric function will
show resonance behavior associated with the conductivi-
ty peaks.

We now turn to the consideration of systems with one
and two holes in a half-filled band. Figure 5 shows the
optical conductivity for the one-hole case for
U =1,4,8,12, and 32.

We observed, previously, B=0 as a consequence of the
boundary conditions. At U=O, all of the absorption is
concentrated in a peak at co=2, a single-particle transi-
tion. As U increases this peak broadens and splits. This
position of the lowest major peak is shown in Fig. 4. In
addition, absorption develops at higher energies, and be-
comes associated with transitions into the upper Hubbard
band.

2.0

1.5 .
V=1
(a} 0.75-

g 0.50-

V=4
(b)

0.5 0.25-

0 2 4 6 8 10
0)/t

I

P 2 4 6 8 10
m/t

0.500

0.375-

Q)~ 0.250-

0.125-

V=8
(c)

0.3

I 02-

0.1-

,~~~~L ~

0 4 8 12 16 20
m/t

, 'i,|J(,
0 4 8 12 16 20

co/t

FIG. 5. Optical conductivity for one hole in the half-filled
band for selected values of U: (a) U=1; (b) U=4; (c) U=8; (d)
U= 12.

Up to about U=6 (note that the "bandwidth" is also
6}, the lowest absorption peak remains at co=2. Evident-

ly, optical absorption at the energy of the single-particle
transition persists until U is about the size of the band-
width. As U increases further, this peak moves to lower
energies. For U&10, there is a clear separation of the
lower and upper Hubbard bands. There are several ab-
sorption peaks in each band. We think it is plausible that
this peak structure is a consequence of the finite size of
the system we consider, and that, in the limit of a large
system the absorption would be distributed more uni-

formly over both the lower and upper bands. Compar-
ison of Figs. 3(c) and 5(c) or 3(d) and 5(d) shows that for a
given value of U, doping leads to a transfer of absorption
from higher to lower energy. The data of Table I show
that the integrated absorption is not constant with dop-
ing, but the change is not large for U-6 or 8, i.e., for
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values of U similar to the bandwidth. The one-hole sys-
tem remains metallic with a narrow quasiparticle band
persisting to large U. In this specific case, the ground
state becomes the Nagaoka ferromagnetic state for
U) 39.5. Since this is a noninteracting state, the ab-
sorption for U) 39.5 reverts to a single peak at co=2, but
now corresponding to a transition between I » and I,
single-particle states.

Following Moreo and Dagotto, ' we define the scaled
integrated absorption up to frequency co,

Z(a))= f oa(co')den' .
6N

m.e —T
(21)

It follows from Eq. (3b') that Z( ~ ) =1. We show the
function Z(ro) for selected values of U in the one-hole
case in Fig. 5. For a small value of U IFig. 5(a)], almost
all the absorption occurs in a small energy range near
co=2, consistent with the discussion above. As U in-
creases [Figs. 6(c) and 6(d)], a plateau forms close to
Z= —,'. This results from the separation of the manifold
of states into lower and upper Hubbard bands. As is seen
from the figures, there is some indication of a plateau for
U= 8, and it is clearly established for U= 12. The in-
terested reader may wish to consult Fig. 4 of Ref. 22 (also
reprinted as Fig. 8.5.4 in Ref. 19) which shows that the
spectrum of spin- —,

' states for n=7 contains a Hubbard

gap for U=10. When the gap forms, the integrated ab-
sorption is about equally divided between upper and
lower Hubbard bands.

As U continues to increase, the plateau widens and the
Hubbard gap approaches U. Then most of the integrated
absorption is concentrated in the lower band.

Wagner, Hanke, and Scalapino' (WHS) have pointed
out that when open boundary conditions are employed,

one can still estimate the Drude weight by integrating
over the low-energy absorption ("Drude precursor"),
which they interpret (see their Fig. 12) as the absorption
in the lower Hubbard band. Their result, for a one-
dimensional system, appears to agree rather well with the
value of D in the metallic case obtained when periodic
boundary conditions are employed.

There could be some ambiguity in defining the "Drude
precursor" because the absorption for this finite system
exhibits a complex multipeak structure. It is possible
that some of this intermediate-energy absorption in the
lower Hubbard band becomes a midinfrared feature in a
large system, ' ' as seen in cuprate superconductors.
However, if we integrate over the lower Hubbard band as
in WHS, the Drude precursor has one-half of the total
absorption when the Hubbard bands separate, and the
full absorption for large U.

We now consider the case of two holes in the half-filled
band. The conductivity is shown for four different values
of U, in Fig. 7, and the integrated absorption is shown in
Fig. 8. As in the one-hole situation, the absorption be-
gins at U=O with a single peak at co=2, and spreads to
both higher and lower frequencies as U increases. The
major absorption peak of lowest energy, whose position is
shown in Fig. 4, moves away from the energy of the
single-particle transition more rapidly than in the one-
hole case, but for large U, beyond the range shown in Fig.
4, the peak for two holes is slightly above that for one
hole.

A Hubbard gap is apparent in the optical conductivity
for two holes for somewhat smaller values of U than for
one hole. It is already evident for U=6 for two holes, but
does not appear until about U=8 or 10 for one hole.
This difference is probably a feature of the small system
we consider in which the holes are spatially constrained.
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U =12
(d)
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m/t

0.2-

0 4 8 12 16 20
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FIG. 6. Dimensionless integrated absorption Z (col [Eq. (21)]
as a function of frequency for one hole in the half-filled band for
di8'erent values of U: (a) U= 2; (b) U=4; (c) U= 8; (d) U= 12.
In (c), the dashed line indicates a plateau where the Hubbard
gap develops.

CD~ 0.50-

0.25

o ~|i&L .
0 4 8 12 16 20

m/t

~ 0.50-CD

0
0.25-

o a ~uc. . .dLJ
0 4 8 12 16 20

m/t

FIG. 7. Optical conductivity for two holes in a half-611ed

band for selected values of U: (a) U=2; (b) U=4; (c) U=8; (d)
U= 12.
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FIG. 8. Integrated absorption Z{co}[Eq. {21}]as a function
of frequency for two holes in the half-filled band for (a) U=2;
(b) U=4; (c) U=8; (d) U=12. In (c), the dashed line indicates
the plateau corresponding to the Hubbard gap.

It is probably of greater significance that when U is large
enough so that the Hubbard bands are clearly identified,
the widths of the lower bands are very nearly equal to 6
in both cases which is the single-particle bandwidth
[compare Figs. 5(d} and 7(d}]. The manifold of two-
particle states is wider than this, about 10. The states in
the upper portion of this manifold are not accessible opti-
cally from the ground state. The integrated absorption
(Fig. 8) also differs in the two-particle case. When the
manifolds separate as U increases, the integrated absorp-
tion associated with the lower manifold is roughly three
times that associated with the upper. This implies, when
the data of Table I are considered (and excluding the
one-hole case where U= 100 for which the ground state is
the high spin state} that the integrated absorption associ-
ated with the lower band is roughly twice as large in the
two-hole case than for one hole. If the absorption in-
tegrated over the lower band in the cluster is interpreted
as generalizing to a quantity proportional to the number
of carriers for a large system, we see that this quantity
should be considered to be the number of holes rather
than the number of electrons. This result is in agreement
with that of Ref. 16 for the 2D Hubbard model. This, we
believe, supports the view that the metal-insulator transi-
tion is characterized by n ~0 rather than rn —+ 00.

IV. SUMMARY

We have investigated the frequency-dependent conduc-
tivity of the one-orbital Hubbard model in three dimen-
sions by means of exact numerical calculations on an
eight-site cubic cluster. We studied a wide range of in-
teraction strengths ( U} ranging from weak coupling to
strong coupling. The small size of the cluster made it
necessary to consider the specific features of this system,
such as the actual single-particle level spectrum, carefully
in our analysis of the results.

We found that, in the half-filled band case, the optical
absorption began (for U=O) at the energy of the lowest
allowed single-particle transition, and moved to higher
energies steadily as U increased. For large U, the absorp-
tion occurs near m=U, resulting from transitions in
which a double occupancy occurs.

In the case in which one hole is present in a half-filled
band, we see clearly the splitting of the absorption into
two portions whose intensity is initially roughly equal,
corresponding to transitions into the lower and upper
Hubbard bands. The splitting becomes apparent around
U-10, i.e., somewhat larger than the overall width of
the single-particle states. As U continues to increase, the
Hubbard gap approaches U, and the absorption associat-
ed with the upper Hubbard band becomes small. Howev-
er, in the specific geometry, considered here, the Nagao-
ka high spin state occurs for large U, and the absorption
from the ground state becomes of the single-particle type.

The results for the absorption when two holes are
present are qualitatively similar to those for one hole, but
there are obvious quantitative differences, particularly in
regard to the magnitude of the absorption. The Hubbard
gap was apparent in the absorption for the two-hole case
for slightly smaller U than in the one-hole case. Also, ab-
sorption due to transitions into the upper Hubbard band
was weaker by roughly a factor of 2 compared to the
one-hole case. For small U, the integrated absorption is a
monotonically increasing function of the number of elec-
trons in the band, so interaction effects can reasonably be
described in terms of an effective mass which increases
with U. However, for large U, the pattern changes, and
the absorption decreases as one approaches the half-filled
band. The behavior is consistent with a picture in which
the effective number of carriers goes to zero linearly with
"doping, " i.e., with the number of holes in the half-filled
band.

Although details of the calculated optical conductivity,
such as the location and area under specific peaks, de-
pend on the specifics of the small cluster considered,
there is significant evidence that many general features do
not. Comparison of the present results for a small 3D
system with those of Ref. 16 for a 4X4 2D system show
similar behavior which we believe is generic: For half
filling, transitions occur only to states in the upper Hub-
bard band. When the system has holes, spectral weight is
transferred to low energies. A Drude term appears and
there is optical absorption within the lower Hubbard
band, which may be related to the midinfrared feature
observed in high-T, superconductors. Perhaps most im-
portantly, the approximate linear dependence of the
effective number of carriers on hole doping from the
half-filled band for suSciently large U is also observed in
the 2D case.
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