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Gravitational effects on the magnetic attenuation of supercontiuctors
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It is found that when gravitational effects are taken into account, the two historical independent tradi-
tional hallmarks of ideal superconductors —perfect conductivity (0) and perfect diamagnetism charac-
terized by zero permeability (p)—are actually related to each other in terms of a theoretical o-p model
developed in this paper. Our result suggests a possible importance of gravitational effects in understand-

ing superconductivity.

I. INTRODUCTION II. CURRENT DENSITIES

Important space and other possible gravitational ex-
periments are crucially dependent on the use of a super-
conductor shielding system. ' Experimental efforts to
realize idealized near-zero magnetic fields inside super-
conducting shields, such as by using nested and mechani-
cal expandable superconducting shields, have yielded
remnant internal magnetic fields of the order of 10 ' t.
The attenuation of magnetic fields by superconductors,
which is a subject of fundamental importance that as yet
has not been satisfactorily explained, has recently become
critically important to understanding the interaction be-
tween gravitation and superconductivity. We have re-
cently demonstrated that a residual magnetic field, given
by Eq. (31) in Ref. 5 as

2m pzB(z)= — BQ,
q p

will exist within a superconductor when gravitational
effects are considered, where Bo is the external magnetic
field and m and q are the mass and charge of a Cooper
pair. Although gravitational effects are usually very
weak, they may play a major role when other kinds of
forces are nulled, as in the case of superconductivity.
Equation (1) indicates that the residual magnetic field is
caused by gravitational effects, since the magnetic at-
tenuation coeScient

iAVJ
—=m vj+qj A+mI As . (4)

When this generalized momentum operator acts on the
superconducting condensate wave function ff", it yields
the macroscopic averaged total charge- and mass-current
densities j', and j', respectively:

qA

q m.
A+ As

mJ qJ.

j' =g . (P'V, g QV—&g')—fi
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(5)
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q
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In our approach a superconductor is treated as a
many-particle system. In the presence of applied elec-
tromagnetic and gravitoelectromagnetic potentials A,
@,A, @,the Lagrangian can be written as

L=g ,'mdiv~ —gqj(—4 vA—)
—gm (Cs —vI As) .

J J J

(3)

The canonical momentum for the jth particle computed
from the Lagrangian is related to its velocity by

2m pg

p

is entirely determined by the ratio of the gravitomagnetic
and magnetic permeabihties pz and p of superconduc-
tors. Thus the essence of the problem of magnetic at-
tenuation of superconductors reduces to the determina-
tion of values of p and p for superconductors. This to-
pic forms the substance of the rest of the paper, and a
theoretical model relating o and p is developed in order
to predict the effects of gravitation.

Equation (5) is the usual quantum-mechanical equation
for a many-particle system, where each particle has
charge q and mass m; 1b is the superconducting order
parameter with a phase P, f= ~g~e'~, which forms a su-
perconducting condensate coherent wave such that the
local density of superconducting electrons is given by
n'=

~g~ . Equation (6) is the gravitational analog of Eq.
(5), which must apply since the charge and mass belong
to a common carrier. For a superconductor one need
only consider two kinds of charged particles: the Cooper
pairs and lattice ions.

With this information and the Maxwell equations
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PQ

() AVXVX A=i', +VX&.+3e,f (7)
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(8)

which explicitly show all current sources, p and pg as-
sume their free-space values. With this approach we are
able to interpret the following two features of the macro-
scopic equations for the vector potential A and its gravi-
tational counterpart Ag as it pertains to superconductivi-
ty.

(i) BCS theory shows that the superconducting elec-
trons in the Fermi-sea ground state are expected to result
in the formation of electron pairs with zero angular
momentum and spin. Those so-called Cooper pairs
comprise the superconducting current carriers in a super-
conductor. We can therefore identify the macroscopic
average of the "free" superconducting charge and mass
currents

2

~, =2M, lpl'V, y
'—A+ —A
m q

(14)

j' =2 I@I'V,p —
q A+ —

Ag
Yt

than B, do not dissociate, but their center of gravity ac-
quires considerable angular momentum, which gives rise
to a superconducting condensate wave, and this induces a
larger internal magnetic field. The interaction energy of
this internal magnetic field with the magnetic moment of
the lattice ions drives the lattice ions and superconduct-
ing condensate wave function to move together vortically
within the range of the coherent length and results in an
induced precession of the angular momentum of the lat-
tice ions. Consequently, a time-dependent gravitomag-
netic fields is generated within the superconductor until
the condition B+(m /q )B =0 is satisfied.

Then the total charge and mass currents given by Eqs.
(5) and (6) can be replaced by

j', I= —Q A+ —A where M, =q, fi/2m, is the Bohr magneton of a lattice ion
and y, =q, /2m, is its gyromagnetic ratio.

III. MAGNETIC ATTENUATION COEFFICIENT

m mj' = —Q—A+ —Am, f
q

(10) Usually, the relative magnetic and gravitomagnetic

per meabilities

with that carried by the Cooper pairs, where the Cooper-
pair mass m =2m„ the charge q

= —2e, and
3,M 3,f

(g )'
(16)

2Q=' lql' (11) and

is the kernal function. The Cooper pairs can move freely,
and since their motion is driven entirely by the applied
fields, we refer to these currents as free currents.

(ii) The macroscopic averaged bound charge and mass
currents, which we identify as the sources of the magneti-
zation and gravitomagnetization, appear in Eqs. (7) and
(8) via the quantities W and X, where W and X (Ref. 8)
represent the macroscopic averaged magnetic dipole mo-
ment and angular momentum densities that appear in su-

perconductors when external fields are present. Because
the Cooper pairs possess no angular momentum and
hence no magnetic dipole moment because of the fact
that the electron pairs occupy the ground state with

equal and opposite spin, the only possible contributors to
and X ar.e the lattice ions such that

j', =V XAf. = (f'V, g gV, g*), —q, A
(12)

j' =V XX/2= —.(1(*V,g —PV, g*),
l

(13)

where q, and m, are the charge and mass of a lattice ion,
and Vt is only related to the coordinates of the lattice
ions. It follows from the Le Chatelier principle that the
superconducting system should exert a stronger inAuence
on the magnetic fields which aim to destroy it. The
Cooper pairs reacting to the effect of a magnetic field less

S S
~m, M ~m, f

s )2
Jm, f

(17)

are used to represent the effect of the bound currents,
which are dependent on the material electromagnetic
properties as well as on the internal structure of the su-
perconductor. Then Eqs. (7) and (8) can be simply writ-
ten in the form

8 A
V X V X A =Pjf—

PQcQc. ,' at2
(18)

8 A
VXVX Ag pgJf m pg QCg Q 2 )
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eS ~ S
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p po 1+ (., )2Je,f
(20)

where the electric polarization P = cQy, E and the permit-
tivity e =Eo(g, + 1 ) = soE„are used. Since there is no such
of the gravitational counterpart of the electric dipole mo-
ment density P, the necessary condition required by gen-
eral relativity, c =c Q, is satisfied, i.e., the gravitoelectric
permittivity c, = 1/4+6 is a constant, where 6 is
Newton's gravitational constant. The relationships of p
and pg with their free-space values pQ and p Q, respec-
tively,
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(21)

p, =2%V,P, (22)

where the density of the lattice ions is assumed to be
equal to that of the Cooper pairs as lPl /2 and the rela-
tion

(23)

is used. Integrating Eq. (22) around a closed path, one
finds"

(t) p d I=2nh, (24)

where the line integral of V, P around a closed path must
be set to an integral multiple n of 2~ to satisfy the physi-
cal requirement that the order parameter g be single
valued. One finds that the vortical momentum for a sin-

gle superconducting lattice ion must be an integral rnulti-

ple of Planck's constant h. The uncertainty principle
provides a basis for arguing that the integral n is not
zero. Since the product of momentum and position must
satisfy the condition

&Px— (25)

the quantum number n thus must assumes values

follow at once. For understanding the physical meaning
of Eqs. (20) and (21), we may consider the following cases.

(i) Clearly, if j', M and j' M are neglected, then Eqs.
(20) and (21) assume their vacuum values, p=po and

p =p o. Below, we demonstrate that the macroscopic
quantum-mechanical nature of the superconducting state
is crucial for understanding that these bound currents
cannot be neglected. Equation (12) indicates that each
lattice ion will acquire momentum from the interaction
energy of its magneton with the magnetic field of the su-

perconducting condensate wave function in the amount
of

plain the departures from the ideal Meissner effect, for
example, the effect of trapped flux and impurities. To the
best of our knowledge, the attenuation of magnetic fields

by superconductors has as yet not been satisfactorily ex-
plained.

If the model presented in Ref. 1 is correct, then gravi-
tational effects may be used to understand features of the
Meissner effect, since the values of the ratio of p and p
can be derived theoretically by rewriting Eqs. (20) and
(21) as

pgr 1

pr —1

Je,f
Jm, f

'S
Jm, M

'S
Je,M

Note that jeflljpg f and j~ ~lljesr. Substituting Eqs. (9},
(10), and (11}—(13) into Eq. (28) and taking account of the
experimental fact that p„&&1, we obtain

pg pgo pgr

p po pr

'Yc 1

r p,
(29)

where y, =
lql /2m is the gyromagnetic ratio for a Cooper

pair. It should be pointed out that since nothing is
known of the phase velocity v~ of a gravitational wave

propagating within a superconductor, it is usually
presumed to be equal to the velocity of light, c. We argue
that the interaction of the coupled electromagnetic and
gravitoelectromagnetic fields with the Cooper pairs in su-
perconductors will form super conducting condensate
waves characterized by a phase velocity v . Since
poEo=1/c =pgocgo and ps=k /co =pgsg=u~, the
phase velocity can be predicted for the first time as

+pg, r

—10 (m/s), (30)

which is 2 orders of magnitude smaller than the velocity
of light, c. This difference arises because cg =eg o and the
value of the gravitomagnetic permeability p
=(y, /y, )pgo given in Eq. (29) is y, /y, orders of the
magnitude larger than its free-space value pg o-10

Finally, one finds that the magnetic attenuation
coeScientn~1. (26)

It implies that each of the lattice ions will possess uni-
formly quantized angular momentum

fÃ, d8=2nh or X,=2nfi, (27)

27' p o
2
po Xt pr

(31)

where X,=r Xp, and the integral element dl=r
X(X/X)d8. Thus the angular momentum is quantized
in integral multiples A. We conclude that the uniform
quantized vortical motion of the lattice ions results natu-
rally in the fluxoid quantum of superconductivity regard-
less of whether or not there are holes in the order param-
eter P.

(ii) The perfect diamagnetic property of superconduc-
tors or the Meissner effect suggests that p, =0. It is
equivalent to the statement that the magnetic field is zero
inside a superconductor. However, results of experimen-
tal measurements of the Meissner effect vary widely.
Several theoretical models have been preoposed to ex-

is (y, /y, )(1/p„) times larger than its free-space value of
Po= m pg 0/q po-10 and its magnitude is deter-
mined mainly by the magnetic permeability of the super-
conductor. For example, if Shi8's screening factor"
P-10 and y, =3.24X10 s 'T ' for H, are used in
Eq. (31), then one finds that the permeability of H, is the
order of pr -10,which is small enough to have a very
significant consequences for the internal magnetic field.
Our finding is not only supported by Schiff's theoretical
screening factor, but also experimentally supported by
the measurement of minimum remnant magnetic fields of
B-10 ' T, which corresponds to attenuation of the
Earth's magnetic field by a factor of —10
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IV. o-p MADEL

The measurement of P for superconductors is diScult,
because its values are near zero. Thus a theoretical mod-
el that relates P to some measurable quantity is needed.
Below, we develop a model which functionally relates P
with the conductivity o.. Choosing the London gauge for
the vector potentials

(V. A)=0, (V Ag)=0 (32)

and introducing the Fourier components of the appropri-
ate quantities in Eqs. (9), (18), and (19), we obtain

3
j', (k, co) = —Q(k) . A(k, co)+—Ag(k, co)

q
(33)

Pr
A(k, co)

= —pQ(k) A(k, co)+—Ag(k, co), (34)

FIG. 1. Complex conductivity of superconductors in the ex-
treme anomalous limit (or extreme dirty limit) at T=O. The
rise of cr2 as 1/co below the gap describes the accelerative super-
current response (Ref. 7).

Pg, r

Pg, r
Ag(k, co)

k A(k, co)=0, k Ag(k, co)=0,

which yields the result

(36)

=p Q(k) —A(k, co)+—A (k,co), (35)g 7 g 7

equal to zero. Of particular importance is the propor-
tionality of o i(co) to 1/co, as shown in Fig. 1. One sees
that T~0 as co ~0 and o i(co ) cIc 1/co ~ oo. In fact, in the
range of fico/2b, 1 there are no thermal excitation mech-
anisms present, and the only process allowing absorption
of energy is the creation of the Cooper pairs, which is
determined by only cr2(co). This allows one to drop the
real part and to write the conductivity as

Ag mP Pr
—1 P „

A qP Pr P, —1
(37)

2 2
cop] m pg pr 1 pg r

o(co) =— 1—
CO 4K q P Pr Pg

—1
(40)

Equating two expressions for the current,

j', (k, co) =o(k, co)E(k, co)

= —Q(k) 1—m~pg pr 1 pg, r

q P Pr Pgr

(38)

we can define a complex conductivity proportional to
Q(k) such that

where copi=4rrn'q /m is the plasma frequency. One may
write Eq. (40} in the standard form for the temperature-
dependent conductivity, ' namely,

Q7 Ipi q tpo 'Yt
cr = 7 1+

4ir ni ip y,
(41)

2

obtained by integrating o(co) in Eq. (40) over frequency
space, where the expression for 7 is given by'

cr(k, co) = 1——i (k)
2mP Pr —1 P,

q P Pr Pg, r
(39)

—=4~k
7 0 0 sinhx

(42)

Before we examine further the relationship between P,
and 0., we consider the expression for the Kernel function
given in Eq. (11}.One can see that the kernal function is
independent of k. Thus the complex conductivity [Eq.
(39)] can be written as a function of co only of the form
cr(co) =o,(co) i o i(co) Bo—th the . real and imaginary
parts of o (co) enter into the determination of the response
of a superconductor to time-dependent electromagnetic
and gravitoelectromagnetic fields, as shown in Fig. 1.
For a given E field, the energy absorption per unit
volume is determined by the real part, i.e., o,(co)F- One.
sees from Fig. 1 that at low temperature o.&(co) falls ex-
ponentiaHy, and for fico/25~1 (b, =1.73fiT, ), o, (co) is'

with x =fico/2k&T. The expansion of x/sinhx for x ~ 1

1S

x
sinhx

1

1+x /6+x /120+
x' x4

~ ~ ~

6 120
(43)

It yields the coupling constant

=2 cx 6) F co 1 Ox
0 CO

(44)

Substituting Eqs. (42) and (44) into Eq. (41), it follows at
once that
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CO mp] fi 0 ~Po )'t

4~ 2m.kbTX* m pgp p,
(45)

cr —10
1

Pr
(49)

If the gravitational effect is neglected, i.e., if there is com-
plete shielding, i.e., P=O. Equation (45) then becomes
the well-known formula for the conductivity,

$2nq
(46)

where the relaxation time

fi

2m'kb Tk*
(47)

2mPgo Xf 1
0 ~op

2 2 7

q pp P, p„
(48)

one sees that AM„~O, cr ~ I/p„~ ~. Estimating the order
of magnitude of the terms in the above equation,
m @go/q po-O(10 ), y, /y, -O(10 ), and cro
—O(10' ), one finds that

describes the time constant for the supercurrent to die
away when the applied fields are moved. Its value is
determined by the temperature T and the coupling con-
stant A,*. In copper, for example, n'=8. 5X10 m, at
T=273 K, the conductivity O.p=6. 4X10 0 'm ', and
hence the relaxation time ~=2.68 X 10 ' s. However, at
T=4 K, copper has a conductivity 606 times higher, so
that the relaxation times becomes ip=1.62X10 " s.
This result would appear to indicate that the copper is
not a superconductor even at very low temperatures.
Thus, except for the condition of low temperature, super-
conductors must be characterized by some other unique
properties which distinguish them from normal metals at
low temperature which allows the near-infinite conduc-
tivity.

Equation (45) suggests that one of these unique proper-
ties is the near-zero permeability. Rewriting the conduc-
tivity approximately as

Substituting published measurements of the conductivi-
ties' (which are at least larger than 2.4X10 0 'm
for superconductors) into Eq. (49), one finds that the ex-
perimental measurement of cr indicates that
p„-O(10 ), which is of the order of 10 larger than
the theoretical value obtained by using Shiff screening
factor for H, .

There exists, however, an inconsistency of the relaxa-
tion time as derived from conventional superconductivity
theory. Equation (48) also can be simply written in the
form of the relaxation time

2mPgo Tt 1
7 7p 2

q pp P, p„
(50)

If ro=iri/2nk&TA, '-O(10 ") and if p, -O(10 ), Eq.
(50) gives r-O(10 ) s. Although this result is of order
10' longer than that of copper at low temperatures, it is
still not consistent with the extremely long persistence
time of supercurrents. Previously proposed resolutions of
this apparent inconsistency are that at any nonzero fre-
quency there will be an ac noise voltage reflecting the real
part of the ac impedance of the superconductor. Then a
superconductor is really a perfect conductor only for
direct currents, since, as co—+0, 0.~00. We argue that
this proposed resolution is not an experimental fact.

We suggest that this inconsistency may be caused by
taking integral of Eq. (40) over all frequency space. Since
the frequency co is related to the temperature, when in-
tegrated over the whole of frequency space, the result ac-
tually includes the nonsuperconducting range of conduc-
tivity as well. Therefore an additional equation is re-
quired in order to limit the temperature effect as well as
to isolate the magnetic permeability effect. In fact, if AL

and X are explicitly included as in Eqs. (7) and (8), Eqs.
(33)—(35) give

A(k, co)+—A (k, co)=
g

k +Q(k)
p"—1

ik X W(k, co) —ik X X(k, co)
pr —1

'
pgr

—1 2q
2

pg, om p, —1 pg1—
ppq Pr Pg r

2

(51)

j;(k,~)= —Q(k)

k +JMoQ(k)
p, —1

2
pg om pr 1 pg, r1—

Ppq Pr Pgr
2

ikXp~(k, co) —ikX ij,g ()L(k, co)
pr —1 2q ' ' p, —1

(52)

The above two equations yield the needed additional
equation

ceo = —Q(k) 1 —
2

' . (53)
Pr 1 q P Pr Pgr

Combining Eq. (53) with Eq. (39) to eliminate any ex-
plicit dependence on co, the major role played by the
gravitational effect in superconductivities becomes ap-
parent, since we find the following simple relation be-
tween cr and p, which we refer to as the o.-p model:
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FIG. 2. O.-p model: conductivity as a function of permeabili-
ty computed from Eq. (54) for several value of density of the
Cooper pair of the order from 10 ' m ' (bottom line) to 10'
m (top line) for niobium.

from 10 to 10 m for a Nb superconductor.
The implications of the cr-p model are made clear by

returning to consideration of the relaxation time intro-
duced in Eq. (46). Equation (54) can be written in the al-
ternative form

m, EO mm, p & +1
m~ q'po p

1/2

(55)

By varying p„ from 10 to 10, the numerically com-
puted curves of relaxation time as a function of permea-
bility based on Eq. (55) are those illustrated in Fig. 3. It
is shown that the relaxation time increases exponentially,
and for the typical case of p, &10, the supercurrent
can persist for at least years. This extremely long lifetime
for the supercurrent is indeed consistent with the experi-
mental observations of the persistence of superconduc-
tivity.

m, eoQ mm, )u, o
CT +1

m q po p„ p,
(54)

V. CONCLUSIONS

One sees that the conductivity is only determined by the
magnetic permeability or vice versa. The conductivity
calculated from Eq. (54) as a function of permeability and
the density of the Cooper pairs for Nb is illustrated by
the numerically computed logarithmic curves in Fig. 2.
It can be seen from Fig. 2 that the conductivity increases
exponentially with continuously decreasing permeability.
This characteristic dependence can be used to obtain the
values of p experimentally. For example, Fig. 2 shows
that the experimentally measured values of conductivities
larger than the order of 10 are consistent with per-
meabilities smaller than 10 over densities ranging

Expressing the conductivity in Eq. (54) as a function of
the magnetic attenuation coefficient as shown in Fig. 4,
one sees that for typical observed conductivities larger
than the order of 10, the corresponding magnetic at-
tenuation coefficient is larger than the order of 10
Comparing this experimental limit with the extreme
theoretical approximation of SchiFs result, a possible
range for the magnetic attenuation coefficient can be pre-
dicted as
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FIG. 3. Relaxation time dependence of permeability for vari-
ous densities of the order from 10 m ' (bottom line) to 10
m ' {top line) for niobium calculated based on Eq. (55).
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I
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FIG. 4. Conductivity as a function of the magnetic attenua-
tion coeScient calculated from Eq. (55) for different densities of
the order from 10 ' m (bottom line) to 10 m ' (top line) for
niobium.
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The result suggests that the experimentally observed very
poor Meissner effect may not be simply caused by im-
purities alone, but may be the result of a more fundamen-
tal physical mechanism, namely, gravitational effects.
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