
PHYSICAL REVIEW 8 VOLUME 46, NUMBER 9 1 SEPTEMBER 1992-I

Structure of vortices in helium at zero temperature
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A density-functional theory is used to investigate the structure of vortices in superAuid helium. The
angular dependence of the many-body wave function is factorized following the Feynman-Onsager hy-
pothesis. The density profile near the vortex axis is then calculated for di8'erent values of the external
pressure. The profile shows damped stationary ripples with the roton wavelength, in agreement with the
predictions of previous microscopic calculations. A critical negative pressure of 8 bars is found for the
stability of a vortex line against a free expansion of the core. The application of the density-functional
method to the problem of 'He impurities is also discussed.

I. INTRODUCTION

A significant part of the work done in the last decades
on superfluids has been devoted to investigate quantized
vortices and vortex rings (see Refs. l and 2 for a sys-
tematic review). While the properties of vortices on a
macroscopic scale are well understood in terms of almost
purely hydrodynamic models, the atomic-scale structure
is still a challenging theoretical problem. The quantum-
mechanical description of the vortex core and its connec-
tion with the classical macroscopic behavior are of cru-
cial importance for the understanding of the concept of
superfluidity itself. The interest in this subject is also
stimulated by recent experiments which demand an accu-
rate theory for the vortex structure. First, we mention
the phase-slippage experiments by Varoquaux, Zimmer-
mann, and Avenel, in which one measures the critical
velocity for the flow of He through small orifices. The
vortex filaments and rings involved in the dissipation
mechanism have such a small size that atomic-scale pro-
cesses become important. Second, there are experiments
which explore the behavior of liquid helium at negative
pressure by means of ultrasonic waves. ' A possible
mechanism invoked to explain the observed cavitation of
macroscopic bubbles is the instability of vortex filaments
at negative pressure, caused by the additional centrifugal
energy of the superfluid flow. To predict such an instabil-
ity, one has to know the pressure dependence of the
vortex-core structure.

The present work is an application of the density-
functional method to a rectilinear vortex. Density-
functional theories are becoming more and more accurate
in describing inhomogeneous phases of quantum liquids.
A functional for liquid He at zero temperature was in-
troduced by Stringari and co-workers to study the free
surface, helium cluster, and mixed He- He systems. A
recent extension of that functional, ' which includes ex-
plicitly finite-range e8'ects, has proven quite reliable in
situations where short-wavelength density fluctuations
play an important role. This is the case, for example, for
helium films"' and the liquid-solid phase transition. '

In order to apply the same density functional to the case

of vortices, one has to account for the superfluid-velocity
field. The simplest way is to follow the Feynman-
Onsager idea, ' taking the liquid irrotational everywhere
except on the axis. With this hypothesis of singular vor-
ticity, the velocity field goes like 1/r, where r is the dis-
tance from the axis. The velocity field acts as a centrifu-
gal energy in the functional, generating a density profile
which is necessarily zero on the axis, to avoid the diver-

gence of the energy. In this case the present theory looks
like an extension of the textbook model by Pitaevskii'
and Gross' for vortices in weakly interacting Bose sys-
tems. It includes relevant requirements for the micro-
scopic interaction between atoms through a quantitative
consistency with the equation of state of bulk liquid, the
static-response function (including the roton contribu-
tion), and the free-surface properties (profile and energy).
With these ingredients the theory provides predictions
for the energy and density profile of vortices at different
pressures, as well as the estimate of the critical negative
pressure for the instability of the vortex line.

The paper is organized as follows. In the next section
we briefly review the main features of the density func-
tional of Ref. 9 and show how it applies to the case of a
rectilinear vortex. In Sec. III we present the results for
the vortex structure and vortex energy at di8'erent pres-
sures. We compare the results at zero pressure with the
variational calculations of Ref. 17. We also discuss the
stability of the vortex at negative pressure as well as the
effect of He impurities. In Sec. IV we will summarize
the main results together with a few comments about fu-

ture perspectives.

II. METHOD

At zero temperature the bulk liquid He is completely
superfluid. In terms of the two-Quid language, this means
that the density of bulk liquid He coincides with the
superfluid density. If a vortex is present, then the
superfluid winds around a line, i.e., the vortex core, with
quantized circulation. ' Let us take a cylindrical frame
of reference (r, 8,z), with the z axis along the axis of a rec-
tilinear vortex. A possible form for the X-particle wave
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function is

f dr2 ' ' ' drN@ (r rg, ~ ~ ~, r~) ~

Similarly, for the current density, one has

j(r)= dr2 drN [%(r,r2, . . . , rN)
iA
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having used the gradient in cylindrical coordinates and
Eq. (2) for the density. The velocity field is related to the
current density by the relation j=pv, so that

v=8 (4}
mr

where 8 is a unit azimuthal vector. Expression (4} is the
same as for a classical incompressible fluid. The diver-
gence of v on the axis puts some conditions on the form
of 4. This becomes evident if one acts with the real
Hamiltonian on %. One has

f2+2
H%= —g + g V(~r —r„~)

j j(k

N

0'(r„. . . , rz)=exp i +8. C&(ri, . . . , rz),
j=1

where 4 is real. Such a wave function is eigenvector of
the total angular momentum along z, with eigenvalue NA.
The vortex is stationary (no self-induced motion), and the
associated flow has unitary circulation ~=birn B. y
definition, the one-particle density is given by

p(r) =fdr2 drN% '(r, r2, . . . , r~)%'(r, r2, . . . , r~)

strength of the interaction. However, liquid helium is a
strongly correlated system and 4 does not coincide with
the condensate wave function. Thus factorization (1) is

only a reasonable way to model the superfluid density,
consistent with the large-scale behavior of the quantized
vortex. The more general case would be the same as Eq.
(1), but with 4 a more complex function in which
currents are included. This would modify the velocity
field with respect to the one in Eq. (3). Since on a large
scale the vortex is known to behave classically, these
modifications of the velocity field would be limited to the
core region. Up to now, only phenomenological theories
have been proposed to account for this efFect (see, for in-
stance, Ref. 2, Chap. 4), mainly based on the two-fiuid
model. From the viewpoint of a more fundamental
many-body theory, the validity of the Feynman-Onsager
hypothesis is still an open question.

Once the angular dependence of the wave function is
fixed, one is left with the problem of finding its radial
dependence. The relevant quantity to be evaluated is the
density p(r}, which corresponds to a static radial profile;
this is equivalent to looking for the many-body wave
function 4 of N atoms of He in an external (centrifugal}
field. The formalism we will use is that of density-
functional theory, which has proven to be quite reliable
for similar problems. The starting point is the idea that
the total energy of a many-body system can be written as
a functional of the single-particle density. The minimum
of the energy is located at the true equilibrium density of
the system. As the exact form of the functional is not
known a priori, one has to choose suitable functionals,
compatible with a set of basic prescriptions about sym-
metries and correlations in the system; in this way, one
finds an approximation for the energy and density, whose
quality depends on the choice of the functional. In our
case the total energy E, that is, the mean value of the
Hamiltonian H on the state 4, is taken in the form

where

=exp i g 81 H4,
$2

E=EO+ fdr p,
2mr

fiH=H+ g
j 2mrj

This means that 4 obeys a Schrodinger equation with an
effective Hamiltonian, given by H plus a centrifugal term,
coming from the velocity field. The centrifugal term im-
plies that the wave function 4 vanishes on the axis.

This picture has been already discussed extensively in
the literature. The central point is the assumption (1) for
the many-body wave function. It is called the Feynman-
Onsager hypothesis because those authors' used this
kind of argument to predict properties of quantized vor-
tices in helium. In the case of a weakly interacting Bose
gas, the factorization (1}is rigorously justified, and 4 is
identified with the amplitude of the Bose-condensate
state. Thus one recovers the well-known Pitaevskii-
Gross model, ' ' where the interaction between bosons is
included via a zero-range repulsive potential. The density
turns out to be a smooth function of r, and the size of the
core is fixed by a healing length, which depends on the

where the second term on the right is simply the kinetic
energy associated with the fluid motion around the vortex
line, while Eo is the static functional introduced in Ref. 9.
The latter is given by

$2
Eo= fdr [V&p(r)]'

2m

+ ,' f f dr—dr'p(r)p(r')V(~r —r'~)

+ dr pr p,

The first term in the sum is a quantum pressure; it corre-
sponds to the zero-temperature kinetic energy of a nonin-
teracting Bose system. The second term contains a two-
body interaction V, which is the Lennard-Jones inter-
atomic potential, ' with the standard parameters
+=2.556 A and v=10.22 K, screened at short distance
with a power law, as follows:

(8)
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V(x)= '
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The choice of the power law is discussed in Ref. 9 and is
not critical in this context. The last term accounts for
short-range correlations between atoms. In particular, it
contains the effect of the hard-core part of the interatom-
ic potential. Its form follows the idea of the "weighted-
density approximation, "used mainly in the study of clas-
sical fluids. The weighted density p is

p„=f dr' p(r)III, ( lr —r'l ),
with

(10)

3(4mh )
' if x (h,
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The parameters c4 and y4, together with the screening
length h, are the only three parameters of the theory;
they are fixed to reproduce the equation of state of the
bulk liquid. Their values are given in Table I. As dis-
cussed in Ref. 9, the functional Eo corresponds to a
mean-field description, which incorporates phenomeno-
logically the effects of a finite-range interaction, with the
correct long-range behavior and inclusion of short-range
correlations. The relevant features of the functional Eo
in this context are (a} it gives the equation of state also at
negative pressure, predicting a vanishing sound velocity,
i.e., the mechanical instability of the liquid, at —9 bars;
(b} it yields a static-response function (polarizability), in
agreement with the experimental data, available at zero
pressure, accounting correctly for the effect of the
phonon-roton excitations; (c) it gives a smooth free-
surface profile, 6 A thick, and with surface tension very
close to the experimental one; (d) it accounts for localiza-
tion effects, such as the density fluctuations near a molec-
ular or ionic impurity, ' the layer structure of helium
films, "' and the solidification at high pressure and (e)
it is easily generalized to include the effect of He impuri-
ties. s "

The total energy (7) has the functional form

E=fdr%[p(r)], (12)

which has to be minimized with respect to p to get the
density profile around the vortex line. The corresponding
Euler-Lagrange equation is

Equation (13) can be solved numerically by using the so
called imaginary-time-step method, as done in Ref. 9 for
the free surface. The geometry, with a mixing of cylin-
drical and spherical symmetries makes the calculation a
little more complicated. The pressure P is simply includ-
ed in the theory by imposing the proper limiting value for
the density far from the vortex. The density for large r
must approach the bulk-liquid density at a given pres-
sure, and p will correspond to the chemical potential at
the same pressure. Once the density profile is found, the
energy per unit length of the vortex is given by

E„=2mfdr[%. (r) pp(r)—+P] . (15)

Finally, we note that the Pitaevskii-Gross model for
the vortex is formally included in Eq. (13). It is sufficient
to consider only a zero-range repulsive force between par-
ticles, having strength Uo. In such a way, the potential U
of Eq. (14) would be replaced by a term Uop, and Eq. (15)
would take the same form of the Pitaevskii equation for
the vortex profile.

III. RESULTS
A. Uortex structure

Solving Eq. (13) at zero temperature, one finds the den-

sity profile shown in Fig. 1. The calculation is done in a
cylinder of given radius R, much bigger than the expect-
ed core radius, and the density at the boundary is taken
to be the bulk-liquid density. The resulting vortex energy
per unit length increases logarithmically with R. This
follows from the centrifugal energy term, in 1lr, con-

1.5

1.0

0.5

1 d dr + + U(r) &p=pv'p,
2m r dr dr 2mr

TABLE I. Parameters entering functional (12).

(13)

0.0
0.0 2.0 4.0

r (X)

6.0 8.0

3 4

h4

C4

2.8
2.3767 A

o 3(&+y4)
10455 400 K A

FIG. 1. Density profile for a vortex at zero pressure and zero
temperature. The solid line is the result of the present work.
The points with error bars are the results of Ref. 17. The bulk-

0
liquid density is p0=0.0218 A
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tained in %. The remaining part of the integrand in Eq.
(15) is nonzero only near the vortex core and vanishes
when the density reaches the value of the bulk liquid, i.e.,
at distances of the order of 10 A from the axis. The
profil in Fig. 1 is evaluated with a cutoff radius of R = 17
A, and the corresponding energy turns out to be E„=3.0

0
K/A. For comparison in the same figure, we show the
density profile obtained in Ref. 17 with variational calcu-
lations, the error bars accounting for different parame-
trizations of the wave function. The energy of the vortex
given by the two theories is of the same order. In partic-
ular, choosing the same cutoff radius of 6 A we find an
energy of 2 K/A, while in Ref. 17 the energy is found in
the range 2.3—2.8 K/A.

The core size, i.e., the radius of the region where the
density drops to zero, is of the order of 1 A; this is a typi-
cal size coming out in any theory subject to the
Feynman-Onsager ansatz for the velocity field and con-
sistent with a minimal set of physical requirements
(compressibility, surface tension, etc.). A more qualifying
feature is the oscillating behavior of the density outside
the core. These oscillations can be easily fitted with a
sum of a monotonic function, which starts as r near the
axis and approaches asymptotically the bulk density at
large r, and a damped Bessel function Jo(qr), where q is
the wave vector of rotons. The connection between the
spectrum of elementary excitations in He and the densi-
ty profile near a boundary was established theoretically
by Regge and Rasetti. ' They considered the boundary
as a localized source of elementary excitations. In the
limit of small perturbations, they found an expression for
the density in terms of the static-response function. The
main effect comes from the part of the spectrum near the
roton minimum, and the profile shows permanent ripples,
having the roton wavelength and an amplitude which de-
creases exponentially in the bulk liquid. Their analysis
was applied to the case of a free surface and to helium
droplets. In those cases, however, the diffuseness of the
surface itself (having a thickness of the order of 6—10 A)
makes the hypothesis of localized source not valid and
the ripples are washed out. The case of a vortex is more
favorable since the vortex core is localized in a radius of
about 1 A, and the hypothesis of Regge and Rasetti
works well. From another viewpoint one can interpret
the density oscillations as the tendency of the liquid to or-
ganize itself in shells of atoms around the vortex line, as
well as in the vicinity of any localized impurity. This
rearrangement does not require much energy if the in-
teratomic distance is unchanged. The effect is formally
included in the theory if the latter accounts properly for
the linear-response function, which is peaked at the roton
wavelength. It is worth noting that the presence of densi-
ty oscillations should not depend strictly on the ansatz
for the velocity field in the core region. Furthermore, we
point out that in the classical picture for a vortex these
oscillations do not appear. If one writes down the classi-
cal hydrodynamic equations, one finds a density which
decreases rnonotonically from the bulk toward the vortex
core. The classical picture has been often used to extract
information from experimental data, and the role of pos-
sible density oscillations has never been discussed.

4.0

3.0

o 8.0

1.0

0.0
0.0 5.0

r ()()
10.0 15.0

FIG. 2. Density profile for a vortex for different values of the
external pressure. Starting from the upper curve, the pressure is
taken to be 20, 10, 0, —4, and —8 bars. The lowest curve corre-
sponds to the last stable vortex.

B. Pressure dependence

A striking feature of the density functional is that the
pressure dependence of all quantities is derived straight-
forwardly. We solved the equation for the density profile
around the vortex line as a function of pressure. The re-
sulting profiles are shown in Fig. 2. The qualitative form
is the same: a monotonic p(r), which goes as r near the
axis, superimposed by oscillations. The wavelength of
such ripples corresponds almost exactly to the roton
wavelength at each pressure. At negative pressures the
oscillations are less and less pronounced, which means
that the atoms have less tendency to localize.

An important result is that below —8 bars the vortex
turns out to be mechanically unstable. From the numeri-
cal viewpoint, the instability of the vortex appears as a
lack of convergence in the iterative procedure. At each
step the density profile moves slowly away from the axis;
i.e., the core size becomes larger and larger. The typical
situation is shown in Fig. 3, where the energy E, is plot-
ted as a function of the iteration number. The solid lines
correspond to several runs, each one at a different pres-
sure, in which the starting density profile is chosen to
have a core radius slightly smaller than the expected one.
The dashed lines are runs, at the same values of pressure,
in which the initial core radius is larger than the expected
one. Each curve takes 3—6 h of CPU time on a VAX-
60320, depending on the choice for the cutoff radius and
spatial step. At any given pressure, the calculation con-
verges to a stable solution, independently of the initial in-

put. However, the convergence is slower and slower ap-
proaching —8 bars. For pressure less than —8 bars, we
do not find convergence; i.e., the energy E„decreases
indefinitely.

From a physical viewpoint, one can understand this
effect qualititatively by considering the simple hollow
core model, with a sharp density profile. A negative
external pressure favors the expansion of the core radius,
through a negative Gibbs-free-energy term proportional



5486 F. DALFOVO

3.5 4.0

P=O

2.5

C4

2.0

2.0

1.5
200

1.0
—|0 —5 0 5

Pressure

!

&0 f. 5 20 25
(bar)

FIG. 3. Vortex energy per unit length as a function of the
iteration number and for several pressures (in bars). Solid and
dashed lines correspond to different choices for the initial densi-
ty profile (see text).

to the volume of the hollow core; this term is counterbal-
anced by the surface free energy, which is positive and
proportional to the surface area. The total free energy,
including the centrifugal energy of the fluid flow, will
have a minimum at a given radius, as well as an energy
barrier against the spontaneous expansion of the core.
This will be true only down to a critical value of P at
which the barrier height is zero. For pressure more nega-
tive than the critical one, the vortex gains energy by ex-
pansion of the core. Though this model is not quantita-
tive (it gives a core size of 0.5 A at zero pressure, while
the surface energy is taken equal to the one of a free sur-
face, which is much thicker), it gives correct hints about
the real situation.

The investigation of the vortex structure at negative
pressure is motivated by recent experiments, ' in which
negative pressures are produced by focusing ultrasonic
waves in a sample of bulk-liquid helium. The local fluid
velocity in the sample allows the creation of vortices.
The pressure (tensile strength) at which the phenomenon
of cavitation occurs, by nucleation of bubbles, could be
influenced significantly by the presence of vortices,
changing the interpretation of the experimental data.
The existence of a critical pressure for the vortex stability
puts an upper bound for the tensile strength. An esti-
mate for such a pressure has been already given in Xiong
and Maris. They give a value of —6.5 bars to be com-
pared with our —8 bars. Both estimates comes out from
density-functional calculations. In Ref. 5 the density
functional is local and includes nonlocal effects in the
free-energy density through a term proportional to the
gradient squared of the density, A, (Vp) . Apart from
minor differences, this is equivalent to a local approxima-
tion (or a gradient expansion) of the functional (12). The
two functionals are expected to give similar results when
the density does not change too fast, i.e., in the case of
the free surface or bubbles. In the vortex case, the system
is inhomogeneous on a shorter length scale, so that the

FIG. 4. Vortex energy calculated with a cutoff radius of 17 A
for several values of the external pressure.

functional (12) is expected to be more quantitative. In
particular, a functional with a (Vp) term does not ac-
count for localization effects (ripples), yielding slightly
less stable vortices than the functional (12).

Finally, we discuss the behavior of the vortex energy
with pressure. In Fig. 4 we show our results for the vor-
tex energy at different pressures, for a cutoff radius of 17
A. The energy increases smoothly for positive pressures,
while it lowers abruptly near —8 bars. We remember
that the kinetic energy associated with the fluid flow
diverges logarithmically when the radius goes to infinity,
because the velocity goes as 1/r and the density is almost
the bulk density. We point out that from a knowledge of
the energy one cannot extract unequivocally the so-called
core parameter a. The latter enters the following parame-
trization for. the energy:

Po" R
2

E„= ln —+6 (16)
4~

(
a

where ~=h/m is the quantum of circulation, po is the
bulk density, and 5 is another parameter related to the
structure of the core. An equivalent parametrization has
been used for the energy and velocity of vortex rings.
The analysis of the experimental data on vortex rings in

terms of the core parameter depends on the choice for
5. This is related to the "rigidity" of the vortex core,
i.e., the potential energy in the core region. Different
values are extracted if the core is taken as an hollow core
or a rigid rotating cylinder. This makes it impossible to
compare directly our results for the energy with available
tabulations of the core parameter as a function of pres-

2, 20sure. ' The latter are derived assuming a pressure-
independent 6, while our results suggest that the rigidity
of the vortex can change significantly with pressure.

C. He impurities

He impurities in bulk He can be seen as microscopic
probes for the structure of vortices. They tend to be lo-

calized along the vortex as a consequence of quantum
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correlations. The effects of this binding are experimental-
ly accessible. ' Several theories have been developed to
explain the interaction between He vortices and He
atoms. There are two main contributions to the en-
ergy of one He atom, which have to be properly ac-
counted for: a kinematic energy associated with the pres-
ence of a superfluid flow and a mean geld energy e(p) in-
dependent of U, . The first one requires some assumptions
on the effective mass of the He atom. The second one
has been so far included only in a semiquantitative way,
using a classical Bernoulli pressure drop as input. All
estimates agree with a binding energy of the order of 3 K
for the vortex state referred to the bulk state. Here we
want to show that the role of e(p) is important and that it
can be worked out by means of the density-functional
method. The functional in Sec. II has been already gen-
eralized to study He impurities on He films. " The idea
is to add few more terms which depend on the He densi-
ty, with the corresponding parameters fixed to reproduce
known properties of He- He mixtures (the binding ener-
gy in the uniform system and excess-volume parameter).
The minimization with respect to the He density pro-
vides a Schrodinger-like equation. The important point
is that a local depletion of the He density produces a po-
tential well for the wave function of the He atom. This
is true also for vortices. Using the profile in Fig. 1 as in-
put in the formalism of Ref. 11, one finds a potential well
for He, centered on the vortex axis and with a depth of
about 6 K with respect to energy of one He atom in bulk
He. If the mass of the He atom is taken to be equal to

the bare atomic mass, the binding energy for He in the
core turns out to be —2.7 K. This result gives an order
of magnitude for the effect of e(p). It suggests that, if the
density profile of a vortex is as in Fig. I, then (a) the effect
of the He density on He atoms cannot be simulated sim-

ply by a Bernoulli pressure drop and (b) the attraction
caused by the density depletion near the core is compara-
ble with the one induced by the superfiuid Aow.

IV. CONCLUSIONS

We have presented a calculation for the structure of a
vortex in superQuid He in the limit of zero temperature.
The framework is the one of density-functional theories.
In particular, we started by noting that a very accurate
functional is now available to study inhomogeneous
states of helium, such as surfaces, clusters, films, and im-

purities. In order to apply the same functional to the
case of a rectilinear vortex, we took the Feynman-
Onsager form for the superQuid-velocity field; i.e., we fac-
torized the angular dependence of the X-body wave func-
tion as in Eq. (I). With this choice the calculation for the
radial density profile is easily performed at any given
external pressure. The main results are as follows.

(i) At zero pressure the density profile is in agreement
with the one obtained with previous variational calcula-
tions, ' where the same ansatz for the velocity field was
used. The core size is of the order of 1 A, and the density
profile shows permanent ripples. The wavelength and
damping of such oscillations are in agreement with
theoretical arguments by Regge and Rasetti' and
confirm the accuracy of the density functional on the
atomic-length scale.

(ii) If the external pressure increases, the core size be-
comes slightly smaller and the amplitude of the ripples
grows. However, at negative pressure, the profile is
smoother and smoother, until a critical pressure of —8

bars; below this value, the vortex line becomes unstable
against a free expansion of the core. We have discussed
this instability in the context of ultrasonic experiments on
helium at negative pressure. *

(iii) The density functional can be extended to include
the effect of He impurities. We have shown that the role
of the He density profile is important in determining the
binding energy for He atoms on the vortex line.

These results represent an application of density-
functional methods to vortices. Further work is in pro-
gress in two main directions. First, we can apply the
same formalism to predict the structure of vortex rings.
This implies only a change of geometry and more care in
the optimization of the numerical procedure. Second, we
are exploring the generalization of the density functional
beyond the Feynman-Onsager approximation. A natural
way would consist of adding terms which depend explic-
itly on the current density. A density functional account-
ing for current-current correlations could produce a dis-
tributed vorticity and a nonzero density in the core.
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