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Effects of the phase-dependent dissipative term on the supercurrent decay of Josephson junctions
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We study the decay of the zero-voltage state of an underdamped Josephson junction, including in the
equivalent circuit model the interference cosP term. From a theoretical point of view, we provide an ex-
pression for the lifetime of the metastable state, which takes into account the dependence on the voltage
of both the quasiparticles tunneling and the interference-term conductances. We also present a compar-
ison of the theory with our experimental results, which clearly indicates the importance of these intrinsic
mechanisms of dissipation on the supercurrent decay. We show that the interference term must be in-

cluded in the theory if agreement between theory and data is to be achieved within the experimental un-

certainty.

The problem of the effects of dissipation in the super-
current decay of Josephson junctions has recently re-
ceived much attention. It is, in fact, an important aspect
in the thermal limit and it plays a crucial role in some
secondary quantum effects, such as macroscopic quantum
tunneling' or Bloch oscillations.

It is clear that the resistively shunted junction (RSJ)
model, till now widely used to fit the experimental data,
is becoming inadequate to describe the always more so-
phisticated experiments on the subject. %ithin this mod-
el, the dissipation in the junction is accounted for in the
simplest way one can imagine, namely, through an Ohm-
ic resistor R. The current-carrying states of the junction
are then described in terms of a simple current biased
lumped circuit model, in which the distributed junction
capacitance is considered as a lumped element in parallel
with the resistor R and a nonlinear Josephson element

IJ sing. Here P is the quantum phase difference between
the two superconductors forming the junction. This
model presents evident limits to describe the dynamics of
Josephson tunnel junctions where the dissipation is due
to the combination of highly nonlinear mechanisms, but
it is dilcult to avoid completely resorting to the
equivalent-circuit model because of the complexity of the
problem in its full generality. It is possible to remove
some of the most evident approximations by taking into
account, within the general framework of an equivalent
RSJ circuit, some effects neglected in the original
schematization.

In a recent paper we have approached a "modified"
RSJ model in which the dissipative element was assumed
to be voltage dependent. This allowed us to consider the
effect of the voltage-dependent conductance due to the
quasiparticle tunneling.

In any real experiment the external circuit biasing the
junction can also influence the junction damping, and in
some experimental configuration the system damping
may be dominated by any external shunt or load line.
However, in view of many applications, it is desirable to
have the system damping dominated by intrinsic mecha-
nisms, which sets the lower limit for the junction dissipa-

tion. In this case the voltage and phase dependence of
the dissipation is particularly relevant.

As far as intrinsic mechanisms are concerned, we can
obtain, within the microscopic theory, the total tunneling
current flowing through the junction. Its general expres-
sion is rather complicated but in the case of time-
independent voltage V across the junction, it can be cast
in the form

I( V, T) =I, ( V, T) sintI)

+ [a,( V, T) cosP+oo( V, T) j V .

The first term I ( V, T) sing describes processes in which
phase-coherent tunneling of Cooper pairs occurs, and for
V=O represents the dc Josephson current. The dissipa-
tive term I =o o( V, T) V represents the quasiparticle
tunneling. The phase-dependent dissipative term
tr, (V, T) cos(P) V could be interpreted as describing a
quasiparticle tunneling process which involves a concom-
itant destruction and creation of pairs on the two super-
conductors forming the junction, therefore involving
phase-coherence effects. It is interesting to observe that
this term is ignored in the RSJ model widely used to de-
scribe the junction dynamics in the presence of noise. In
Ref. 7, an extension of the theory that accounts for the
effect of the cosP term was given in the overdamped case;
in the same reference, the effect of noise on externally
shunted Josephson junctions was also experimentally in-
vestigated and the data agreed very well with theory.
The work studied the rounding on the current-voltage
(I V) characteristics -that occurs in overdamped struc-
tures, but the noise was mainly due to the external shunt
rather than to the intrinsic mechanisms of dissipation in
tunnel junctions.

In this paper, we wish to study the effect of the intrin-
sic dissipative phase-dependent cosP term on the super-
current decay of underdamped tunnel junctions, restrict-
ing ourselves to the thermal limit. This study can be per-
formed in connection with the general problem of
Brownian motion with a friction coeKcient depending
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both on the velocity and position of the Brownian parti-
cle. In fact, adding to Eq. (1) the contribution due to the
junction capacitance C, and equating the final expression
for the total current flowing through the junction to the
bias current I, we obtain a Langevin-like equation for the
phase P, which in dimensionless units assumes the typical
form of the RSJ model

the frequencies of physical interest, and we expect that
the time interval over which correlation extends between
values of the process g(E) (i.e., the correlation time) is

very short, in fact smaller than all the other relevant time
constants of the system. Under these conditions we can
approximate the actual process by a 5-correlated pro-
cess, in order to obtain concrete results by using the
mathematical methods of Markov process theory. Equa-
tion (2b) is a consistent way of replacing the real process
by a 5-correlated process. ' We wish to stress, however,
that Eqs. (2a) and (2b) implicitly assume that only small
voltage values are relevant so that the difFerential junc-
tion resistance is a smooth function of the voltage. This
condition is typically very well satisfied, as will be clear in
the following. The final expression for the lifetime of the
V =0 state obtained by our approach will be in fact very
similar to the RSJ result, but with a very important im-
plication: The efFective resistance to describe the junc-
tion dissipation, which was an arbitrary parameter in the
RSJ model, can be now obtained in terms of measurable
junction parameters and bias conditions. It can be relat-
ed to the junction resistance measured on the dc current-
voltage characteristics at a certain temperature-
dependent voltage. This allows a direct comparison of
data with theory.

The behavior predicted by Eqs. (2a) and (2b) is easily
understood in terms of the mechanical analog, i.e., that of
a Brownian particle of unit mass performing its motion in
the washboard potential U(P), where P is the position of
the particle. The voltage across the junction is related to
the particle velocity, V=(4ocoJ/2ir)$, and the friction
coefficient Eq. (3) is velocity and position dependent ac-
cordingly.

The Josephson superconducting state can be visualized
as the particle trapped in a well of the potential energy
U(P), performing oscillations in the potential minimum.
We restrict ourselves to the extremely underdamped
case, " c && j., so that we are dealing with a quasiconser-
vative motion. This limit is the most interesting to study
in connection with applications to hysteretical Josephson
junctions. The dissipation plays in fact a significant role
only in extremely underdamped systems. In the Kramers
moderate underdamped limit, " for instance, the RSJ
model gives an expression for the lifetime of the V=O
state essentially independent of the damping. Moreover,
the intrinsic dissipation produces typically a low damping
level. Because of the small value of e, Eq. (2a) describes a
particle performing nonlinear oscillations under a weak
fluctuating force in the presence of a small damping. In
such a situation the energy E =

—,
'
P + U ( P ) is conserved

over a large number of oscillations and it is possible to
describe the system in terms of its energy rather than ve-
locity and position. The mathematical formulation of
this physical aspect is that one can associate with Eqs.
(2a) and (2b) a one-dimensional Fokker-Planck (FP) equa-
tion along the energy axis for the probability density
P(E, t) of finding the system at time t with an energy
value E. The resulting FP equation assumes the form'

jk+ sf= dU—/d P+ &eg(Z), (2a)

where U(P)= —(a/+ cosP)+const. Here a is the bias
current normalized to the critical one I„a=I/I„and
40 is the magnetic flux quantum. The dots indicate the
derivation with respect to the normalized time ~co t, be-

ing coj=")/2irI, /40C the plasma frequency. In the
second member of Eq. (2a) appears the stochastic term
g(P) which represents the noise due to the dissipative
term in the equation. We assume that the statistical
properties of the random term g(z') are

(g(&) ) =0, (g(&)g(~') ) =(4/y)&(~ —~'), (2b)

where y=@OI, /mkT. The. friction coefficient is now
given by

B2

Bt BE [X,(E)P (E)]+— [Z,(E)P(E)],
2 BE

(4)

a, ( V, T) cos(P)+ 0 o( V, T)E= (3)
CNJ-

Before solving the Langevin equation for our model,
we outline its limit of applicability. While it is clear that
it is possible to write the general Langevin equation (2a),
the statistical properties of the stochastic term g(z')
(which define the actual form of the Langevin equation in
our problem} are described by Eq. (2b) only approximate-
ly in the presence of a voltage- and phase-dependent fric-
tion coefficient. The mean value of g(z') must still be
zero; indeed the average behavior of the fluctuations
must coincide with the macroscopic behavior described
by the deterministic equations. The 5-function correla-
tion means that the values of g(z') are completely uncorre-
lated. Strictly speaking, this implies that the fluctuation
power spectral density is constant, namely, it is flat like
white light (white noise; this well-known result is a conse-
quence of the Wiener-Khintchine theorem). This con-
dition holds exactly only within the RSJ model approxi-
mation, which assumes that the junction conductance is
frequency independent and the fluctuations are due to the
Johnson noise associated with the resistor R. ' The con-
tributions to the current noise spectral density that arise
from the quasiparticle tunneling as well as from the
quasiparticle pair interference term have been studied in
Ref. 8 (see also Ref. 3}. As a consequence of the Callen-
Welton fluctuation-dissipation theorem, we may expect
that, in case of a voltage- and phase-dependent junction
conductance, the power spectrum is proportional to
I(fico le) /(fictile), and therefore no longer constant.
Note, however, that for all the frequencies of physical in-
terest in Josephson junctions, namely, up to the plasma
frequency, the voltage V =%co/e is typically a small value
(-pV). In this low-voltage region the junction IV-
curves difFer only slightly from the linear behavior.
Therefore the spectral density is almost constant over all
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where

Ki(E)=, 2 —2A(E) y—(E)+ 1
y p'(E) dE

IC, (E)=—~,( ' .
y (p'(E)

The functions y(E), A,(E), and y'(E) are defined as

y(E) = f s"(/E —U(P)dg,
R {E)

~(E)=f ' &E U(y—)dy,
z{E)BE

(Sa)

(5b)

1 1q'(E) =- d
2 ~(E( v'E —U((t()

(Sc)

d 7g
2

1=K,(Eo} + E2(Eo)
0 dEQ

(6)

In the above equation the lifetime ~z is considered as a
0

function of the energy EQ of the particle at the time z —0.
The solution of Eq. (6) with the suitable boundary condi-
tions can be cast in the form '

Here the integration is performed over the region R (E)
of P values where U (P) (E. Let us confine our attention
to the solution of this Eq. (4) valid inside a potential well
of U(P ). We are interested to the lifetime of the V =0
state or, in the mechanical analog, to the mean time spent
by the Brownian particle in the well before its escape over
the potential barrier U0. In statistical terms, we can ex-
clude from consideration any realization of the random
process as soon as it overcomes the potential barrier.
This is equivalent to state that the statistical population
of particles in the metastable state is decreasing in time
due to the escape process. The mathematical apparatus
of Markov process theory enables us to solve this kind of
classical problem, called the first-passage-time prob-
lem. ' The technique is a very powerful one when we
deal with a one-dimensional FP equation, as in the case of
extremely underdamped systems. In this case the mean
first-passage time can be always expressed in terms of
quadratures by solving a simple second-order differential
equation. ' The first-passage-time equation for the life-
time of the V =0 state associated with our FP Eq. (4} as-
sumes the form '

where, for our convenience, we defined p =—min(k T/e, 6)
and the temperature-dependent Ohmic resistance:

4R~k T
(9a)

Here Rz is the junction normal resistance, eb, and kT are
the energy gap and the thermal energy, respectively.
This resistance R * will be useful for the comparison with
the experimental data. Note that R* can be interpreted
as the resistance measured on the quasiparticle branch of
the I-V characteristics at the temperature-dependent
voltage V" =(u/e ( V' &(b, ).

At low temperature and low voltage, 0., should tend to
oo. ' In computing the lifetime from Eq. (7) we will

then assume the following voltage and phase dependence
for the friction parameter

e=il'(I+ cosP) 1n(p/V), (9b)

where we defined a constant damping coeScient related
to the resistance R', g'=(co R'C) '. In terms of the
dimensionless energy E and of the phase P, we have

a=i)"(1+ cos(t. ) ln
2ep 1

2[E-U(P)
(loa)

The expression (7) for the lifetime depends on the actu-
al form of the dependence of the friction parameter c. on
E and y, which appears in the definitions (5a) and (Sb),
and therefore on the voltage and phase dependence of the
dissipation in the junction.

Note that the integrations along the energy axis in Eq.
(7) are performed up to the maximum value Uo, corre-
sponding to a maximum velocity at the bottom of the
well equal to +2Uo. In terms of the junction, this corre-
sponds to the fact that the voltage region to be con-
sidered for computing the lifetime is ranging between
—

Vk and V(„where Vk =(@o/2m)[co~.+2Uo) Typ. ically
Vk is a very low voltage value (-p V). In this low-voltage
subgap region, the conductances cr0 and 0. , can be calcu-
lated within the microscopic theory. For symmetrical
junctions (i.e., formed by the same superconductor on
both sides of the barrier) we have '

ln((M/ V)&0= R*

dE
E — exp E+ E

o Fo q&(E)

X f ~y'(E') exp —+E' P(E') dE', (7)—
0 2 2

Bs i)'( I+ cosP)
BE 2[E —U(P)]

and for the relevant functions

b
y(E) =r) ln

z(Fi V E —U(p)

(10b)

where P(E) is given by

P(E)=f dE .
2g(E)

In Josephson junctions, the barrier height is a function
of the normalized bias current

Uo = air+ 2[a sin 'a—+ (/1 —ai ] .

X(1+cosg)&E —U(P)dg, (10c)

A,(E)=—g*f dg,
R(E) v'E —U(p)

(10d)

where b =&2ep/fi~ depends on the junctions' parame-
ters.

The form (10a) of the dependence of c, on E and (t does
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not allow us to perform analytically the quadratures ap-
pearing in Eq. (7) for computing the lifetime. However,
an analytical expression for ~ can be obtained within
some approximations for the potential U(P) and the cosP
term: We consider the parabolic expansion of
U(P) around the minimum P&= sin '(a) of the potential
well, namely, assuming U(P}-=—,'+1—a (P —P&); for
cos(!}we will take only the first-order approximation, as-
suming it as a constant: cosP —=cosP& =+1—a .

The harmonic approximation for the potential is often
assumed "" since one expects that in the sma11 damp-
ing limit the lifetime depends essentially on barrier height
rather than on the particular potential shape. ' The ap-
proximation of cosP as a constant seems, at first glance,
diScult to justify. We expect, however, that it is accept-
able for high-y values, as typically occurs in the experi-
ments. In this case the measured values of ~ refer to
current values close to the critical one (a-1}and for low
potential barrier height Uo[(y/2) Uo typically ranges be-
tween 3 and 15 in any experimental situation; for
y —1000, Uo is very small]. ' The region R(UO) of P
values inside the well is therefore very narrow, and only
small fiuctuations of cos(t} around cosP& can occur. This
point will be discussed in more detail in the following. It
will be also useful to compare the analytical expression
for v obtained within these approximations with the exact
values for the lifetime obtained by numerical integration
of Eq. (7). The comparison will justify the use of the ap-
proximate result in a wide range of junction parameters
and noise conditions. Moreover, an empirical correction
to the approximate lifetime expression can be given in an
analytical form, independent of the junction parameters.
This will finally provide an analytical expression for ~ de-
viating from the exact one by only a few percent in all the
typical experimental situations.

Within the mentioned approximations for U(P) and
cos(!}, the quadratures appearing in the definitions (5a)
and (5c) can be performed analytically' and Eq. (7) for
the lifetime reduces to

exp[(y/2)E] y
Eo E 0 2r)(E') 2

where we defined the energy-dependent damping
coefficient

rI(E)=r)*(1++1—a ) ln +52ep 1

flCOJ. V 2E

25= —— +1—x ln(1 —x )dx =-0. 19 .
7T —1

In the experiments the noise parameter y is typically a
large number (y-1000; y/2UO »1},therefore the main
contribution to the integral in E is restricted within a
narrow region around the energy value E, where the
function exp[ (y/2)E']/rI(E') has i—ts maximum. The
value E i is implicitly defined by the relationship
ln(b/+E, )+5=1/yE, ; (b =pep/ficoj)

Due to the slight dependence of g on E, for large y, the

expression for the lifetime Eq. (11}can be then cast in the
form

y Uo exp[(y/2)E]

X f exp —+E' dE'
0 2

F( Uo) —F(EO)

g]

Ei[(y/2}UO] —Ei[(y/2)EO] —ln( Uo/Eo)

(12}

where F(E}=g„",I [(y/2)E]"/n!n ] and Ei( ) is the
exponential integral. Here g, =rI(E, }. Note that expres-
sion (12) reproduces the RSJ results (with a constant
resistance), ' provided that one assumes an effective dissi-
pation coeScient g&, which can be now obtained in terms
of the measurable junction parameters and bias condi-
tions. Within these approximations the effect of the cosP
term is accounted for by a multiplicative factor,
1++1—a, in the effective dissipation. ' We wish to
define also an effective resistance R,z as the Ohmic resis-
tance in the RSJ model, which reproduces the effective
dissipation g&. It is interesting to note that R,z is smaller
than R * by a factor

R'/R, tr=(1++1—a )[ 1n(b/+E& )+8],
which in typical experimental situations assumes values
between 10 and 20. This result will be used for the com-
parison with experimental data.

We now wish to analyze the effects of the approxima-
tions that allowed us to obtain the analytical expression
Eq. (12}for the lifetime. We then numerically calculated
the values of the lifetime r from Eq. (7) and compare
them with the analytical expression r„, Eq. (12). The
analysis has been performed for values of y ranging be-
tween 20 and 8000 (y=20, 50, 100, 500, 1000, 2000,
4000, and 8000) and values of b ranging between 2 and 40
(b =2, 5, 10, 20, and 40). The results are summarized in
Fig. 1, where the ratio rlr„ is plotted for the various
values of the considered parameters as a function of
(y/2)UO, in the experimentally significant range 2—20.
First we wish to stress that rlr„ is essentially indepen-
dent of the value of b (the maximum fluctuations are con-
tained within 1 —2%). Note that for y & 50 the deviation
of the exact values of ~ from the analytical approximation
r„ is always less than 20%. We also observe that for
y & 500, the deviation presents a well-defined behavior as
a function of (y/2)UO, and just a slight dependence on
the y value. In this region of y the behavior is well fitted
by the following analytical expression:

rlr„=f((y/2) Uo),

~UO =A+ 8
2 c +[(y/2}UO —d]
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FIG. 3. Some relevant junction dissipation coeScients vs the
inverse temperature. The open circles are the effective dissipa-
tion values g,z as obtained from data on the switching current
distributions (Ref. 18). We also report the g* values (dots) ob-
tained from the resistances R* measured on the I-V charac-
teristics at the voltage V*=kT/en, and its expected behavior
by Eq. (6a) with 5=1.3 mV (dashed line fitting the dots). The
theoretical extrapolations to the effective dissipation coeScients
obtained within our model including (g&. solid line} and neglect-
ing (go. dashed line) the cos(j) term are also shown.

We wish first to stress that g,z shows a well-defined ex-
ponential behavior as due to quasiparticles thermally ac-
tivated above the superconducting gap. This guarantees
that the junction dissipation relevant for the supercurrent
decay is in fact dominated by intrinsic mechanisms.

The correlation between the fit parameters did not al-
low us to get a very precise determination of q,z at each
temperature, ' so that the errors bars are of the same or-
der of expected contribution due to the cosP term.
Therefore, the data cannot provide any definitive answer
about this effect. We note, however, that the contribu-
tion of the cosP term reduces a certain shift observed be-
tween data and theory. Moreover, this contribution
must be, in fact, included in the model in order to have
the remaining deviation within the experimental uncer-
tainty. This gives us confidence in the possibility of our
picture to describe the main aspects of the problem. The
good agreement obtained here between data and theory
gives in fact an answer about the importance of the in-
trinsic mechanisms of dissipation in this kind of process,

as well as a clear indication about a certain relevance of
the cosP term. It is clear anyway that our simple model
is still a somewhat rough approximation of the junction
and it is probably not expected to yield an exact agree-
ment between theory and experiment. A more sophisti-
cated approach to the problem would, however, lead to
further complications in the theory.

In conclusion, we have studied the supercurrent decay
of underdamped Josephson junctions including in the
equivalent-circuit model the cosP term. From a theoreti-
cal point of view, we have obtained an expression for the
lifetime of the V=O state that takes into account the
dependence on the voltage of both the quasiparticles' tun-
neling conductance 0.0 and of the interference term o.&.

We have then found an analytical approximation for the
lifetime, r„(Eq. 12), which confirms the results of the
RSJ model (with a constant resistance), provided that one
assumes an effective dissipation g&. This dissipation can
be seen as given by an effective Ohmic resistance, which
comes out to be related, within our model, to a subgap
resistance measured on the I-V characteristics, although
substantially smaller. The analytical approximation has
then been compared with the exact values of the lifetime
obtained performing numerically the quadratures appear-
ing in Eq. (7). As a result, we found that the analytical
approximation differs by less than 20% from the exact
solution over a very large range of junction parameters
and noise conditions. Moreover, in the experimentally
significant range of y values (y )500), the difference can
be taken into account by a semiempirical analytical ex-
pression, Eq. (14). A comparison of the theory with our
experimental results has also been discussed. The good
agreement observed clearly shows the importance of the
intrinsic mechanisms of dissipation on the supercurrent
decay. The data also provide an indication about the im-
portance of the cos(t term in the model. This term must
in fact be included in the theory for agreement between
theory and data to be achieved within the experimental
uncertainty. About this latter point, however, a greater
accuracy in the experiments is necessary to give a
definitive answer.
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