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Beliaev’s microscopic theory of superfluidity in *He is applied to an inhomogeneous system with a free
surface. The equations of motion are analyzed within a local-density approximation and a set of WKB
solutions are found. Perturbation theory is used to provide the mixing between these states. The proba-
bilities for evaporation, reflection, and adsorption from the surface are calculated for excitations in the
system. The probabilities for the evaporation of phonons and rotons are in reasonable agreement with
experiment. We find that low-energy incident atoms tend to condense as phonons and high-energy atoms
condense as R * rotons. These results are again in qualitative agreement with experiment, provided that
the short lifetimes of phonons with energies < 10 K are accounted for.

I. INTRODUCTION

Since its discovery,' the superfluidity of “He has been a
topic of considerable interest, largely because of the fact
that it is an ideal system on which to test the fundamen-
tal concepts of quantum mechanics. One of the principal
notions of a many-body system in the quantum regime is
that of Landau’s quasiparticles,> which holds that the ex-
cited states of the fluid should exhibit particlelike proper-
ties. That this is the case has long been established by
neutron-scattering experiments.> The interaction be-
tween these quasiparticles and the free surface of a
superfluid sample, giving rise to the evaporation of atoms
into the vapor, has recently been investigated in a num-
ber of experiments.*”® These experiments have been
developed to such a degree that they now provide a good
means of probing the nature of the quasiparticles'® and
how they interact with one another. Despite the progress
made experimentally, a satisfactory microscopic theory
for the evaporation process has not yet been given. The
aim of this work is to provide such an analysis and to pre-
dict the probabilities of various scattering events at the
surface.

Evaporation from the superfluid state became of in-
terest with the experiments of Johnston and King,* who
studied the energy distribution of atoms in the vapor
above a thermal bath of superfluid held at 0.6 K. The re-
sults were interpreted as showing that the evaporated
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atoms had a characteristic temperature of 1.6 K, 1 K
higher than the fluid. An explanation for this was subse-
quently given by Anderson!! and Hyman, Scully, and Wi-
dom.!? These authors conjectured that the evaporation
occurred by the conversion of quasiparticles at the free
surface to atoms in the vapor, essentially as a one-to-one
process, since these transitions have larger phase spaces
than those involving more than one final state. The
quasiparticles primarily responsible would be rotons,
which have a high density of states, so that the kinetic en-
ergy given to the atoms would be about 8.8 K—p, where
u is the binding energy of the atoms to the liquid (see Fig.
1). This chemical potential p is 7.16 K, so that most of
the liberated atoms would have an energy of ~1.6 K, in
agreement with the reported experimental results. It
later emerged!® that Johnston and King were mistaken in
their conclusions; their results were seriously affected by
interatomic scattering in the vapor. Furthermore, Cole'*
pointed out that the rotons with a high density of states
necessarily have low group velocities, so that the flux of
these rotons, from a thermal bath, into the surface would
be no larger than that of the other excitations. Thus the
theoretical explanations for the results were also in error.
Nevertheless, the phase-space arguments of Anderson'!
still remain an important contribution to the understand-
ing of the processes involved and the concept of quantum
evaporation has survived.

The investigation of this phenomenon was continued

10

5 \\ /

0 T T T T T 1
05 10 15

-15 -10 -05 00
Sy
momentum (A™")

energy (K)

=}

momentum (X‘ )

FIG. 1. Bulk quasiparticle spectrum with the free-atom spectrum alongside. The zero energy of the atomic spectrum is equal to
the chemical potential u of the bulk liquid. The various branches of the curves are labeled by type with the suffix indicating the

direction of travel (either into or out of the surface).
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by Balibar et al.’ and Baird, Hope, and Wyatt.® Instead
of using samples in thermal equilibrium, which of necessi-
ty involve averaging over all the quasiparticle-energy
range, these authors used collimated beams of quasiparti-
cles to test the evaporation mechanism. These beams
were generated by minute heat pulses given to metal films
suspended in the liquid just below the surface. In the va-
por above superconducting, bolometers detected the ar-
rival of evaporated atoms and the time of flight of the sig-
nals confirmed the one-to-one conjecture of the quasipar-
ticle to atom transition. In addition to this, Brown and
Wyatt® have used a diffraction effect to distinguish be-
tween the rotons and phonons. Because of the purity of
the system, the liquid with a free surface has translational
symmetry along the interface, which then requires that
the component of momentum parallel to the surface be
conserved in any quasiparticle-scattering process. Since
phonons and rotons with the same energy have in general
very different momenta, the evaporated atoms emerge in
different directions depending upon the type of quasipar-
ticle causing its release. Brown and Wyatt have found
the expected signals due to phonons and positive-group
velocity rotons (R ), but not those due to the negative-
group-velocity rotons (R ~). This feature is attributed to
the failure of the heater to produce such R ~ rotons; how-
ever, R~ excitations have been produced by condensing
atoms’ in an experiment that also utilizes the diffraction
effect. Computer modeling of the measured signals as a
function of time and angle has shown that the evapora-
tion is very probably a one-to-one process and that paral-
lel momentum is indeed conserved in the transition. Also,
since higher-order processes involving the transmission of
an atom plus the reflection of a secondary phonon or rip-
plon will cause the transmitted signal to broadening in its
angular spread, the authors of Ref. 8 have been able to
place an upper limit of 1 K on the energies of these
secondary reflections. It therefore appears that
Anderson’s phase-space restriction!! on these secondary
processes is working in practice and that we should con-
centrate our efforts on the understanding of the one-to-
one (quantum) evaporation process.

One of the difficulties with the above experiments is in
the calibration of the detectors; for various reasons, it is
difficult for the experimentalists to deduce absolute
values for the probabilities of quasiparticle evaporation.
This makes theoretical predictions even more important.
There is, however, one relevant experiment that has been
well calibrated; this measures the probability of reflection
for atoms impinging upon the surface. Edwards et al.'®
reported that the reflection probability for most atoms is
extremely low, typically between 1073 and 1072 This
probability rises to unity for low-energy atoms and for
atoms incident at glancing angles. They also reported
that the reflections are almost entirely specular (less than
102 scatter diffusely) and that the data shows very little
structure. This implies that the reflectivity is indepen-
dent of the form of the quasiparticle spectrum in the
liquid, and they proposed that the reflections were due
largely to the weak van der Waals interaction between
liquid and atoms. Any atoms that come too close to the
surface are then completely absorbed by the liquid, al-
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though Edwards et al. were unable to say exactly how
these atoms give their energy to the liquid. Subsequently,
Echenique and Pendry!® proposed that the absorbed ener-
gy was dispersed in a shower of surface-tension waves
(ripplons); their calculations showed that before any
atoms were able to penetrate the surface region they
would have lost the majority of their energy to ripplons
and hence could not create any bulk quasiparticles apart
from low-energy phonons. In this manner Echenique and
Pendry predicted a reflectivity curve close to the experi-
mental results. However, we should note that, since this
work, experimental results have emerged that contradict
this theory. First, Edwards, Thas, and Tam!” have mea-
sured bulk quasiparticle signals produced by a condens-
ing beam of atoms, and they reported that one-to-one
conversion of atoms to quasiparticles cannot be ruled out
with their low-efficiency detector. Second, Wyborn and
Wyatt'® have analyzed their results for the production
and detection of R ~ rotons and can place a lower limit of
0.25 on the probability of an atom condensing as a roton
in their particular experiment. Finally, we note that the
strong evaporation signals observed experimentally also
suggest that the ripplons are having small effect on the
trajectory of atoms. Therefore we cannot regard the
reflectivity results as being satisfactorily explained, and
so we are justified in considering the atom-reflectivity and
quantum-evaporation processes as two halves of the same
problem: That is how the liquid quasiparticles and vapor
atoms couple at the surface.

We now consider the general types of process that are
possible in the scattering of the particles from the sur-
face. The boundary conditions are that energy and paral-
lel momentum are conserved in the process and that only
the one-to-one conversions are significant. Ripplons will
be completely neglected, and we will assume that all of
the quasiparticle states are stable and able to propagate
ballisticly (this is not true for phonons below 10 K, which
can decay via the three-phonon process'®). Figure 2(a)
shows the possible outgoing states for an incident atom
(refer to Fig. 1 for the particle labels). There are three
different transmitted quasiparticles and one reflected
atom to be considered. Figures 2(b)-2(d) illustrate the
possible transitions involved in the evaporation processes
where there is one transmitted mode and three
reflections. In particular, the quasiparticle reflections in-
clude the possibility of mode changing; this has recently
been observed by Wyborn and Wyatt.'® In all of these
cases, there exists the possibility of evanescent modes if
the incident excitation carries too much parallel momen-
tum for an outgoing mode of the same energy to support,
as is usual in diffraction phenomena. For transmission to
be possible, the quasiparticles must have energy above
the chemical potential of 7.16 K, and from Fig. 1 it can
be seen that there are essentially three energy ranges of
interest. First, incident atoms with energy less than 1.6
K can only couple to bulk phonons. Second, when the
excitation energy is between that of the roton minimum
and phonon maximum (maxon), all three bulk-liquid
modes will be involved. Third, the high-energy atoms
can only couple to the high-energy R * rotons.

Previous discussions of the transitions outlined above
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FIG. 2. Possible emissions from incident excitations: (a) in-
cident atoms, (b) incident phonons, (c) incident R ™ rotons, and
(d) incident R * rotons.

have centered on the use of a tunneling Hamiltonian for-
malism.'>!42! However, it is clear that in the current
problem, where the coupling between the atoms and
quasiparticles is strong,!’ this approach is inadequate.
Further, since the liquid and vapor comprise the same
material, it seems that the distinction between liquid and
vapor operators made in the tunneling approach is inap-
propriate. In this work we have applied the microscopic
superfluid theory of Beliaev?? to the problem. In Sec. II
we review this theory and show how it can give an equa-
tion of motion for the quasiparticles in an inhomogeneous
system. The liquid surface is then described in terms of a
density variation. The equations are solved in the local-
density approximation and WKB solutions derived. To
find the couplings between these solutions, first-order per-
turbation theory is used with the full nonlocal potential.
The resulting expressions for the probabilities are evalu-
ated using the experimentally measured excitation spec-
trum and the results of the calculations presented in Sec.
ITI. We have restricted ourselves at this stage to the case
of normally incident particles because of numerical
difficulties in the evaluation of the probabilities for
nonzero parallel-momentum scatterings. Finally, we
compare the results of this work with the experimental
evidence and discuss the implications in Sec. IV.

II. APPLICATION OF BALIAEV’S THEORY
TO QUANTUM EVAPORATION

A. Theory of bulk He II

The fundamental idea behind most theories of
superfluidity is that of Bose condensation. That this is
associated with the A transition observed in liquid *He
was proposed by Tisza,?® and recent experiments suggest
that the condensate fraction in the superfluid is ~ 109%.2*
Bogoliubov used this macroscopic occupation of the
zero-momentum atomic orbital to deduce the quasiparti-
cle spectrum.?> He showed that the Hamiltonian for the
liquid can be diagonalized to leading order in the conden-
sate density by a linear canonical transformation. The
excited states of the system are then noninteracting boson
particles, which have specific momentum #k and energy
E (k). These quasiparticles are many-body states involv-
ing extra occupation of both the +k and the —k atomic
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orbitals. The Bogoliubov energy spectrum is
2 172

+2poV, th , (1)

27,2 27,2
E()=| | ZE

where m is the atomic mass, p, is the condensate density,
and ¥ is the momentum-dependent scattering amplitude
between two atoms. Brueckner and Sawada?® have
shown that this formula gives quite a good fit to the ex-
perimentally observed spectrum if ¥} is a x ~!sinx func-
tion. They interpret this as the s-wave-scattering matrix
for two hard spheres of radius 2.26 A, \ivhich is close to
the radius of real helium atoms (~2.25 A). For our pur-
poses the Fourier transform of ¥V, furnishes us with a
spatial pseudopotential ¥ (r) for the interatomic interac-
tion which will be used in this study.

Beliaev’s theory for the bulk superfluid®? uses many-
body Green’s-function techniques to calculate the quasi-
particle properties of the system. It is most easily under-
stood in the context of the Bogoliubov theory, and we
shall be using his approximations for the Hamiltonian.
We have that ground state of the interacting system is the
condensate plus the depletion effect which results in the
occupation of finite-momentum atomic orbitals. Hence
the action of an annihilation operator upon the ground
state is generally nonzero and we must consider the effect
of scattering events that are not present in many normal
systems. Using Bogoliubov’s assumption that the excited
states are dominated by scatterings involving two con-
densate particles, Beliaev found three distinct self-
energies. These are illustrated in Fig. 3(a), where the dot-
ted lines represent the creation (or annihilation) of con-
densate particles. These are to be inserted into the Feyn-
man diagrams for the quasiparticle propagator in such a
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FIG. 3. (a) Three self-energies: =, has one particle entering
the condensate and one leaving, 2, has two entering, and 2,
has two leaving the condensate. (b) The coupled Dyson equa-
tions for the propagators of the system. G, is the free-particle
propagator, G, is the propagator for a “normal” system, and §
is the quasiparticle propagator for the superfluid system.
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way that the number of particles is conserved
throughout. Beliaev then found the algebraic (Dyson)
equations for the propagator [Fig. 3(b)]. Taking the same
low-density limit as Bogoliubov, Beliaev approximated
the self-energies as

21=po¥otpoVis 220=Ze=poVi - @)

Hence he found the quasiparticle Green’s function
9(k,w), the poles of which gave the energy spectrum to
be the same as that of Bogoliubov [Eq. (1)].

B. Local-density approximation
for inhomogeneous systems

We start our description of a system with a free surface
by allowing the condensate density p, to vary with posi-
tion. Deep in the liquid, it has the value of the bulk
superfluid condensate and the Beliaev Green’s function
describes the quasiparticle states. High above the surface
region, the condensate density is zero. In this case the
energy spectrum (1) is just that for noninteracting atoms
and Beliaev’s propagator describes free atoms. We see
that Beliaev’s theory will be valid also for any constant
value of the density in between these extremes. To make
use of this, we require a real-space equation of motion for
the quasiparticles. By rearranging the equations shown
in Fig. 3(b), we find

[Go Hk,0)—2 (ko)
— 330k, 0)G,(—k, —0)Zn(k,0)]19(k,0)=1. (3)

The Fourier transform of this equation gives the
equivalent real-space equation of motion for the Green’s
functions and hence the quasiparticle wave functions

#V?
o—u+ o

@(r)— [ =(ry,r5,0)@(r3)d3r,=0.

4

Here the first term is the total energy of the quasiparticle
with respect to the chemical potential 4 minus the kinetic
energy, while the second is the potential-energy term.
The self-energy operator X is given in terms of quantities
defined in (2) as

3(ry,73,0)=1po(r, )pglr3)V (ry —13)
+f f‘/mV(r,—r4)
X Gy (rs—rg, @)V polrspolrs)
X V(rs—r3)dr,drs . (5)

In deriving this equation, we have specifically allowed for
the spatial variation of the condensate density py(r). To-
gether Egs. (4) and (5) contain all the dynamical informa-
tion necessary to solve for the evaporation probabilities.
Unfortunately, a direct solution of this system of equa-
tions is complicated by two features. First, Eq. (4) con-
tains a nonlocal potential term, and second, Eq. (5) con-
tains the propagator G,. An exact solution to the equa-
tions must be self-consistent, and any attempt to iterate
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toward a stable solution is fraught with numerical
difficulties.”’” Hence we must try to solve the equations in
a more intuitive fashion.

If the surface width is large compared with the
helium-helium interaction range (i.e., the atomic radius),
the slow variation of the condensate density allows the
use of a local-density approximation. Consider the terms
in Eq. (5). The Green’s function G, is of very short range

for‘/gll of the energies considered here (it varies as
-2 - .
e melrs r“l). The self-energy therefore can be written

as
3(ry,ry,0)=plr)V(r —r;)
+P2("1)f fV(r,—r4)C~;,,(r5—r4,—w)
XV(rs—ry)d3r,d3rs (6)

where G, is evaluated at the density p(r;). Inserting the
expression (6) into Eq. (4) gives the “local”’-density equa-
tion. It is important to note that the nonlocality of the
interaction has been retained in order to preserve the
essential condensate properties. An approximate solution
to the local-density equation can be found by using the
WXKB formalism.?® The trial wave function is of the form

1
Vi@ P
where k(x) is the wave vector of the quasiparticle in a
homogeneous fluid of the density at x. Because of the
nonlocality, there will be more than one value of k and it
is important to follow the developing solution through
the surface. Figure 4 shows how the energy spectrum
changes as the density is decreased. The variation of the
wave vector k (x) with a given incident value enables four
distinct WKB states to be constructed for each energy.

Consider the energy range between the roton minimum
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FIG. 4. Variation of Bogoliubov’s spectrum with condensate

density. ppy=1.0 corresponds to the bulk liquid, whereas
po=0.0 is the free-atom spectrum of the vapor.
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and the maxon. The first WKB state arises from an in-
coming phonon. As it progresses through the surface,
the wave vector changes slowly and the quasiparticle con-
verts smoothly into a free atom in the vacuum. The
second state arises from the reverse process: An incom-
ing atom converts to a phonon propagating away from
the surface with the wave vector again changing smooth-
ly through the surface. The other two states concern the
rotons which, in the local-density limit, are trapped
within the liquid. Consider an incident R * roton with
energy below that of the maxon. As it moves into the
surface, its wave vector drops rapidly to that of the
minimum. Beyond this point its wave vector becomes
complex, so that the energy is conserved throughout.
Hence the roton wave function decays into the surface so
that no energy is transmitted through to the vacuum side
and the roton is reflected as a liquid quasiparticle. At the
classical turning point, where the wave vector first be-
comes complex, the reflection that requires no momen-
tum transfer is that to the R~ roton with the same ener-
gy and this then is the mode that the roton couples to.
The third type of WKB state therefore describes an R *
roton reflecting as an R ~. Similarly, the fourth state de-
scribes the reverse process of an R ~ reflecting as its R *
partner. We note that since the roton wave vectors are
nonzero throughout, there is no difficulty in connecting
these solutions. At energies above the maxon or below
the roton minimum, the same calculations produce two
states which propagate through the whole system, which
correspond to evaporation of and condensation into R *
rotons or phonons, respectively. The roton-minimum-
and maxon-derived states are completely localized in the
surface region and cannot carry any flux.

The results of the above analysis for the quantum-
evaporation process are therefore that (a) phonons and
high-energy R ' rotons produce quantum evaporation
with essentially unit probability, (b) helium atoms are ab-
sorbed with unit probability, and (c) R * and R ~ rotons
do not contribute to the evaporation process in the ener-
gy range between the roton minimum and the maxon.
Although (a) and (b) are in qualitative agreement with ex-
periment, (c) is clearly incorrect.

C. Coupling between the local-density WKB states

The current estimate of the width of the surface region
of the superﬂuld is ~10, A,” whereas the radius of the
helium atoms is ~2.25 A. It is therefore not surprising
that the local-density solutions outlined above do not sat-
isfactorily describe the real system. It is apparent that
when the density variation is of the order of the quasipar-
ticle wavelengths, the solutions of Eq. (4) must involve
mixing between the quasiparticle modes. In order to esti-
mate this mixing, we apply perturbation theory using the
WKB states as a basis. The justification for such an ap-
proach is as follows. The WKB states are exact solutions
to Eq. (4) deep in the liquid and also above the surface in
the vacuum, where the density is constant. The only re-
gion where they are approximations is in the surface it-
self. Thus the exact Hamiltonian acts as a perturbative
potential only at the surface, which then causes the tran-
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sition of the quasiparticles from one WKB state to anoth-
er. Because we are starting with solutions that are
reasonable throughout and because the scattering only
occurs in a small region of space, we can expect perturba-
tion theory to yield acceptable results.

As a result of these considerations, we find the perturb-
ing potential U (r) defined through

Ulr)e(r))= fZ

- leoca](rl

and the relevant matrix elements, for the scattering,

M;= f(pj(r)U(r)(p;"(r)d3r

where @;(r) are the WKB states. From this we calculate
the various transition probabilities between the WKB
states to be

r)e(ry)d>r,
—ry)@(ry)d’r,

M|

P, = —
N*v,(q)vg (k)

1 _
p 7\7—5 and qu—

where v,(q) is the group velocity of the state g and

P+ %qu =1

sets the value of the normalization constant N.

The expressions for the transition probabilities have
been evaluated for atoms and quasiparticles impinging
upon the surface in the normal direction. The experi-
mentally measured quasiparticle-energy spectrum was
used in the first instance to construct the four WKB
states, utilizing the density dependence of Bogoliubov’s
formula (as in Fig. 4). The matrix elements between these
states, M,;, were calculated using the Brueckner pseudo-

potential,?® which reduces the order of the numerical in-

tegrations to 3 for the case of normal incidence studied
here. The self-energy [Eq. (5)] was evaluated using the
local-density approximation for the denominator of the
Green’s function G, as this is sufficient to give the
leading-order dependence of = on the nonlocality of the
interaction. We have used a Fermi-function for the sur-
face profile, taking 10%-90% widths to be 5, 10, and 15
A; although the middle value appears to best describe the
system,?’ it is important to see how sensitive the results
are to this parameter. The results of these calculations
are presented below.

III. RESULTS

A. Incident atoms

In Fig. 5 we plot the various possible transition proba-
bilities for atoms impinging upon the surface as a func-
tion of the energy of the incoming particles. Atoms at
the lower end of the scale couple to phonons with energy
just above the chemical potential, 7.16 K. The labels on
the graphs correspond to those in Fig. 1, which indicate
the momentum change required for each individual tran-
sition. The curves clearly show the division between the
energy regimes. Atoms with energy above 6.6 K can cou-
ple to R rotons, which are the only bulk quasiparticle
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states with energy above the maxon. Thus the 4;,—R
transition probability increases suddenly at this value be-
cause this coupling is now the dominant WKB solution.
The A; — A, atomic-reflectivity curves show discontinui-
ties at this energy for surface widths 5 and 15 A, but not
for the 10-A width, which presumably results from some
interference effect. For atoms below 6.6 K, energy transi-
tions to the other bulk modes are possible and the WKB
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FIG. 5. Transition probabilities for incident atoms as a func-
tion of their energy in the vapor.
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solution is now A;—P, condensation. It can be seen
that the A4;— A, reflection can be quite high and so
shows a significant difference to the WKB scenario. The
reason for this is that the matrix element for this transi-
tion becomes large for low-energy atoms because both the
incident-atom and incident-phonon WKB states are trav-
eling waves and consequently have large overlap in-
tegrals. Low-energy atoms then show a strong reflection
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FIG. 6. Transition probabilities for incident phonons as a
function of their energy in the liquid.
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coefficient in agreement with basic wave-mechanical
scattering theory, the probability for reflection rising to
unity as the energy approaches zero. The coupling of
low-energy atoms to the roton states is small because of
the inherent difference between the traveling-wave atom
or phonon WKB state and standing-wave Rt or R~
states. The only exception occurs just below the maxon
energy where the density of final states for R~ rotons
diverges, causing a slight rise in the 4;,—R transition
probability. It is notable that the atomic-reflectivity
curves do not show any discontinuity at the roton
minimum threshold of 1.6 K because of the very small
probabilities of condensation as rotons. This agrees with
experimental observations.'> The actual surface width
has little effect on these results apart from the fact that
the 5-A curves tend to be little noisier. This can be attri-
buted to the fact the WKB solutions are poor starting
states for such a narrow surface.

B. Incident phonons

The transition probabilities for incident phonons are
given in Fig. 6. Here the energy axis refers to the incom-
ing excitations, so that only those above 7.16 K can cou-
ple to the atoms. The “WKB” channel, which is the eva-
poration of atoms, is found to dominate over most of the
energy range. The reflection back from the surface into
the phonon mode causes the largest reduction of the eva-
poration channel, which once again is due to the large
matrix element between the two traveling-wave WKB
states. It is interesting to note that the P; — P probabili-
ty does not rise to unity as the energy of the incident pho-
non decreases to the chemical potential, but instead the
P;— A, channel remains active throughout mainly be-
cause of the large density of final states for the low-
energy atoms. Reflection into the phonon channel in-
creases in the vicinity of the maxon energy, as a result of
the increasing density of final phonon states. Phonons do
not couple strongly to the roton modes, again as a result
of the essential mismatch between the WKB phonon and
roton states in the surface regions which produce small
matrix elements. Thus the phonon-evaporation curves do
not show any discontinuities at the roton minimum
threshold just as we found with the atomic reflectivity.
The P;— R, probability does rise a little at the top end
of the phonon-energy scale because of the diverging den-
sity of final R ™ roton states and the convergence in char-
acter of the two modes at the maxon. (The 10-A curve
for the P,— R does show a spike right at the maxon en-
ergy, but this feature is most probably caused by conver-
gence problems with the numerical evaluation of the ma-
trix element. Otherwise, the transition to the R * rotons
is completely negligible.) Again, we observe that the sur-
face width does not markedly affect the results for the
phonon transitions.

C. Incident R ~ rotons

The curves in Fig. 7 give the transition probabilities for
incident R~ quasiparticles as a function of their energy
in the liquid; the energy range on the x axis is from the
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roton minimum to the maxon energy. The WKB mode
for these excitations is reflection as R * rotons. From the
curves of R,” —R, we see that the surface width has a
much more marked effect on these results because of the
fact the WKB states arise from a local-density considera-
tion which is more appropriate for thick surfaces. The
depletion of the WKB channel is caused mainly by the
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FIG. 7. Transition probabilities for incident R~ rotons as a
function of their energy in the liquid.
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transitions to reflected phonons, R;” — P, the probabili-
ty for which rises as the energy increases. There are two
reasons for this behavior. First, the density of final pho-
non states increases with energy, and second, the matrix
element for the transition also increases as the rotons
gain more penetration of the surface. Similarly, the tran-
sition R;” — A, also becomes possible as the rotons prop-
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FIG. 8. Transition probabilities for incident R * rotons as a
function of their energy in the liquid.

agate further into the surface, even though this evapora-
tion does require large momentum changes. However, it
remains small throughout the energy range because the
perturbing potential is due to the nonlocality of the in-
teratomic potential and so is inherently unlikely to have
the large high-momentum Fourier components necessary
for the transition. For the same reason, the R;” >R
reflection is small throughout the energy range.

D. Incident R * rotons

Similar trends in the behavior of incident R * rotons
are observed (see Fig. 8) in that the thicker surfaces show
that the WKB channel of reflection as R ™ largely dom-
inates in the energy range from the minimum to the max-
on. The R;* — A, transition becomes important as the
energy increases again because of the rise in the overlap
between the respective WKB states. The R,"—P,
reflection, which requires large momentum changes, only
becomes significant in the maxon region where the densi-
ty of final phonon states is large. The curves R," — 4,
and R;* —R{ give the only possible transitions above
the maxon energy. The evaporation is the dominant
WKB solution in this energy regime, and the roton
reflection dies away quickly as the energy increases
beyond the maxon. Once again, we note that the 10-A
curve in the reflection passes smoothly through the max-
on energy, in the same way as does the atomic reflectivity
curve 4A;— A,.

IV. DISCUSSION AND CONCLUSIONS

To summarize, the evaporation probability for pho-
nons is high (~0.8) throughout the experimental energy
range. Because of the coupling induced in the surface re-
gion, the low-energy R *-roton-evaporation rate is now
significant (0.2—0.6), but the R ~-roton-induced eva-
poration remains very small because of the large momen-
tum change required. It is difficult to compare these
figures with experimental values, because exact measure-
ments of the probabilities have not in general been possi-
ble. However, the trends seen in experiments indicate
that the probabilities should be numbers of the order of
0.1-1.0.2%3%3! This tends to support our results and con-
tradicts the idea that ripplons seriously affect the atomic
trajectories in the vapor.'®

Wyborn and Wyatt'® have performed some measure-
ments of the evaporation of R ~ rotons, which have been
produced by condensing atoms. Unfortunately, in this
experiment, the particles are all incident at an angle to
the surface and the change in the normal component of
the momentum required by the transitions is very much
smaller than with the normal incidence; so the results are
not comparable. Another experiment these authors per-
formed?® does lend support to our work. This experiment
used mode changing at the free surface of R*—R ~ ro-
tons, and it was found that this transition has high proba-
bility, in agreement with the local-density WKB argu-
ment outlined here.

We now consider the atomic reflectivity, as given in
Fig. 5, A;— A,. Note that the general shapes of the
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curves, with the reflectivity approaching unity as the en-
ergy goes to zero, are consistent with basic wave-
mechanical scattering theory and comes from the
mismatch in the group velocities. This does contradict
the results of Edwards et al.,'> who found that the
reflectivity falls sharply as the atomic energy increases
from zero. As they pointed out, this is probably due to
an inelastic loss mechanism. However, as we have stated
above, this mechanism is unlikely to be ripplon creation.
The only other possibility is energy loss to a shower of
low-energy phonons. This mechanism is feasible because
the mean-free-path length for phonons below ~10 K is
only ~100 A in the bulk system!® because of the three-
phonon decay process. In the surface region, we can ex-
pect this length to be even smaller because more decay
channels are possible since only the parallel component of
momentum need be conserved. It would certainly appear
to be possible for incident atoms below ~3 K energy to
thus end up as shower of low-energy phonons in the
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liquid; the reflectivity of the atoms in this energy region
would then be pulled drastically down by this inelastic
mechanism, in line with the experimental results. How-
ever, this is just a speculative argument and the detailed
calculations remain to be done.

In conclusion, then, we have successfully shown how
one can adapt Beliaev’s microscopic theory of superfluid
“He to the quantum-evaporation phenomenon. The re-
sults of the analysis are found to be in broad agreement
with experimental evidence. On the theoretical side,
there is still much work to be done. The techniques
developed here can be most easily adapted to the oblique
scatterings of particles impinging upon a free surface.
Similar calculations with solid surfaces will provide valu-
able insight to the workings of the heaters and bolome-
ters used in experiments. Finally, the question of the pro-
duction of low-energy phonons from atom condensation
should be addressed to ascertain whether it is indeed the
inelastic mechanism causing the high atomic absorption.
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