
PHYSICAL REUIE% 8 VOLUME 46, NUMBER 9 1 SEPTEMBER 1992-I

Optimization of He wave functions for the liquid and solid phases
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We present a method using a basis set to calculate the optimized Jastrow pair function in trial wave
functions for quantum fluids and solids. Using three-body terms in the variational trial wave function, as
well, the variational Monte Carlo binding energies obtained are significantly lower than determined pre-
viously. The radial distribution functions g (r) with these Jastrow functions are presented and discussed.

I. INTRODUCTION

Optimized Jastrow pair functions have been developed
and used with cluster expansion methods for many
years. ' Variational Monte Carlo calculations, for the
most part, have relied on these Jastrow functions or on
simple parametrizations of the Jastrow function and a
straightforward energy minimization. '

In this paper, we generalize Pandharipande's idea of
solving a two-body Schrodinger-like equation, by build-
ing a Jastrow function using a basis formed by the eigen-
functions of that equation. The resulting Jastrow func-
tion can be described by a fairly small number of parame-
ters, which are the coefficients of the basis functions. An
efficient way to optimize the values of the parameters is
to use a reweighting scheme where the variance of the en-
ergy is minimized. We apply the method to liquid and
solid He.

In the following sections, we discuss the optimization
method, give our results for the Jastrow functions, and
present typical radial distribution functions obtained with
these calculations. We compare our results to values ob-
tained by Green's-function Monte Carlo methods
(GFMC's).

II. THE VARIATIONAL MONTE CARLO METHOD

The Hamiltonian we use to describe X He atoms is

g2 N
H= — g V, + gu(r, ), (l)

i=1 i &j

where u(r, ) is the HFDHE2 potential of Aziz et al.
The potential u is a function only of the relative distance
r,~

= lr; —rl l
between particles i and j with coordinates r;

and r -, respectively.
The variational energy ET is computed using the ex-

pression

fdR 4 T(R )H%'T(R )
E +E

f dR l~, (R)l'

where R —= lr„. . . , r~I. We compute the integral using
the Metropolis et al. algorithm. Our aim is to optimize
the trial function O'T to obtain a good variational upper
bound to the ground-state energy Eo.

III. THE VARIATIGNAL WAVE FUNCTION

As is well known, in the ground state of a system of
He atoms both long-range and short-range correlations

are present. The short-range correlations are directly in-
duced by the hard core in the interatomic potential.
Long-range correlations can be thought of as being due
to zero-point phonon motion. Structural information
about the very long-range correlations can be obtained
directly from variational Monte Carlo calculations only
by considering large systems with many particles. Typi-
cally, these long-range correlations make relatively unim-
portant contributions to the energy of the system. ' We
will therefore concentrate on the shorter-range correla-
tions.

We use a trial function that is a product of one-, two-,
and three-body functions

& (R)=IIf II h II&
i &j i &j&k

This genera1 form, which includes up to three-body terms
in the general Feenberg form for the trial function, has
been used and developed by many authors. "

For a liquid state, (b, =1, and for the solid, (t is the
Nosanow localized form, '

(4)

The I; are the lattice points, and o. is a variational pararn-
eter. It is convenient to use a face-centered-cubic lattice
since, as demonstrated by GFMC calculations, ' its ener-

gy is very close to the hexagonal-close-packed structure.
%'e impose the condition, on the Jastrow function,

f(r&d)=l,
and require continuity off (r) and its gradient at r =d.

At small separations, the two-body potential u (r) dom-
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If we enforce the boundary conditions given above, this
defines an eigenvalue equation. Pandharipande and
Bethe have used the ground state of this equation to
define f(r).'"

We improve the Jastrow function f (r) by writing it as
a linear combination of f„(r), the spherically symmetric
eigenfunctions of Eq. (6),

f(r)=pc„f„(r) . (7)

The coefficients c„are variational parameters. In our
minimization method the number of eigenfunctions used
in Eq. (7) can be chosen big enough to include all the im-
portant components of the complete set of functions
lf. l.

The Jastrow function f of Eq. (7) is automatically
correct for small pair separations independent of the
coefficients c„, since it is a solution of the two-body
Schrodinger equation. This is especially convenient for
Monte Carlo calculations; when a pair separation dis-
tance is small, the wave function of the system is small
too, and it is difficult to sample and optimize the wave
function in these regions.

The parameter d of Eq. (5) may be chosen to be
d 1/2, half the side of the simulation cell, making it
easy to construct a Jastrow function f (r) that heals
smoothly to 1 inside the simulation ce11. Other boundary
conditions could be used; f (r) 1 could —be matched to its
correct behavior, proportional to r, at large r.

We take the three-body function h;.k to be' '
ijk P X kjkkrij 'k

cyc1

where A, is a variational parameter, cycl denotes a sum
over cyclic perinutations of ji,j,k j, g, . =g(r;j) depends
on two parameters ro and w and on the size of the simula-
tion cell /; the functional form of g is

2r —l
l

3

exp

'2

IV. THE OPTIMIZATION METHOD

The simplest way of optimizing a trial wave function in
variational Monte Carlo calculations is to adjust its pa-
rameters and minimize the expectation value of the ener-
gy. A more robust and efficient method, where a
moderate number of variational parameters is used, is to
minimize the energy variance using a reweighting
scheme, as has been demonstrated recently by Umrigar,
Wilson, and Wilkins' and previously by other authors. '

To minimize the energy variance, we start with our
best trial functions i)'j, (R ) and generate a set of
t R i R z . . . , RM l configurations using the Metropolis
et al. algorithm. Using these configurations, we adjust

inates and f (r) should satisfy a two-body Schrodinger
equation,

(A /—m)V f(r)+u(r)f(r)=Af(r) .

the parameters of the variational wave function to obtain
f,&,(R) such that the energy variance,

i=102E

Ht(, ,(R;) P', „(R;)
1(,p, (R; ) 1(jz, (R; )

M g/jz, (R, )

;=i g;(R;)

is minimized. We can also take the ratio 1(t, , /1(t, equal to
1 in Eq. (10), although the resulting expression is no
longer equal to the energy variance, it is still minimized
by the exact wave function. In our calculations, this
second form gives convergence with less computer time.
We chose a value for E that is our best estimate of the
ground-state energy, although its value could be taken as
an additional variational parameter. Its value is not criti-
cal. After the new values for the variational parameters
have been determined by minimizing Eq. (10), we sample
a new set of configurations and calculate the energy ex-
pectation with these new values of the parameters. The
whole process of performing variational computation and
optimization is repeated iteratively until the energy has
converged.

A preliminary study' has shown that a basis using the
first ten eigenfunctions of Eq. (6) is large enough to give a
good description of the Jastrow function. As a further
test that our method with only ten eigenfunctions is able
to generate nearly optimal Jastrow functions, we have op-
timized a wave function with the Jastrow function of Eq.
(7), and compared our results with those using a Jastrow
function from paired phonon analysis (PPA). In Table I
we show these results for the variational Monte Carlo
ground-state energy at the equilibrium density of liquid
He. In this caleu1ation, as in the rest of this work, we

have used a periodic system of 108 particles. In Table I
we also compare to calculations using other trial func-
tions and to GFMC results. The good agreement be-
tween our ealeulations and those using PPA Jastrow
functions indicates that our method determines a nearly
optimal Jastrow function.

In our calculations, we start by generating a set of
configurations using a trial function with a Jastrow func-
tion of the McMillan form, which had been energy opti-
mized previously. We sample a set of configurations
from this wave function, and then optimize the
coefficients c„ofEq. (7) by variance minimization. For
most of the calculations, the parameters in the other
correlations are kept fixed. Using the new values of c„,
new configurations are generated for the next optimiza-
tion step. Typically we use 1000 configurations in the op-
timizations. This iterative procedure is continued until
convergence in the energy is reached. Usually three
iterations are sufficient. In a few calculations, we mini-
mized the energy variance with respect to the other pa-
rameters in the trial wave function. However, as shown
later, this did not improve the energy within our statis-
tics, and most of our calculations have optimized only the
c„coefficients. The minimizations were performed using
the Levenberg-Marquardt method since they are highly
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TABLE I. Ground-state energies for liquid He at the equilibrium density p=0.0218 A '. In the
first five lines we present variational results obtained with the following trial functions: a functional op-
timization of the two-body Jastrow function using the basis-set approach [2B(BS)];the same optimiza-
tion made by paired-phonon analysis [2B(PPA)]; A two-body Jastrow (M) trial wave function with a

pseudopotential of the McMillan form {Ref. 20); a two-body Jastrow function together with explicit
three-body correlations (28 +3B); a two-body Jastrow function in which the correlation factor is opti-
mized by paired-phonon analysis and explicit triplet correlations [2B(PPA)+3B]; and our best two-

body basis-set Jastrow function with an explicit three-body correlation result [2B(BS)+3B]. In the last
line we give the energy obtained by the Green's-function Monte Carlo method (GFMC). The calcula-
tions have been performed for systems of 108 particles, except the' ones using 28(PPA), where 64 parti-
cles were used.

Variational
trial function

28(BS)
28(PPA)

28 +38
28{PPA)+38
28(BS)+38

This work

—5.938+0.028

—6.862+0.016

Ref. 7

—5.87

Energies (K)
Ref. 23

—5.93+0.01

—6.674+0.007
—6.741+0.008

Ref. 24

—5.717+0.021

GFMC
Importance function
J(PPA) —7.120+0.024

nonlinear, although many other minimization methods,
for example the simplex method, also will work.

V. Results

%e have presented the variational energies and the
corresponding variational parameters in Table II at the
liquid densities of p=0.0196 A, at the equilibrium
density, p =0.0218 A, at p =0.0240 A, and
p=0.0262 A . This last value is the freezing density
determined by the GFMC method. At all densities, we
get an improvement over values previously calculated us-

ing a McMillan form for the Jastrow function along with
the same three-body term.

In Fig. 1, we show the radial distribution function g (r)
and the Jastrow function f (r) obtained at the equilibrium
density using the values in Table II. Our maximum of
g (r) is 1.372+0.004 at r =3.425 A, while GFMC (Ref. 7)
gives 1.3812 at r =3.527 A. Our variational peak is a lit-
tle smaller and has been displaced by 3% from the
GFMC value.

In Fig. 2, we compare the optimized pseudopotential
u (r), u (r)= —ln[f(r)], obtained with a wave function
that explicitly includes a three-body term and one where
only the Jastrow function is used. At r =4.8 A, the wave
function that contains only two-body terms exhibits a
small shoulder that disappears when three-body terms are
present. This behavior is in agreement with a specula-

TABLE II. Variational energies for He in K per atom in the liquid phase for the given set of param-
0 ~ ~ ~, 0

eters at several densities (p in units of A ). The A, parameter is given in units A, ro and w in units of
A.

CI

C2

C3

C4

Cg

C6

C7

C8

C9

& IO

ro
W

0.0196

0.906 61
0.105 05

—0.013 74
0.004 89

—0.00440
0.002 77

—0.001 83
0.001 09

—0.001 37
0.000 92

—2.143
2.096
1.278

0.0218

0.91031
0.101 00

—0.017 12
0.008 74

—0.004 93
0.004 13

—0.002 77
0.000 93

—0.001 19
0.000 92

—2.143
2.096
1.278

0.0240

0.91344
0.101 20

—0.021 85
0.008 89

—0.003 82
0.003 69

—0.002 10
0.00098

—0.001 43
0.000 99

—2.143
2.096
1.278

0.0262

0.91449
0.088 38

—0.009 90
0.008 81

—0.004 77
0.003 06

—0.002 99
0.001 96

—0.000 52
0.001 47

—2.143
2.096
1.278

—6.804+0.015 —6.862+0.016 —6.524+0.020 —5.837+0.023
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TABLE III. Variational energies in the crystalline phase for He in K per atom for the given set of
0

~
0

parameters at several densities (p in units of A '). The 0; and A, parameters are given in units of A0

ro and m in units of A.

C}

C2

C3

C4

C5

C6

C7

C8

C9

&IO

a

ro
N

0.0293

0.974 11
0.020 62
0.01346

—0.015 99
0.011 88

—0.007 19
0.004 17

—0.002 09
0.002 01

—0.000 98
0.459 2

—1.225
2.096
1.278

0.0315

0.970 81
0.023 60
0.013 51

—0.015 73
0.011 79

—0.007 12
0.004 12

—0.002 03
0.002 01

—0.000 96
0.535 7

—1.225
2.096
1.278

0.0329

0.975 73
0.018 99
0.013 74

—0.01621
0.01193

—0.007 28
0.004 20

—0.002 12
0.002 02

—0.001 02
0.612 2

—1.224
2.093
1.280

0.0335

0.975 64
0.019 16
0.013 58

—0.016 15
0.011 93

—0.007 26
0.004 20

—0.002 12
0.002 03

—0.001 02
0.613 2

—1.227
2.094
1.280

0.0353

0.974 13
0.020 40
0.013 83

—0.01620
0.011 96

—0.007 22
0.004 17

—0.002 11
0.002 03

—0.000 99
0.688 8

—1.225
2.096
1.278

Eo —5.409+0.051 —4.662+0.032 —4.011+0.036 —3.584+0.038 —2.368+0.042

The energies and variational parameters for the solid
phase calculations are given in Table III. At the two
lower densities, p=0. 293 and 0.0315 A, the variation-
al energy is decreased by 0.14 K and 0.2 K, respectively,
from values using the McMillan form for the Jastrow
function. For the densities of p=0.0329, 0.0335, and
0.0353 A, the energy decreases by about 0.2 K.

The Jastrow function f (r) and the radial distribution
function g(r) at p=0.0335 A are shown in Fig. 4.
Again, we have agreement with GFMC with the position
of the first peak at r=3.233 A. Our value for g(r) at the
peak is 1.710+0.007 compared to the GFMC result of
1.7411.

We also show in Table III, for the densities p=0.0329
and 0.0335 A, the parameters where we have reoptim-
ized the one-body and three-body terms from their initial
values of +=0.6123 A, g= —1.225 A, ro=2. 096
A, and w =1.278 A. As can be seen, the reoptimization
does not change these parameters significantly.

The coefficients c„are not always well determined by
our procedure due to the insensitivity of the Monte Carlo
results to the long-wavelength behavior of the Jastrow
function. We have found different sets of the coefficients
c„ that give equally good results at a given density. In
some cases, these sets produce quite similar looking Jas-
trow functions. However, it is possible to find sets that
give different Jastrow functions f(r). In Fig. 5, we show
a plot of the Jastrow function f (r) and its corresponding
radial distribution function g(r) at a density p=0.0335
A . The values of coefficients e, k, ro, and w are those
quoted in the last paragraph, and the c„are different
from those of Table III and Fig. 4. The variational ener-

gy is —3.576+0.036 K in good agreement with the result
in Table III. The value and position of the first peak of
g(r) are also in good agreement. It is also apparent by
examining Figs. 4 and 5 that the two Jastrow functions
differ primarily by a multiplicative constant in the region
r & 4 A. By Fourier transforming the corresponding
pseudopotentials, we verified that the two Jastrow func-
tions only differ substantially at long wavelength. The
energy and short-range structure of g(r) are rather in-
sensitive to these differences.

VI. CONCLUSIONS

We have shown that a simple basis-set approach using
energy-variance minimization gives a straightforward
method of optimizing the Jastrow function for quantum
fluids and solids. The main difficulty with the method is
the necessity of performing a highly nonlinear optimiza-
tion where some care has to be taken to avoid undesirable
local minima. The method is a general technique and
should be applicable to other situations and to the Jas-
trow functions encountered in nonuniform systems.
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