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Susceptibility resonance and magnetic viscosity
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It is suggested that the phenomenon of superparamagnetism in small ferromagnetic particles
may manifest itself as a resonance in the magnetic susceptibility, measured at a frequency which
corresponds to the average relaxation time w of these particles. It is argued that this resonance
has not been observed because it is diKcult to know in advance at which frequency it should be
looked for, and Neel's theory of this 7 is inadequate for estimating the location of such a resonance.
However, an appropriate analysis of the measurements of magnetic viscosity in the same sample can
give a very good idea of the value of the resonance frequency and an estimation of its line width.

I. INTRODUCTION

Rather large ferromagnets are known to be subdi-
vided into domains, with a complicated magnetization
structure. But a sufIiciently small ferromagnetic particle
is a "single domain, " which can always be considered
(at least approximately) to be magnetized to saturation.
When such a particle is magnetized in some direction, it
remains that way, and its magnetization does not change
its direction, because of an energy barrier. This barrier
is due to the anisotropy energy, and as such is propor-
tional to the particle's volume. Therefore, for a small
volume the barrier can be small enough for thermal fluc-
tuations to flip the direction of the magnetization back
and forth. When the relaxation time, namely, the time it
takes to flip the magnetization, is much shorter than the
time it takes to do the experiment, the magnetization
reverses many times while being measured. Therefore,
the average of the magnetization vanishes in zero applied
field, and on the whole, the particles behave as if they
were huge paramagnetic atoms: There is no hysteresis,
but there is saturation when the magnetizations of all
the particles are aligned. The theoretical treatments of
paramagnetism Gt this case without any change, except
for the quantitative difference that the spin number 8 is
of the order of, say, 10, whereas the more conventional
paramagnets have S of the order of 1. This transition
from stable ferromagnetism to paramagnetism at a small
particle size has been observed2 in many systems. The
phenomenon is known as superparamagnetism. Its exis-
tence was suggested theoretically by Neel before any of
these experiments were done.

There are also many experiments in the literature in
which the relaxation time ~ for the flipping of the magne-
tization is of the same order as the time it takes to do the
measurement. However, the magnetization in these ex-
perirnents is not allowed to flip back and forth They all.
follow the original thought experiment of Neel3 in which
an ensemble of small particles is put in a very large field,
then taken out of the field. The remanent magnetization
is then observed to decay in time, as the thermal fluctu-
ations keep changing the directions of the particles' mag-

netization. Because of this particular way of measure-
ment, the phenomenon was given the name "magnetic
aftereffect, " or "magnetic viscosity. "

It is also possible in principle to measure the particles
of the magnetic-viscosity region in an alternating mag-
netic Geld. As will be discussed in the next section, such a
measurement can result in a resonance similar to the one
observed by Awschalom et al. at very low temperatures.
In searching for such a resonance it should help to know
c priori where to look for it, but the theory cannot pro-
vide an adequate estimate, as will be shown in Sec. III.
It is, therefore, suggested in Sec. IV to start the experi-
ment by the conventional measurement of the magnetic
viscosity in the same sample. If properly analyzed, this
measurement can yield all the necessary information.

II. SUSCEPTIBILITY RESONANCE

Awschalom et al. 4 have recently observed resonance
peaks in the magnetic susceptibility versus frequency
plots of small, elongated particles of carbonyl iron. The
peaks were fully developed at a temperature of about
70 rnK, and disappeared above about 200 mK, so that
there can be no doubt that they originate from a re-

laxation of the magnetization by a quantum tunneling
mechanism, and not by thermal fluctuations. However,
the mathematical form of magnetization versus time in

quantum tunneling is identical5 to that of magnetic vis-

cosity controlled by thermal agitation. Therefore, the
same peaks must also be observed for the latter case, in

an appropriate range of temperature and frequency.
The important physical feature is that when a parti-

cle has a natural frequency v for switching the direction
of its magnetization, an alternating magnetic field ap-
plied at that frequency will be more efFective in switching
the magnetization back and forth than a Geld applied at
other frequencies. A resonance peak should, therefore,
appear at that frequency, or integral multiples of it, and
there can be no doubt that this resonance is the source
of the peaks observed by Awschalom et al. , or that a
similar peak can be found at higher temperatures, when

the switching is due to thermal fluctuations.

5434 1992 The American Physical Society



SUSCEPTIBILITY RESONANCE AND MAGNETIC VISCOSITY 543'

When the sample contains many particles, with dif-
ferent natural frequencies, this resonance will obviously
widen, and may even be completely smeared out, if the
distribution of the relevant properties of the particles is
too wide. Awschalom et al.4 checked by scanning elec-
tron microscopy (SEM) that their particles had a very
narrow size distribution, and the same must be required
from any sample used in the magnetic viscosity region.
However, such narrow distributions have been made and
studied in that region. For example, the size distribution
of the Fe particles of Yatsuya et a/. was so narrow that
all their measurements of M(H/T) superimposed into a
single, pure Langevin function.

Besides this broadening of the resonance line due to the
diferent relaxation times (or frequencies) for the difFerent
particles, there should also be a natural linewidth due to
the statistical nature of the relaxation time in each of
the particles. The latter would in principle be observed
even if the measurement could be done on an isolated,
single particle. The point is that the relaxation time of
each particle is an average value for many cycles of the
applied field. It may vary between one cycle and the
next, because the magnetization vector may perform a
random walk around each of the energy minima before
jumping to the other minimum.

This natural linewidth is not easy to estimate, and
one should always carry in mind that it may in principle
suppress the whole resonance in extreme cases. There
is, however, one indication that this problem is not very
important in most practical cases. The relaxation times
obtained from the theory of Brown, which takes this ran
dom walk into account, are rather close to the ones ob-
tained from Neel's theory, 3 which assumes just one jump,
at least for an energy barrier that is much larger than
k~T. For uniaxial arusotropy, the difFerence between
these two theories is actually quite small even when this
barrier is comparable to k~T, so that the linewidth can-
not possibly be so large as to make the resonance unob-
servable.

For a cubic anisotropy, the possibilities of a random
walk in all sorts of directions are more intricate and
more complicated than for a uniaxial symmetry, and
it makes a large difference. Except for the ease of a
very large energy barrier, the relaxation time computed
from Brown's difFerential equation for the random walk in
a cubic anisotropy was considerably diKerentr r from that
in Eq. (1), obtained from the simple approach of Neel.
Moreover, Krop et a/. ~~ measured the relaxation times for
different sizes of some cubic particles, at different tem-
peratures, and demonstrated that the difference between
these theories was measurable. In their experiments, the
numerical solution of Brown s differential equation fit-
ted the experimental data, while the Neel equation did
not. However, even for this ease the theoretical difference
does not seem to be so large that it can smear out the
resonance in the susceptibility altogether. Therefore, one
should try to find this resonance even in cubic materials,
but it makes more sense, of course, to try first to look for
it in a uniaxia/ material.

A broadening due to the effect of a random walk will
naturally be larger at higher frequencies. Therefore,

higher harmonics, at integral rnultiples of the fundamen-
tal resonance frequency, should exist in principle but may
be too wide to be observed. Awschalom et aL did not
see peaks at the higher harmonics, but it is possible that
these were just too wide in their particular sample, and
it should be interesting to look for such peaks in other
sarnp1es. It should also be interesting to try the more con-
ventional experiment of magnetic viscosity at the same
temperature and with the same sample of Awschalorn
et al. , and see if it leads to the same relaxation time
as the resonance frequency, which the present discussion
implies.

Interaction between the particles may also smear out
this resonance, and indeed Awschalom et aL4 report that
their resonance was suppressed when the interparticle
distance was reduced. This result means that one should
be careful in choosing the sample, but there have also
been magnetic viscosity measurements on particles that
were very well separated. For example, the particles
of Yatsuya et al. were dispersed in oil so that there
was hardly any interaction between them. Some of the
older measurementsz used precipitation out of dilute al-

loys, and these "particles" are certainly sufficiently well

separated to avoid interaction. Noninteracting, spherical
particles have also been preparedrs by trapping them in
pores.

Susceptibility resonance thus seems feasible and de-
tectable in at least some of the samples on which mag-
netic viscosity measurements can be found in the liter-
ature. But in searching for such a resonance it should
always be helpful to know at which frequency to look for
it, in a given sample. An obvious first approach is to
estimate this frequency theoretically, as discussed in the
next section.

III. THEORETICAL ESTIMATES

The theory of Neels estimated the relaxation time 7

of an isolated particle by using the (classical) probability
of jumping over an energy barrier. It led to the famous
relation

KV
kr3T

'

where K is the anisotropy constant, V is the particle's
volume, kB is Boltzmann's constant, and T is the ab-
solute temperature. The pre-exponential factor fo is a
constant, which Neel estimated to be of the order of 10
s . In more recent years it has become more customary
to take this constant as 10i s i, or larger, which proba-
bly results from the use of the bulk anisotropy constant
in Eq. (1), while small particles have actually a difFerent
value of K. Equation (1) is for a uniaxial anisotropy,
but ean also be adapted, with a slight modificatio, 2 to
the case of a cubic anisotropy.

Brown7 argued that this oversimplified theory of Neel
considered only a single jump from one energy minimum
to the other, and did not allow the magnetization vec-
tor to spend some of the time in between these two en-
ergy minima, before jumping. He also noticed that Neel
had ignored the probability of a jump back to the orig-
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inal minimum. In his first attempt to take these effects
roughly into aceount7, Brown came up with the same
relation as in Eq. (1) here, only with

(2)

for a uniaxial anisotropy, where po is the gyromagnetic
ratio and M, is the saturation magnetization.

In a later, more elaborate studys Brown derived a dif-
ferential equation to describe the Broiiinian motion of
the direction of magnetization vector during its random
walk from one energy minimum to the other. The small-
est eigenvalue A of this differential equation, is related to
the relaxation time ~ through the equation

V (1 +gM, i, (3)

4
—1/2 3/2 —cx

(5)

Numerical solution of Brown's differential equation for a
uniaxial material in zero applied fields showed this re-
lation to be quite a good approximation even down to
n = 1. For smaller values of a, results were givens in
terms of a power series in o., with the coefficien spec-
ified explicitly up to that of n7, so that A(n) could be
conveniently evaluated for any value of n.

More recently, Bessais et cl. repeated the numerical
computation for the uniaxial case, by what they claim to
be an easier method. They found that their numerical
values could be approximated, to a very high accuracy,
by the empirical relation

This relation does not quite Gt the power-series
expression for small a, neither does it fit the asymptotic
expression of Brown, Eq. (5), for very large n Bessais et.
al. consider the latter misfit as an advantage, because
their expression in Eq. (6) leads to a better temperature
dependence of the dissipation rate than Brown's relation
in Eq. (5). However, unlike their relation in Eq. (6),
which is an arbitrary curve fitting, Eq. (5) is based on an
analytic proof for the asymptotic form of the solution of
Brown's difFerential equation. There is no way a numer-
ical solution of that equation can lead, asymptotically,

where all the symbols have been defined in the foregoing,
except for the dissipation constant r}. Brown mentioned
that the latter parameter should in principle be obtained
from the experimental linewidth of the ferromagnetic res-
onance of the material, but took it for simplicity to be
the value which minimizes A of Eq. (3), namely,

(4)

Bessais et at. objected to this value, on several grounds
which will be discussed in the following.

Brown did not solve that equation, but he did realize
that it should lead to Eq. (2) in the limit of a very large
energy barrier, namely, for n )) 1. In terms of A, this
asymptotic formula is

to any other functional form. If a different temperature
dependence seems necessary for any reason, it can only
be achieved by correcting the difFerential equation, or by
modifying the temperature dependence of the constants
of that equation. No other way is possible in principle,
and a numerical similarity may be only fortuitous. At
least the closeness of the empirical formula Eq. (6) to the
numerical computation results of Bessais et al. does not
seem very conclusive to this particular author. The ratio
of the two asymptotic expressions is

~of Eq. (s}
~of Eq. (6)

2&3l2

~~(1+~/4)'~'

The value of this ratio is, for example, 1.56 for ci = 10 or
0.6 for n = 50. Such a ratio may be adequate for most
applications (where a factor of 2 is usually good enough),
but may not suffice for some cases.

Nevertheless, the idea of Bessais et aLi4 to have a single
empirical expression that ean Gt both the large and the
small n regions, is a very sound one. Presenting all the
numerical results in one equation is certainly nicer and
more elegant than the way used in Ref. 9, and ean be
very helpful for the evaluation of A in practical cases. It
is, therefore, suggested to replace Eq. (6) by

(a+ 9mj5+ (4/m)'~'a')
2+a (8)

This equation tends to the correct power of n ~ in the
limit n && 1, even with the correct numerical coeKcient.
Also, the power-series expansion, for small n, of Eq. (8)
starts with

%=2(1—5)' (9)

which is the same beginning as in Ref. 9. If this ex-
pansion is extended to the next term, the coefficient of
(2o,/5)~ in the present approximation is 2.96, which is

much larger than the value of 0.343 of the exact series
expansion, but such a difFerence does not contribute very
much to the actual values of A. For the intermediate
value o, = 1 the rigorous computation gives A = 1.306,
for which A = 1.528 from Eq. (8) is a sufficient good
approximation. Equation (8) should thus be a conve-

nient approximation for all praetieal cases of a uniaxial

anisotropy. It should be particularly useful for computa-
tions of the magnetization processes in particles, as, e.g. ,

in Ref. 15. So far, such computations, which are oth-
erwise long and tedious, just insert the crude Neel ap-
proximation of Eq. (1) when it comes to evaluating the
switching probability. Therefore, these computations can
significantly benefit from the use of Eq. (8).

It is thus possible to find the theoretical value of A for

a given o., either from Eq. (8) if that approximation is ad-

equate, or from the numerical integration if a higher ac-

curacy is needed. However, obtaining the value of r from

such an evaluation of A is not straightforward, because
the physical parameters in Eq. (3) are usually known to
an insufhcient accuracy. The volume V of the particle,
which appears in the definition of n in Eq. (1), is partic-
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ularly difficult to estimate, even when the particles are
very regular, which is not always the case. Thus, e.g. ,
Awschalom et al. mention that their ellipsoidal parti-
cles had "a very narrow size distribution, but accurate
determination of the smallest dimensions are limited to

10%."
The difficulty is that 10% of the radius can make a

very large uncertainty in 7, at least in some regions. To
demonstrate it, the following values have been computed,
using for simplicity Eq. (1) with fo = 10s s i, and using
the known anisotropy constant for bulk cobalt, with T =
300 K: For a sphere of Co with a radius R = 36 A. , the
relaxation time is r = 0.1 s, and for R = 44 A. it is
r = 6 x 10 s. Obviously, the theoretical estimate is
completely useless in this range of particle size of cobalt,
and a similar range exits for any material.

For ellipsoids the uncertainty may be even larger than
it is for spheres, because only two of the three dimensions
can be seen in electron micrographs, and because of the
contribution of the shape anisotropy to K. Certain tricks
of tilting the sample can give some information of the
third dimension, but it is not adequate. And for particles
like those studied in Ref. 16 neither the size nor the shape
anisotropy can be defined to any satisfactory approxima-
tion. Moreover, even for spherical particles without any
shape anisotropy, the value of K is often very poorly
known, especially for small particles.

On top of all these problems, Bessais et al. i4 have
shown that the value of g deduced from some experimen-
tal linewidths of the ferromagnetic resonance can difFer

by orders of magnitude from the value of rI in Eq. (4).
They also argued that the temperature dependence of
this parameter should be different from that of the sat-
uration magnetization in Brown's simplified relation of
Eq. (4). This extra complication makes it even more dif-
ficult to have a reliable theoretical value for r in all but
some very simple cases, at least until the study of this
subject is much more advanced than it is now.

IV. MAGNETIC VISCOSITY

A. Logarithmic function

Since the theory has been shown in the previous section
to be highly unreliable for finding the relaxation time r
of a given system, one must rely on a direct measurement
of this r The most .natural way for such a measurement
is already contained in the original thought experiment
of Neel in which an ensemble of small particles is put
in a very large field, then taken out of the field, and
the remanent magnetization is observed to decay in time.
Neel argued that most decays are usually exponential to
a first order, so that if t is the time, one should observe

(10)

Fitting experimental data of remanent magnetization
versus time should, thus, yield the value of the relaxation
time w of the particular system.

The relation in Eq. (10) has been widely used in other
fields of physics, but not for analyzing experimental data

of the time decay of magnetization. It is normally argued
that because of particle-size distribution in the measured
sample, there must be a distribution in r, and the time
dependence cannot possibly be a simple exponential. In
analyzing other experiments, the use of an exponential
time dependence is justified by saying that ~ is the
average over a certain range. But for the decay of the re-
manent magnetization, Eq. (10) is not even tried in cases
in which the size distribution is so narrow that the use
of that equation may have been appropriate. Instead, it
has become customary to analyze the experimental data
in terms of

M„(t) = C —S ln(t/to),

where C, S, and to are constants. Actually, most workers
omit to by absorbing it into C, which makes the whole
relation dimensionally wrong, because the logarithm is
defined only for a dimensionless number.

The functional form of Eq. (11) originates from an
old theoryis based on rough approximations, and never
meant to be more than a quick, order-of-magnitude kind
of an estimate. It assumes that the distribution function
of the energy barriers is a constant, with two sharp cut-
oKs at energies Eq and Eq, and that the measurement
is done at a time which is much larger than r(Ei), and
much smaller than r(E2). Obviously, such assumptions
can only be a crude approximation to any real physical
system, but somehow this form of Eq. (11) was adopted
by almost everybody. It even reached an extreme case
when the whole M„(t) curve was not measured. The re-
sulting conclusions about the time decay of M„are based
on the remanent magnetization as measured at only two
points: 100 s and 1000 s after switching ofF the magnetic
field.

Even in less extreme cases, measurements of the M„(t)
curve are only too often done over one decade of the
time, t, and for one decade there is no advantage over
the use of Eq. (11), because Eq. (10) may2C fit just as
well. In order to demonstrate this point, Fig. 1 plots the
logarithmic and exponential functions, from which it can
be seen that they are not significantly difFerent, in this
range of the argument. There is no way to decide that a
set of experimental data, with just a little noise, fits one
of these curves and not the other, and the only difference
is that fitting the data to Eq. (10) determines the value
of the (average) r, while this important information is
lost when Eq. (11) is used.

It should be particularly emphasized that there is noth-
ing significant in the values of A and S in Fig. 1, which
are only curve-fitting parameters, without any physical
meaning. If 500 points are used, the least-squares fitting
of the two curves in Fig. 1 leads to A = 0.36313 and
S = 0.32582, so that any theory that involves Eq. (11)
and the value of S can at most be a rough approximation
to some physical situation, which is what can be expected
anyway from the derivationis of Eq. (11).

It should also be emphasized that the time t in Fig. 1
is scaled by the factor w, which is completely arbitrary in
this kind of a plot, and can only be defined for a specific
physical system. The figure may be describing a time
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FIG. 1. Comparing the logarithmic decay, Eq. (11) with
the exponential decay, Eq. (10). The former is plotted with
A = 0.36277 and S = 0.32446, obtained from least-squares
fitting of 100 equidistanced points on the curves.

FIG, 2. Same as Fig. 1, for a factor of 5 increase in the
argument of the functions. The logarithmic decay, Eq. (11),
is plotted with A = 0.563 09 and S = 0.14459, obtained from
least-squares fitting of 100 equidistanced points on the curves.

dependence of the remanent magnetization between 0.2
and 2.2 ps, or that many years, or centuries, or any other
units of time. When the time is measured in seconds, the
value of 1000 s is sometimes defined i to be a "long
time" after the removal of the magnetic field. But there
is nothing special about the second as a unit, and the
use of other units of time will make the numerical value
of the same time much larger or much smaller than its
numerical value in seconds.

Actually, the systems reported in Ref. 21 were shown
in Ref. 20 to have a time scale around 10 s or larger, so
that in these experiments, the time of 10s s is a very short
time. The same must also be true for all published exper-
iments, because a "long time" after removing the sam-
ple from the applied field means that the exponent has
changed by at least an order of magnitude during that
time, so that the magnetization has changed by many
orders of magnitude. It is not easy to design an exper-
imental system that has a sufhcient dynamic range to
measure many decades of magnetization, so that all the
published experimental data must have been taken a very
short time after removing the magnetic field, and it does
not matter if the data were taken after hours or after
days.

Nevertheless, the equivalence of the logarithmic and
the exponential functions does depend on the particular
range of the argument of these functions, which is also
related to the time scaling, only in an indirect way. To
demonstrate this point, the best fit of the same two func-
tions is plotted in Fig. 2, for a larger argument, and it can
be seen that the agreement is much worse than in Fig. 1.

B. Logarithxnic scale

One way of adding the third parameter is to use

M„(t) = Mo + Mie ' " + M&e (12)

for fitting the data. Details of the fit were not given,
only that the fitting to one exponential was "signifi-
cantly poorer. " The range of the measuring time was
not specified either, but could not have been much more
than one decade. Charap has already remarked that

Inasmuch as a different argument can be absorbed into
a difFerent value of 7, the curves can always be brought
into the better agreement of Fig. 1. However, in a real
physical set of data, the value of M„(0) in Eq. (10) is es-
sentially determined by the beginning of the set, and r is
determined by the slope. Equation (10) needs a third pa-
rameter in order to bring it to the range of Fig. 1, which
is, thus, not always possible. From a physical point of
view, a simple exponential would not fit the data if there
is some distribution of relaxation times. Therefore, the
extra parameter is obviously the width of the distribu-
tion function, which cannot be determined by the special
form of Eq. (11), even if a superficial look at the data
seems to make them fit to this equation. Moreover, even
if the fit to Eq. (10) is as bad as in the example of Fig. 2,
there is more physical information in plotting the data in
this way than in a better fit to Eq. (11). It gives at least
some approximate idea of what the average relaxation
time is, which is better than no information at all.
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M(t) = 10.667 —3.366 ln t. (13)

Forty-five of these forty-six points were fitted by least
squares to Eq. (10), leaving the point at t = 0.45 min out
of the fitting procedure, which yielded the parameters
M„(0) = 13.1880 x 10 s T, and w = 4.8757 min. The
points taken from Eq. (13), and those fitted to Eq. (10),
are plotted in Fig. 3 as the dashed and the solid line,
respectively. The same points were also fitted to

M(t) = Mp + M]e (14)

for which the best fit to the "data" was for Mo
4.72078 x 10 T, Mq = 10.3881 x 10 s T, and T
1.89254 min. In this fitting, all 46 points were used,
from t = 0.45, to t = 5.05 min. The values fitted in this
way to Eq. (14) are plotted as circles in Fig. 3 and it can
be seen that the agreement between these points and the

14

12

10

I

C)

"experiments of this sort will benefit from extension to
longer times. " In principle, two exponential functions
cannot be a very good approximation to a whole distri-
bution of exponentials, but the fit must be better than
that of one exponential, although it is not actually nec-
essary to have all the parameters of Eq. (12). Only one
extra parameter is needed in Eq. (10) over one decade of
the time.

The recent data of Liu et cl.~4 are chosen to illustrate
this point. The data they give in their Fig. 1 fit quite
nicely a straight line on a logarithmic scale, starting at
t = 0.45 min. They will, therefore, be simulated here by
46 equidistant values in t, starting at t = 0.45 min, for
which

straight, solid line is very good indeed.
Part of the agreement is actually psychological. Most

observers have a tendency to fit points to a straight line,
which may also be the reason for the popularity of using
Eq. (11). To begin with, there is no reason whatsoever to
plot any one-decade data on a logarithmic scale, but once
it is done, it is natural to look for a fit of the type of Eq.
(11). When shown the plot in Fig. 3, everybody seems
to agree that the solid line is a very good approximation
for the "experimental" points. However, when the same
figure is reversed, and the "theoretical" Eq. (14) is plot-
ted as a line, with Eq. (11) as points, the fit does not
seem so good to most of a small sample asked about it,
probably because the human eye is not accustomed to fit
data to a curved line.

The plot of Fig. 3 thus shows that all the published
one-decade data, reported to fit the logarithmic function,
would fit Eq. (14) equally well, and a whole lot of other
functions too. It is even possible to give some physical
meaning to the parameter Mo in Eq. (14) by claiming
that measurements do not start at t = 0, but at some
unknown beginning. After all, the form of Eq. (11) can-
not possibly be extended to the measurement at time
t = 0, so that those who report the experiments may not
have noted the starting time, and in a case like Ref. 22 it
is even implied by the mere use of Eq. (12). Moreover, in
the case of a superconducting magnet, switching off the
field is a lengthy procedure, and some of the magnetiza-
tion decays during the removal of the field, and before the
measurement actually starts. This shift in the zero of the
time has been noted by Beck,2s and was used s to explain
the maximum in thermoremanence magnetization, which
used to be considered as due to some special mechanism,
existing only in the so-called spin glasses. Moreover, the
explanation of that maximum in terms of the start of
measuring time has recently been supported by the same
maximum being observed in particles, and not only in
a spin glass.

However, in spite of the possible physical significance
of Mo in Eq. (14) the above-mentioned fitting requires
nearly s of the magnetization to decay before starting the
count of time, which does not seem reasonable. There-
fore, the agreement between the curves in Fig. 3, nice as it
looks, is most probably fortuitous. All it can really show
is that one decade of time is far from being adequate for
revealing the structure of the physical system involved.
More generally speaking, an agreement between a theory
and the experimental data is always necessary, but it is
never a sufficient condition for a meaningful theory.

C. Bessel function

g i t & I

0.5 1

t (min)

FIG. 3. The data of B.ef. 24 plotted in different ways. The
solid line is a plot of Eq. (13), the dashed curve is the fitting
of points on the solid line to Eq. (10), and the circles are a
fitting to Eq. (14).

A more satisfactory way is to start with a distribution
of the relaxation times and generalize Eq. (10) to

M„(t) = M (0) P(T)e ' d7,

for some distribution function P. Since there is not much
difference between all the different possible bell-shaped
functions, it was suggested to use the one for which the
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integration in Eq. (15) can be carried out analytically,
thus avoiding the computational errors of numerical in-
tegration. That function is known as the I' distribution
function,

It contains two adjustable parameters: The mean p~o
and the variance p7o2, and these parameters contain all
the physical information that is necessary to characterize
an ensemble of particles.

Using this distribution function in Eq. (15), the ob-
served time dependence should bezo

t ~1/2
K„2

/

—
/&«)

where K„ is the modified Bessel function of the third
kind. Some experimental data of Chamberlin et at. ,

zi

which had originally been fitted to stretched exponen-
tials were analyzed2o in this way, and were found to be in
excellent agreement with Eq. (17). However, this agree-
ment did not encourage others to use this analysis for
their data, and even the most recent experimentszs use
Eq (11).. El-Hilo et aL~r quote the analysis of Ref. 20,
but report their data in terms of Eq. (11). It is very
strange that a relation which is so unphysical and so in-
convenient to use or to interpret became so popular.

Charap s used the same distribution function as in
Eq. (16), for f = I/v, but instead of Eq. (15) he used
it for a distribution of energy barriers. He related these
entities via the Neel relation in Eq. (1), and after intro-
ducing an approximation which is valid for t )) «, he
ended up with some power law. The trick is somewhat
unnecessary when there is an analytic solution, but the
result is not very different, and Charap also foundzs very
good agreement with some experiments.

It may thus be concluded that for a reliable estimate
of the location of the resonance discussed in Sec. II, one
has to measure the magnetic viscosity in the same sample
over several decades of time. An analysis of the data
according to Eq. (17) will then give the average 7., which
is the value of the resonance frequency. It also gives
the width of the distribution function in r, which is a
lower bound to the resonance linewidth. As mentioned
in Sec. II, there is an additional width, which exists even
for a single particle, so that there is no simple relation
between the resonance linewidth and the width of the ~
distribution. However, it is at least qualitatively clear
that it is not worth looking for such a resonance unless
the v distribution is rather narrow. This information is
automatically obtained from fitting the data to Eq. (17).

Since the published experimental data are not detailed
enough to be used for a proper analysis of the remanent
magnetization versus time, an example for this fitting
will be given for the same 6ctitious material used in the
previous paragraph. The data of I iu et aL2 are taken
again as if they were given by the straight line of Eq.
(13). On this line, 55 equidistant values in t were chosen,
starting at t = 0.45 min and ending at t = 5.85 min.

14

12

10

CO

0.5

t (min)

FIG. 4. The data of Ref. 24, approximated by Eq. (13),
are plotted as circles. The solid line is a Atting of these "data"
points to Eq. (17).

These points were fitted by least squares to Eq. (17),
which yielded the parameters M„(0) = 28.2348 x 10 s T,
p = 0.2303, and wo ——20.221 min. The fit is very good
indeed, as can be seen in Fig. 4.

From these values, the average ~ is @~0 ——4.6569 min,
and it is interesting to note that it is not very diferent
from the value ~ = 4.8757 min, obtained in the foregoing
from the fitting to the simple exponential of Eq. (10),
even though the Bt there was not good. It illustrates
the point that a bad Etting to the exponential function
contains more physical information than a good fitting
to the logarithmic function.

The cycle for flipping the magnetization back and forth
is 2pwo, which is 9.31 min, in this case. Therefore, a sus-
ceptibility resonance should be expected for the sample
of Liu et al. 24 at a frequency of 1/9.31 per minute, which
is 1.8 x 10 3 Hz, and is obviously too low for practical
observation. Moreover, the resonance linewidth, which is
at least p7 p is much too large, and this particular sample
cannot be recommended for this experiment. A measure-
ment of the resonance is feasible only for a large p and a
small 7 p.

More practical cases must be worked out by the exper-
imentalists who have the original data, especially those
data that extend over several decades of time. Such
an analysis of the original data of Chamberlin on 2.6'
Ag:Mn+0. 46%%uo Sb, at the temperture T/T& ——0.961, led2o

to p = 0.070 and « = 9.66 x 104 s. At that temperature
the resonance of that sample should, therefore, also be
very wide, and at an extremely low frequency, which is
not surprising for a spin glass.

Finally, it may be worth noting that the application
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of Eq. (17) is not necessarily limited to the systems of
small particles discussed here, or to the spin glasses to
which it originallyzo referred. It should certainly be valid
for magnetic viscosity measurementszs of the increase in
the magnetization with time, after applying the field, be-
cause this study is essentially the same as the study of
the magnetization decay discussed in the foregoing. But
it may also apply to completely different physical sys-
tems, which have only a mathematical similarity to the
present study. For example, the magnetic relaxation in
superconductors has been fittedso to in[in(t/to)], or to a
power of the logarithm. The fit is very good, but these
functions just conceal the physical issues, and it may be
better to try the function in Eq. (17). The same applies
to a recent study of the magnetization decay in a non-
zero magnetic field, si sz, which led either to asi power
law, [ln(t)]", or to ass power-series expansion in ln(t/to).
Both approaches conserve the unphysical and unneces-
sary singularities at both large and small t.

Similarly, for the decay of the magnetization in a bulk
sample, subdivided into domains, the analysiss4 is in

terms of the same Eq. (15) here, only with a different
P(r). Theys claim their P(r) to be based on a theory,
but the physical processes are rather poorly known, and
all theories involve some approximations. It is not im-
possible that a di.Eerent distribution in v is just as valid,
and that the use of Eq. (17) may prove a more practi-
cal approach. After all, it is not absolutely necessary for
any analysis to be based on a sound theory which starts
from basic principles, and the approximation involved in
replacing the correct P(r) by any other distribution may
not be worse than the errors involved in the numerical
integration of the correct formula. It is at least worth
trying the P(r) for which the integration can be carried
out analytically.
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