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Magnetism in the layered transition-metal thiophosphates MPS3 (M =Mn, Fe, and Ni)
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Anisotropic magnetic susceptibilities of single crystals of the layered transition-metal thiophosphates

MnPS3, FePS3, and NiPS& have been measured as a function of temperature. The materials order anti-

ferromagnetically at low temperatures, the Neel temperatures being 78, 123, and 155 K, respectively. In
the ordered state, the magnetization axis lies perpendicular to the layers for MnPS3 and FePS3, while for
NiPS& it lies in the layer. In the paramagnetic regime, the anisotropies of these compounds are different;

while the susceptibility for MnPS3 is isotropic and that for NiPS& shows only a weak ansiotropy, FePS3
exhibits highly anisotropic susceptibility. The anisotropic susceptibilities have been analyzed to obtain

information on the state of the magnetic ions and the nature of magnetic interactions between them.
The results show that MnPS3, FePS3, and NiPS& form a unique class of compounds. Although all three

compounds are isostructural with the magnetic lattice being the two-dimensional honeycomb, the spin

dimensionalities for the three are different. While MnPS3 is best described by the isotropic Heisenberg

Hamiltonian, FePS3 is most effectively treated by the Ising model and NiPS& by the anisotropic Heisen-

berg Hamiltonian. The origin of the anisotropy in these compounds has been discussed, and it is shown

how it arises from a combination of spin-orbit coupling and the trigonal distortion of the MS6 octahedra.
The magnetic exchange constant, J and the zero-field splitting energies of the ground state of the
transition-metal ion have been evaluated from the anisotropic paramagnetic susceptibilities.

I. INTRODUCTION

Low-dimensional magnetic systems have gained special
interest in the last two decades because of the variety of
interesting phenomena that they exhibit. An important
feature of this type of material is the short-range ordering
of spins at temperatures higher than the critical tempera-
ture. There are numerous examples in the literature of
low-dimensional magnetic systems. ' In these systems
the interaction of magnetic ions with their nearest neigh-
bors is, in a particular spatial sense, mainly due to the
typical structure of these compounds. Most of the
known two-dimensional magnetic systems are not
structurally two-dimensional. The magnetic layers in
these compounds are separated by nonmagnetic groups.
Well-known examples of this class of compounds are the
K2NiF& structure. This structure may be derived from
the perovskite KNiF3 lattice by the introduction of non-
rnagnetic KF sheets between the NiF2 layers. Other ex-
amples are the copper chlorides of the general formula
(C„H2„+&NH3)2CuC14 which are structurally and rnag-
netically two-dimensional. The ferromagnetic layers of
copper ions are separated by two layers of nonmagnetic
alkylammonium groups. By increasing the value of n, the
interlayer separation can be varied. Transition-metal
dihalides also belong to this category. In all these com-
pounds, the addition of nonmagnetic layers transforms
the three-dimensional magnetic lattice to a magnetic lay-
er structure. Some of the two-dimensional magnetic
structures show interesting phenomena such as
metamagnetism, canting, weak ferromagnetism, etc.

Layered transition-metal thiophosphates, MPS3,
where M is a first-row transition metal, represents one of

the known layered systems in which both magnetic and
crystallographic lattices are two-dimensional. Unlike the
other two-dimensional magnetic systems, where the mag-
netic layers are separated by nonmagnetic layers, the
MPS3 layers are separated by a van der Waals gap. In
this type of compound, superexchange pathways between
the layers are ruled out due to the presence of a van der
Waals gap. The interplanar M-M distance is of the order
of the third-neighbor M-M distance within the same
plane, so that direct exchange would be negligible and the
magnetic interactions between the layers would be ex-
tremely weak. Hence these compounds may be viewed as
"perfect" two-dimensional magnetic systems. Another
example for this class of compounds is FeOC1.

In this paper we report a detailed study of the rnagnet-
ic susceptibilities of MnPS3, FePS3, and NiPS&. Crystal
structures of these compounds are well known and are
related to the CdC12 structure. Sulphur atoms form a cu-
bic close-packed array with the metal ions and P2 pairs
occupying the octahedral vacancies. The metal ions
within a layer have a honeycomb arrangement and the
MS6 octahedra show a small trigonal distortion. The
magnetic as well as the crystal layers in the transition-
metal thiophosphates are separated by a van der Waals
gap. All the three compounds are antiferromagnets with
Neel temperatures 80, 123, and 155 K, respectively.
The susceptibility in the paramagnetic region shows that
the divalent transition-metal ions are in their high spin
configuration. Magnetic structures for MnPS3 and FePS3
have been reported. The in-plane magnetic structures
are shown in Fig. 1. It may be seen that although both
are antiferromagnets, the type of ordering is quite
different. For MnPS3, all nearest-neighbor interactions
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FePS3 HnPS3

degeneracy of some of the states of the octahedral sym-
metry.

The effect of this distortion on the magnetic behavior is
best considered in terms of the spin Hamiltonian. In the
absence of any distortion, magnetic interactions between
neighboring ions in the lattice may be treated by the
Heisenberg Hamiltonian,

FIG. 1. The in-plane magnetic structures of MnPS3 and

FePS3.
H= —2p fJ,(S,„S,, +S,,SJ~)+Ji~(S,,S

within a layer are antiferromagnetic, whereas in FePS3,
Fe + is coupled ferromagnetically to two of the nearest
neighbors and antiferromagnetically to the third so that
within the layer the Fe + moments appear as ferromag-
netic chains coupled antiferromagnetically to each other.
For both compounds the moments are perpendicular to
the layer (parallel to the ab plane). The magnetic struc-
ture of NiPS& has been reported to be similar to that of
FePS3. The only difference is that, for NiPS&, the mag-
netic and crystallographic unit cells are identical.

Since the transition-metal thiophosphate layers are
separated by a van der Waals gap, they may be intercalat-
ed by a wide variety of guest molecules or ions ' similar
to that reported for transition-metal dichalcogenides. '

Subsequent to intercalation the magnetic properties are
considerably altered, " the reasons for which are as yet
poorly understood. The present investigation arises from
a need to understand in greater detail the nature of mag-
netic interactions in the pure host compounds, a prere-
quisite to the understanding of magnetism in the inter-
calated compounds. A detailed study of single-crystal an-
isotropic susceptibilities has been carried out for MnPS3,
FePS3, and NiPS& and the data analyzed to obtain infor-
mation on the state of the magnetic ions and the nature
of magnetic interactions between them. The results show
that MnPS3, FePS3, and NiPS& form a unique class of
compounds. Although all three compounds are isostruc-
tural, with the magnetic lattice being the two-
dimensional (2D) honeycomb, the spin dimensionalities of
the three are different. While MnPS3 is best described by
the isotropic Heisenberg Hamiltonian, FePS3 is most
effectively treated by the Ising model, while NiPS& is best
described by the anisotropic (Ji ) J~~~ ) Heisenberg Hamil-

tonian. This paper discusses the origin of the anisotropy
in these compounds and shows how it arises from purely
crystal-field effects.

II. THEORETICAL BACKGROUND

In interpreting the magnetic data of the transition-
metal thiophosphates, two points are of importance:
first, the two-dimensional nature of magnetic interactions
(both direct and super exchange) and second, the fact
that the MS6 octahedra are trigonally distorted, the trigo-
nal axis being perpendicular to the layer. The trigonal
distortion of the MS6 octahedra has considerable impor-
tance on the type of magnetic behavior as well as the or-
dering. The effect of the trigonal distortion is to lift the

where the summation is over all pairs of magnetic ions in
the lattice and the spins are treated as three-component
vectors. In situations where J~=O, one has the Ising
model and when J~~ =0, one obtains the XY model. When

J~~
=J~ one obtains the isotropic Heisenberg Hamiltoni-

an. The effect of axial distortion is to introduce an addi-
tional term, the single-ion anisotropy,

H = —2 g JS;S~+DS;, . (2)

The quadratic axial crystal-field parameter D arises
from the combined effect of the crystal-field and spin-
orbit splitting. The above form of the Hamiltonian is val-

id only in situations where the ground state is orbitally
nondegenerate as with S state ions (e.g. , Mn + or Fe +

),
or when the orbital angular momentum L is quenched by
the crystal field (e.g., Cr + or Ni + in an octahedral
field). In situations where the ground state is orbitally de-

generate as in Fe +, a slightly different procedure has to
be adopted and this is outlined in the next section.

The effect of D is to introduce anisotropy in the other-
wise isotropic (J~~

=Ji) Heisenberg Hamiltonian. In situ-

ations where D )J, depending on the sign of D, the crys-
tal field could establish a preference for the moments to
align parallel or perpendicular to the z axis, correspond-
ing to a planar- (XY) or axial- (Ising) type anisotropy. In
the case when D «J the isotropic Heisenberg Hamil-
tonian would be approached. This is probably the situa-
tion in the Mn + compounds. If the anisotropy is not
fully uniaxial, an additional term E(S, +S ) would have

to be added to Eq. (2) and the spin anisotropy will be or-
thorhombic. This, however, is not the situation in the
transition-metal chalcogenophosphates.

It should be remembered, however, that the anisotropy
in the Hamiltonian is not due to anisotropic exchange be-
tween isotropic moments but arises from the anisotropy
in the expectation value of the spin moments. The
transition-metal chalcogenophosphates are two-
dimensional magnetic systems where the axial distortion
of the MS6 octahedra is likely to give rise to anisotropic
terms which should dominate in determining the spin
dimensionality (Ising, XY, or Heisenberg) of the com-
pound. In these compounds the exchange would be
mainly superexchange in origin. The sign and the nature
of the superexchange interaction depend on the M-S-M
angle as well as the d-electron occupancy of the metal ion
and have been extensively documented in the literature'
(Goodenough-Kanamori rules).
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III. EXPERIMENTAL

MnPS3, FePS3 and NiPS& were synthesized from the
corresponding elements and their singe crystals were
grown by the chemical vapor transport method. '

Magnetic-susceptibility measurements were made on a vi-
brating sample magnetometer (VSM) EG % 6 PAR mod-
el 155. Crystals of the sample were attached to the end of
a wedge-shaped teflon piece. The temperature of the
sample was varied from 55 to 300 K using a liquid-
nitrogen glass Dewar. Temperatures below 78 K were at-
tained by pumping on the liquid nitrogen. Measurements
in the temperature range 300-675 K were performed us-
ing the high-temperature assembly supplied with the in-
strument. The susceptibility of the samples was obtained
using Hg[Co(NCS)~] as standard.

The output of the magnetometer and the temperature
sensors (platinum resistance thermometer for low-
temperature measurement and Cr-Al thermocouple in the
high-temperature assembly) were fed into a computer
through an IEEE-488 interface bus. Susceptibility was
recorded continuously as a function of temperature. The
susceptibilities reported here have been corrected for the
diamagnetic contributions.

IV. RESULTS

A. MnPS3

The temperature variation of the magnetic susceptibili-
ty of MnPS3 is shown in Fig. 2. The susceptibility which
is isotropic shows a broad maximum at 120 K. Below
100 K, g~~ shows a sharp decrease with y~ remaining
essentially constant. The low-temperature behavior is
typical of antiferromagnetic ordering, where the suscepti-
bility parallel to the magnetization axis shows a sharp de-
crease below the Neel temperature, whereas the suscepti-

bility perpendicular to the axis remains constant (in the
mean-field approximation). Figure 2 shows that for
MnPS3 the antiferromagnetic axis is collinear with the
trigonal axis in agreement with the neutron-scattering re-
sults. '

For a two-dimensional antiferromagnet, the Neel tem-
perature is defined as the temperature at which the slope
of the susceptibility-vs-temperature curve is a max-
imum. ' For MnPS3 the Neel temperature is 78 K. The
broad maximum above the Neel temperature is due to
short-range spin-spin correlation and is typical of low-
dimensional magnetic systems. The susceptibility curve
for MnPS& is very similar to that of the extensively stud-
ied' two-dimensional antiferromagnet K2MnF4. The
slight increase in yi below T~ (also seen in K~MnF4)
arises due to contribution from spin waves. '

B. FePS3

The magnetic susceptibility of FePS3 as a function of
temperature is shown in Fig. 3. Unlike MnPS3, the sus-

ceptibility shows considerable anisotropy, g~~ being nearly
twice that of gz. The susceptibility curves are similar to
that reported by Jernberg, Bjarman, and Wapphng. '

The susceptibility curve for FePS3 shows all the charac-
teristics of two-dimensional magnetic ordering, both

y~~

and y~ showing a broad maxima at 130 K. The Neel tem-
perature, the temperature at which the slope of g vs T is
a maximum, is 123 K. Below the Neel temperature the
behavior is as expected for an antiferromagnet, g~~ drop-
ping sharply with temperature while g~ remains constant.

C. NiPS3

The temperature variation of the magnetic susceptibili-
ty of NiPS& single crystals is shown in Fig. 4. The di-
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FIG. 2. Magnetic susceptibility of MnPS3 single crystals,
parallel (y~~) and perpendicular (g~ ) to the trigonal axis, as a
function of temperature. The broken line and the solid line are
the calculated susceptibility in the mean-field approximation
[Eq. (14)] and high-temperature series expansion [Eq. (15)], re-
spectively.

FIG. 3. Magnetic susceptibility of FePS3 single crystals,
parallel (g~~) and perpendicular (g& ) to the trigonal axis, as a
function of temperature. The solid lines are the least-squares fit
to the anisotropic susceptibility equations; for y~, A, = —92.8
cm, zJ/k = —12.4 K and for y&, A, = —89.8 cm, zJ/k =8. 1

K.
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FIG. 5. The splittings of the ground levels of Mn +, Fe'+,
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FIG. 4. Magnetic susceptibility of NiPS& single crystals,
parallel (y~~) and perpendicular (y~ ) to the trigonal axis, as a
function of temperature. The solid lines are the least-squares fit
of the anisotropic susceptibility equations for zJ/k = —180 K,
D = 13 K, and g =2.05.

amagnetic and temperature-independent paramagnetic
susceptibilities have been subtracted from the observed
values. The temperature-independent paramagnetism
(TIP) is given by yNp llODq. ' For Ni + in an octahe-P
dral crystalline field with a Azz singlet ground state, the
constant y =8. The crystal-field-splitting parameter,
10Dq, has been reported to be 8900 cm ' from optical-
absorption studies. ' Substituting these values gives the
TIP contribution as 0.235 X 10 emu/mol.

The characteristic feature of the g( T) curve is a broad
maximum with y,„at 270 K. Below this temperature
the material undergoes an antiferrornagnetic transition
with a Neel temperature of 155 K. In contrast to MnPS3
and FePS3, the magnetization axis is found to be perpen-
dicular to the trigonal axis; the spins are oriented in the
ab plane. In the figure, g~~

refers to the susceptibility
parallel to the trigonal axis. Since the magnetization axis
is found to be lying perpendicular to this axis, below the
Neel temperature, the true parallel and perpendicular
susceptibilities will be in the reverse order.

state, which transforms to A, in the octahedral crystal-
line field. The effect of spin-orbit coupling as well as the
trigonal distortion are expected to be negligible for this
ground state. Consequently the single-ion anisotropic
term, D, is small. The reported value of D from the EPR
spectra' of Mn +-doped CdPS3 was 0.0365 cm '. As
expected, the magnetic susceptibility of MnPS3 in the
paramagnetic region shows no anisotropy. The magnetic
interactions may therefore be described by the Heisen-
berg Hamiltonian.

The trigonal distortion of the FeS6 octahedra splits the
low-energy T2s states into a doublet ( Eg ) and a singlet
( A

&g ). The sign of the splitting energy determines
whether the singlet or doublet is lower in energy. When
b, (trigonal splitting parameter) is negative, the orbital
doublet is the ground state and vice versa. The trigonal
distortion may be represented as a deviation of 8 (Ref. 20)
(Fig. 6), the angle between the Fe-S bond and the princi-
pal rotation axis (C3), from the true octahedral value of
54.75'. A trigonal compression occurs when 0) 54.75'
and a trigonal elongation when 8 (54.75 .

The effect of 8 in determining whether the doublet or
singlet will be the ground state, is best seen for the Fe +

ion in the strong-field limit. The octahedral environment
splits the fivefold degenerate d orbitals into the triply de-
generate tzg and a doubly degenerate eg orbital. Consid-
ering the C3 axis as the axis of quantization, ' the t2 or-
bitals are

V. DISCUSSION
i1

z

A. Crystal-field theory

In this section we shall briefly discuss the effect of the
trigonal crystal field as well as spin-orbit coupling on the
susceptibilities of isolated Mn + (d ), Fe~+ (d ), and
Ni + (d ) ions. The splittings of the ground levels of
Mn +, Fe +, and Ni + in the weak-field limit, are shown
in Fig. 5. Optical-absorption spectra' of these com-
pounds had shown that the weak-field limit of crystal-
field theory, rather than the strong field, is more ap-
propriate in describing the 3d states in these compounds.

In MnPS3, the Mn + ion is in the high spin S ground

~ Fe

S

FIG. 6. Definition of the angle 0, the angle between the Fe-S
bond and the C, axis.
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z2& +4gyaH /& +5gP BH
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( (xy) & +Q —,

'
l (yz) & .

It may be seen that a trigonal elongation (0(54.75 ) will
destabilize the ~z & with respect to the other two, so that
the doublet will be lower in energy with respect to the
singlet. On the other hand, trigonal compression will sta-
bilize the ~z &, so that the singlet will be the ground state.
Thus, one would expect the doublet to be lower in energy
in FePS3 where 8 & Opgt.

Additional evidence for a doublet ground state comes
from the fact that a singlet ground state would give iso-
tropic g values and would cause the spins to lie in the
basal plane. The present investigation shows that the g
values are anisotropic and the antiferromagnetic magneti-
zation axis is collinear with the trigonal axis. As men-
tioned earlier, when the doublet is the ground state, the
spin Hamiltonian [Eq. (2)] is no longer appropriate and a
different procedure has to be adopted.

The magnetic property of any system depends upon the
energy levels of the states populated within a given tern-

perature range and also the levels which may mix
significantly with the ground state under perturbations
such as spin-orbit coupling or Zeeman effect. Since the
cubic crystal field is much larger than the trigonal crystal
field only the lower triplet is to be considered for analysis.
The triplet level may be labeled by a fictitious angular
momentum l=1 (by the isomorphism between the
states of the triplet and those ofp" symmetry). The orbit-
al angular momentum vector L may now be expressed as

&+2k

+ 2gp~ H /~

5gpBH
'»Ps"

-39PBH

+)gPBH

-lgPBH

-zgp2H g~ —+1gPB8

~gPBH

+ 3gPBH

3gPBH

External
field H&

Axial External
field+ field Ht)
S-O c:oupUng

y; =Ng; gS'(S +1)I3kT,
where

(5)

FIG. 7. Energy levels corresponding to S =2 for the Hamil-
tonian (4) in the absence of an external field (H =0), with the
applied field parallel to the trigonal axis (H =H~~ ) and with the
field perpendicular to the trigonal axis (H =H~ ).

L=al . (3)
3(kT) 8

g; = (lnZ;), i=~~ or l
S S+1 ()H2

S=bL, +aA/. S+p/3(al+2S) H, (4)

where S =2 for a high spin d system. The first term cor-
responds to the trigonal splitting of the triplet 'T2~ to the
doublet ( Es) with L, =1 and the singlet ( A &s), L, =0.
The second term gives the spin-orbit coupling where A, is
the spin-orbit coupling coefficient. For Fe + (d ), where
the shell is more than half filled, A. is negative. For a free
ion Fe +, A,o= —100 cm '. The last term is the Zee-
man term.

The perturbed wave functions will have a considerable
amount of orbital angular momentum due to the first-
order splitting of the degenerate ground state in A, /6, and
the g values are expected to be different from the spin-
only values. This is in contrast to the situation when the
orbital singlet is the ground state, for which the g values
are isotropic and very close to the spin-only values.

The energy values obtained by diagonalization of the
energy matrix are shown in Fig. 7. The magnetic sus-
ceptibility is given in terms of g by

a= —1 for Fe + in a cubic crystal field. The presence of
the trigonal distortion modifies the orbital wave function
but a may still be considered to be close to 1 if the distor-
tion is small.

The total Hamiltonian for the triplet state may be writ-
ten as

and Z =+exp( E~ IkT) is t—he partition function, where
E are the energies of the accessible states. The

g~~
and g~

are given by

2 25e
—2x+ 9e

—x+ 1 +e x+ 9e 2x

X+ ] +eX+e2X

1 8(e '—e ")+4(e'—e ")
Ãz= 2x+ e x+ 1 +~x+ e 2x 7

(7)

where x =A, /kT and the summation is only over the dou-
blets.

For Ni + the ground state A2z (I s) in a cubic field is
orbitally nondegenerate and consequently one does not
expect it to be affected by a trigonal distortion. ' The tri-
gonal field, however, can split the first excited triplet state
T2s (I 5) into a doublet and a singlet. This splitting per-

turbs the ground state A2~ multiplet, indirectly via
spin-orbit coupling, leading to a small zero-field splitting.
Since the splitting of the cubic ground state by the trigo-
nal distortion is an indirect effect, the splitting is likely to
be very small. These splittings are shown in Fig. 8 for
Ni + (d ). From optical-absorption spectra of NiPS&, '

the spin-orbit coupling constant had been found to be—280 cm . Thus in NiPS& the above scenario is likely
to hold.

The splitting of the S =1 ground-state triplet ( Az is
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B. Data analysis

/. MnPS3

3A29

Oh

-+1
D

FIG. 8. Splitting of the I 5 states ('A2g and T2g ) for d un-
der the inhuence of a trigonal field. 5 is the crystal-field split-
ting and D, the zero-field splitting.

a orbital singlet) may be represented by the Hamiltonian,

A =DS, , (9)

p C
2e

1+2e

p C (2/x)(1 —e ")
1+2e

(12)

where x =DlkT and C =Ng p&lkT.

pig l H IP
O+9g Pe "ll

I
A2 / 0-gI P+H&

0

-g p H Ip2 2 2
L B

external axial cubic
f ield H& field field

axial
f ield

externaL
fiel, d Hi(

FIG. 9. Energy levels corresponding to S =1 for the Hamil-
tonian (10) in the absence of an external field (H =0), with the
applied field parallel to the trigonal axis (H =H~~ ) and with the
field perpendicular to the trigonal axis (H =H, ).

where D is the zero-field splitting. %hen D & 0 the trip-
let splits into a lower singlet and an upper doublet, giving

%hen D & 0, the doublet is the ground state, so
that p~~

& pz. The anisotropy of the measured susceptibili-
ty shows that in NiPS&, D )0. %hen an external mag-
netic field is applied, these levels are further split by the
Zeeman interaction, and the total Hamiltonian becomes
(in the absence of exchange)

&=DS, +gag. H .

Depending on the direction of the applied magnetic
field, parallel or perpendicular to the axis of distortion,
the energy of the states will be as shown in Fig. 9.

The magnetic susceptibility in the presence of this
zero-field splitting is given by

Above 200 K the y '-vs-T curve shows a Curie-Weiss
behavior. The effective magnetic moment p,z calculated
from the slope is 5.97 BM, which is close to the spin-only
value of 5.90 BM expected for a high spin d system.
The Weiss constant 8 is —160 K, indicating fairly strong
antiferromagnetic interactions.

In the low-temperature antiferromagnetic state of
MnPS3, the magnetization axis is perpendicular to the
layers. The two factors that decide the axis of magnetiza-
tion are the single-ion anisotropy and dipolar anisotropy.
The single-ion anisotropy, as stated earlier, is negligible
and even if significant, would have caused the spins to lie
in the layer rather than perpendicular to it. Thus the an-
tiferromagnetic axis is decided by the dipolar anisotropy
of the ordered state. The exchange parameter J was es-
timated from the paramagnetic region of the experimen-
tal susceptibility within the mean-field approximation, as
well as by the high-temperature series expansion.

Molecularfeld theory In th. e molecular-field treat-
ment, for a two-sublattice model, the magnetic suscepti-
bility in the paramagnetic region is given by

Ng gS'(S+1)
Xm 6

1+ g( —1)'b;(JlkT)'

where p& is the Bohr magneton, S, the spin of Mn +; J,
the exchange parameter and b, , the expansion
coefficients, depend on the type of magnetic lattice. The
(
—1)' term is to account for the antiferromagnetic nature

of the interaction. For MnPS3, which has a honeycomb

C
+m

y

where

2zJS(S+ I)
3k

J is the nearest-neighbor exchange interaction and z is the
number of nearest neighbors. z =3 for a honeycomb lat-
tice. The exchange integral, calculated using Eq. (14)
from the experimental value of 8 ( —160 K) is J = —9. 1

K. The calculated susceptibility for J = —9. 1 K is
shown in Fig. 2.

High-temperature series expansion. The molecular-field
theory gives poor agreement with experiment (Fig. 2).
This is not unexpected, since it is a poor approximation
in low-dimensional systems, ~here short-range correla-
tions are much more important than in three-dimensional
systems. The susceptibility for a two-dimensional
Heisenberg antiferromagnet has been evaluated by Rush-
brooke and Wood. At sufficiently high temperatures,
much above the critical temperature, the magnetic sus-

ceptibility may be expressed as a series expansion in

J/kT, where J is the nearest-neighbor exchange interac-
tion. The magnetic susceptibility for an antiferromagnet
is given by
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lattice, the constants calculated using the formula of
Rushbrooke and Wood are b, =17.5, b2=110.833,
b3 304. 1 1 1, b4 =991~ 828, b5 =9346.14, and
b6 =264 381.31.

A least-squares fit using the above expression to the ex-
perimental data gave reasonable agreement for
J/k = —8. 1 K and g =2.010. Earlier workers had ob-
tained the value of —17.4 K (Ref. 28) and —19.2 K (Ref.
7) for J!k, by fitting to the powder susceptibility of
MnPS3. However, there appears to be an error in the cal-
culation of the b; coefficients.

The least-squares-fitted curve is shown in Fig. 2. The
agreement above 200 K suggests that the Heisenberg
Hamiltonian is a reasonable approximation for magnetic
interactions in MnPS3. The deviation at low tempera-
tures may be due to (i} the range of exchange interactions
being more than nearest neighbor and/or (ii) dipolar an-
isotropy (which decides the magnetization axis), which
gives the system a weak Ising character as in MnF2.

2. FePS3

The high-temperature paramagnetic susceptibility
(above 200 K) in both directions, y1 and yj, obey the
Curie-Weiss law. A striking feature is the large difference
of the Weiss constant 8 for the two directions, although
the value of p,z is comparable. The results are tabulated
below.

II p &=5.67BM and 8=53 K,
gJ p peff 5.23BM and 0= —54 K

The effective moment is larger than the spin-only value,
4.94 BM, for a high spin Fe + ion, suggesting a sizable
spin-orbit contribution.

The powder susceptibility of FePS3 has been reported
by various groups with widely differing values of 8, both
positive [65 K (Ref. 30), 14 K (Ref. 31), 104 K (Ref. 7), 15
K (Ref. 8)] and negative [—15 K (Ref. 32)]. These results
may be understood in the light of the present single-
crystal work as originating from the preferred orientation
of crystallites in the powder. When a majority of the
crystallites have their basal plane preferentially oriented
with respect to the magnetic field, a positive 8 would be
obtained, whereas if the preferred orientation is perpen-
dicular, a negative 8 would be obtained. Kurosawa, Sai-
to, and Yamaguchi have estimated the exchange param-
eters from Tz and 0, as obtained from powder suscepti-
bility measurements. Such a calculation is in error be-
muse for FePS3, 0 is not the Weiss constant of the
molecular-field approximation, but contains a contribu-
tion from antiferromagnetic exchange, as well as from the
strong anisotropy.

The difference in sign of the Weiss constants is quite
unusual, being positive in the parallel and negative in the
perpendicular direction. It may be noted that 8 arises
from contributions due to both single-ion anisotropy as
well as exchange interactions. Since FePS3 is an antifer-
romagnet, with the susceptibilities below Tz behaving
very much as expected, the large difference in 0 values

probably originates from crystal-field effects arising due
to the trigonal elongation of the FeS6 octahedra.

In Sec. V A the expression for the susceptibility for the
Fe + ion in a trigonally distorted environment was de-
rived [Eqs. (5), (7), and (8)]. The susceptibilities so ob-
tained are for an ensemble of noninteractive Fe + ions.
Exchange interaction between the Fe + ions was ac-
counted for by redefining the susceptibility using a
simplified molecular-field approximation. For weak ap-
plied fields and temperatures where no spontaneous or-
dering occurs, the susceptibility is given by

(16)

where g; (gl and g~) are given by Eqs. (7) and (8) and y;
by Eq. (5}. The experimental data were fitted using the
above equation for both

y~~
and y~. The best fit was ob-

tained for

92 8 d J!k= 124 K,
A, = —89.8 cm ' and zJ/k =8.1 K .

The susceptibilities calculated with the above values of A,

and zJ!k are shown in Fig. 3 as solid lines. The
difference in the sign of the molecular field,
2zJS(S+1)/3k, for the two directions is a reflection of
the fact that the magnetic structure of a layer of FePS3
consists of ferromagnetic chains coupled antiferromag-
netically with the neighboring chains perpendicular to
the layers.

A positive feature of the fit is that the spin-orbit cou-
pling constants for the two independent directions are
found to be nearly identical, ——90 cm '. The spin-
orbit coupling constant A, is close to the free ion value A,o.
The reduction of A, from the free ion value is a measure of
the covalency of the system. For FePS3 A. /AD=0. 9 im-
plies a fairly ionic environment of the Fe + ion. A simi-
lar conclusion had been obtained from a study of the
optical-absorption spectra' of FePS3. An analysis of the
spectra had given values of the Racah interelectron repul-
sion parameters, B and C, close to that of the free ion
value, showing that Fe + is in an ionic environment.

Substituting for A, in Eqs. (7) and (8) gives highly aniso-
tropic g values. The role of g in deciding the dimen-
sionality of the magnetic interactions is best described by
reformulating Eq. (1) for FePS3 in an effective spin, S =

—,',
formalism. The true spin S may be replaced by an
effective spin S'=

—,
' where S;= —,'(gsS,'). In this formula-

tion Eq. (1) now becomes

f/ = —2 g [J~(gs~/2) (S„Sj„+SS~' )

(17)

The original form may be recovered by substituting an
effective exchange constant, J =(g,. /2) J, in the above
equation. It may be seen that J~~/J~=(g~~/g~)J~~/J~.
For FePS3 even at room temperature g~~ /g~ &2, with the
ratio increasing with decreasing temperature. Thus
FePS3 may be effectively treated by the Ising model, the
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anisotropy of the magnetic interactions arising from the
anisotropy in g. The g anisotropy also decides that in the
antiferromagnetic state the magnetization axis would be
parallel to the trigonal axis.

3. NiPS3

o C 2(1 D/kT)—
1+2(1 D lk T)— (18)

SO= C
2

1+2(1 D/kT)— (19)

The above equations were further modified to account for
exchange interactions. This was done in the molecular-
field approximation by using Eq. (16). Solving the ex-
change modified susceptibility equations gave a value of
zJ/k as —180 K.

A least-squares fit of the susceptibility expressions to
the experimental data above 400 K was performed using
the above value of J and by keeping D and g as input
variables. In doing so it was assumed that the exchange
interactions are isotropic, so that the value of zJ/k can
be taken as —180 K for both parallel and perpendicular
directions. The fittings gave a value of D/k —13 K and

g =2.05. The g value obtained is much less than what is
expected for Ni in a trigonal field. The g value may be
calculated from the expression g =2.00(1—8A, /10Dq).
For A. = —280 crn, the spin-orbit coupling constant for
NiPS& obtained from a weak-field analysis of the optical-
absorption spectra, '

g is calculated as 2.25.
The calculated susceptibility curves in the parallel and

perpendicular directions using the values of J, D, and g
are shown in Fig. 4 as full lines. The reason for the low-g
value may be the fact that short-range correlations are

The susceptibility of NiPS& at high temperatures shows
weak anisotropy with y~) yl (the susceptibilities are with
respect to the trigonal axis). A Curie-Weiss fit to the
susceptibility above 400 K gave p,&~

=2.83BM and

p ffJ 2.97BM, which are close to the spin-only value for
an Ni + ion. The corresponding 8 values are —241 and
—254 K, respectively. Earlier workers ' ' had reported a

p, ff value of 3.7BM from the powder susceptibility of
NiPS3. However, their calculations were done on suscep-
tibilities which were not corrected for TIP. The present
data also gave similar values for p, ff when the TIP contri-
butions were not included.

The anisotropy in the susceptibilities is a consequence
of the zero-field splitting of the Az~ ground state of
Ni +

by the trigonal distortion. The fact that gz&g~~
directly implies a splitting of the ground-state triplet into
a lower singlet and an upper doublet. The weak anisotro-

py is a consequence of the fact that the splitting of the
Az state by the trigonal field is an indirect effect, aris-

ing from the spin-orbit coupling of the Az state with
the higher-lying Tz state, whose degeneracy is lifted by
the trigonal field.

Since the zero-field splitting D is small, Eqs. (11) and
(12) may be further simplified to

important even at temperatures much higher than 2T~,
so that the mean-field treatment is a poor approximation
and the susceptibility equations are not truly valid. The
small but positive D would, in the absence of any other
anisotropic interactions, cause the spins to be aligned in
the basal plane (perpendicular to the trigonal axis).

By using arguments similar to those used for FePS3,
the magnetic Hamiltonian may be expressed using an
effective constant, J'. For NiPS&, J~ & J and the mag-
netic interactions are best described by the anisotropic
Heisenberg Hamiltonian. The positive value of the zero-
field splitting is also instrumental in determining the
magnetization axis. It may be seen from Fig. 4 that
below the Neel temperature, y~ drops rapidly, with g~I

remaining essentially constant, implying that in the anti-
ferromagnetically ordered state the spins are aligned in
the basal plane perpendicular to the trigonal axis.

UI. CONCLUSIONS

The magnetic behavior of MnPS3, FePS3, and NiPS3
reveals the critical role of the trigonal distortion in decid-
ing the nature and symmetry of the magnetic interac-
tions. Although all three compounds are isostructural,
with the transition-metal ion in the high spin state, the
effects of trigonal distortion are quite different. In
MnPS3, where the effect is negligible, it leads to sym-
metric Heisenberg interactions. In FePS3, the contribu-
tion of the trigonal distortion as well as the spin-orbit
coupling gives rise to highly anisotropic g values, which
in turn imply highly anisotropic magnetic interactions.
The anisotropy is large (g~~ )g f ) so that FePS3 is best de-

scribed by the Ising Hamiltonian. In contrast, the com-
bination of trigonal distortion and spin-orbit coupling in
NiPS& causes the spins to lie in the basal plane, so that
the system is best represented by the anisotropic Heisen-
berg Hamiltonian.

In FePS3 and NiPS&, the magnetization axis of the anti-
ferromagnet is determined by the single-ion anisotropy,
whereas in MnPS3, where such terms are negligible, the
magnetization axis is probably determined by the mag-
netic dipolar anisotropy of the ordered state.

The transition-metal thiophosphates MPS3 (M =Mn,
Fe, and Ni) form a unique class of compounds in which
the spin dimensionality may be controlled by the choice
of the transition-metal ion. Since the thiophosphates are
isostructural, solid solutions between members of the
group are easily formed and provide a convenient way of
studying the problem of competing spin anisotropies.
Magnetic studies of solid solutions of the transition-metal
thiophosphates will be reported in a subsequent publica-
tion.
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