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We present a theoretical study of the quantum depinning of domain walls. Our approach extends ear-
lier work by Stamp and confirms his suggestion that quantum tunneling of domain walls in ferromagnets
may reveal itself at a macroscopic level in a manner similar to the Josephson effect in superconductors.
The rate of tunneling of a domain wall through a barrier formed by a planar defect is calculated in terms
of macroscopic parameters of the ferromagnet. A universal behavior of the WKB exponent in the limit
of small barriers is demonstrated. The effect of dissipation on the tunneling rate is studied. It is argued
that quantum diffusion of domain walls apparently explains a nonthermal magnetic relaxation observed
in some materials at low temperatures.

I. INTRGDUCTION

L being the Lagrangian density. The tunneling rate is
then given by the path integral

D Mx, t exp —S (2)

The physics of magnetism of solids consists of two ma-
jor domains: quantum mechanical and classical. The
quantum-mechanical domain is conventionally concerned
with the nature of the elementary carriers of magnetism
(localized moments, itinerant electrons, etc.) and ade-
quate models of their interactions. The classical domain
is designed to deal with experimental data on the
coherent behavior of a large number of elementary mag-
netic moments. It operates with a continuous magnetiza-
tion of a solid, M(x, t), and phenomenological constants
(exchange, magnetic anisotropy, etc.). This approach,
traditionally called micromagnetism, has a long record of
successful applications to ferromagnetic resonance,
monodomain particles, spin waves, domain walls, and
other magnetic objects whose size ranges from a few
angstroms to a macroscopic scale.

Recently, it has been realized that the field M(x, t) may
display fascinating quantum behavior independently of
the underlying spin structure of the magnetization. In
particular, it may tunnel from a metastable configuration
to a more stable magnetic state. A general approach to
the tunneling of M(x) has been formulated in Ref. l. It is
based upon the observation that the equations of mi-
cromagnetic theory may be obtained as extremal trajec-
tories of a some uniquely defined magnetic action,

S =f dt f d x X[M(x,t)],

over all M(x, t) trajectories leading from the initial
configuration M, (x) to the final configuration M2(x).
The most attractive feature of this approach is that the
WKB exponent of the tunneling is given by the
imaginary-time extremal solution (instanton) of the well-
known classical equation for M(x, t), which, in some
cases, can be obtained exactly. Examples are tunneling of
the magnetic moment between equilibrium orientations
in a monodomain particle, quantum nucleation of the
magnetization reversal nucleus in a bulk ferromagnet,
and tunneling of domain walls, the main subject of this
paper.

One may feel uneasy about applying quantum mechan-
ics to a classical variable

M(x, t) = 2ps g s;5(x—x; )

Note in this connection that the problem is not essential-
ly different from the a decay of a nucleus. For the latter
problem one ignores the fact that the a particle is formed
by four operators of nucleons (or 12 quark operators),
which is justified by the strong coupling of nucleons in-
side the a particle. Similar to that problem, the strong
exchange coupling of spins in a ferromagnet allows one to
consider M(x, t), not individual spins, as a tunneling
variable. The Feynman approach to quantum field
theory, Eq. (2), does not specify how fundamental the
field should be. It allows one to develop quantum theory
based upon a classical Lagrangian only. There are two
questions, however, which one should be concerned
about when applying quantum mechanics to a macro-
scopic variable. The first is the magnitude of the
imaginary-time action associated with the quantum pro-
cess. It should be sufficiently small, say not to exceed
306; otherwise quantum effects will be exponentially
suppressed, as they usually are in the macroscopic world.
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For the tunneling of a macroscopic variable the value of
the %KB exponent depends on the height and the width
of the energy barrier which should be, therefore, made as
small as possible, to observe the effect. Magnetic systems
provide a remarkable opportunity for that. Indeed, the
presence of various energy barriers and metastable states
in ferromagnets is manifested by their pronounced hys-
teresis phenomena. This metastability may be diminished
and eventually removed by increasing the magnetic field.
Making any particular barrier as small as possible is,
therefore, a question of the accuracy with which one can
control the magnetic field. It has been shown that the
condition of a small barrier can be easily satisfied, making
possible a coherent tunneling of a large number of spins.

The second reason of concern comes from the coupling
of the tunneling variable, M(x, t), with other degrees of
freedom, e.g., phonons, photons, etc. Since the liinit of
small barrier is of interest, it is not clear beforehand how
weak the coupling should be, compared with other ener-
gies in the problem, in order not to undermine the tunnel-
ing. An answer to this question was given for couplings
to the environment which are linear in the environmental
variables by Caldeira and Leggett. They found that
most serious effects come from Ohmic coupling, in which
the classical equations of motion, has the form

1 Ux+vx =——
m Bx

(4)

for small displacements of the tunneling variable x; v be-
ing the constant of Ohmic dissipation. For such a linear
coupling to the environment, the remarkable result of
Caldeira and Leggett is that the effect of the environment
on the WKB exponent, B, can be expressed in terms of
the constant v,

B -Bp 1+
COp

where Bo—Uo/fuuo »1 is the WKB exponent in the ab-
sence of dissipation, Up is the height of the barrier, cop is
a characteristic instanton frequency. Quantum mechan-
ics gives F00~ +Uo/m. Correspondingly, the effect of
dissipation becomes significant in the limit of small Up.
The question of whether dissipation is important then be-
comes equivalent to the following two questions: (i) are
there any processes yielding Ohmic dissipation and if so
(ii) what is the dissipation coefficient v?

Tunneling exists in the presence of metastable states.
There are two major sources of metastability in ferromag-
nets. The first comes from the fundamental nonlinearity
of the magnetic energy. It leads to the existence of
several directions of easy magnetization and to the ap-
pearance of magnetic domains. The second source of me-
tastability are various kinds of crystal defect. Due to
such defects the energy of a domain wall fluctuates over
the volume of the sample. This leads to the pinning of
walls by defects. In the presence of a magnetic field,
domains whose magnetization is aligned with the field
tend to grow, while domains whose magnetization is op-
posite to the field tend to collapse. The force on the
domain wall is proportional to the field. As the field

grows, this force eventually exceeds the pinning force and
the wall becomes mobile. However, even well below the
coercive field, one usually observes some slow dynamics
of the magnetization due to the thermal overbarrier
diffusion of domain walls in the pinning potential. The
rate of the thermal transition through the pinning barrier
is governed by the Boltzmann exponent, exp( —Uo/k~ T).
These transitions die out as the temperature goes to zero.
In this paper we will study processes of quantum tunnel-
ing of domain walls. The probability of the tunneling is
governed by the temperature independent WKB ex-
ponent, exp( —8). Two conditions must be satisfied to
make quantum effects observable: First, the rate of quan-
tum tunneling must be significant, which requires a small
barrier. Second, comparing thermal and quantum ex-
ponents, one finds that quantum transitions dominate at
k~ T & kz T, = Uo/8. Consequently, while being con-
cerned about a small barrier, one should also take care
that the corresponding crossover temperature, T„ is ac-
cessible experimentally.

Indirect evidence for "mesoscopic" tunneling of
domain walls (involving —10 -10 spins) has been
around for some time. Egami suggested that the
temperature-independent magnetic aftereffects observed
at low temperature by Barbara et al. (see also Ref. 8), in
highly anisotropic magnets, might be due to quantum
diffusion of domain walls. However his ideas only apply
to extremely narrow walls which have the width of the
order of the lattice spacing and are pinned by the crystal
potential itself. This implies very large values of magnet-
ic anisotropy. Typical walls have a thickness of a few
hundred angstroms and are pinned by defects. A simple
WKB approximation for the tunneling of domain walls
through small obstacles was suggested by a number of au-
thors but no attempt was made to calculate the tunnel-
ing rate in the spirit of the Caldeira-Leggett approach.
Recently, however, Stamp showed how to do this for a
planar wall coupled to a point defect. The tunneling rate
and contributions of various dissipative interactions were
estimated in terms of the coercive field, exchange, and an-
isotropy constants. Most importantly, it was shown that
the tunneling of a domain wall involving a macroscopi-
cally large number of spins may occur. Recent experi-
ments seem to provide more evidence for such tunneling,
at least on the mesoseopic scale. '

Quantum diffusion of a domain wall occurs via discrete
changes of its local geometry due to the tunneling of the
wall between metastable minima of the pinning potential.
One of the goals of this paper is to develop a formulation
of the tunneling problem, which takes the curvature
effects into consideration. The domain wall corresponds
to the rotation of the vector of magnetization from one
magnetic domain to another. Tunneling of the wall is,
thus, a transition between two M(x) configurations,
which may be treated in terms of Eq. (2). For the wall
tunneling through the pinning barrier, however, it is
hopeless to find the corresponding imaginary-time solu-
tion of Eq. (6). Instead, we will treat the domain wall as a
two-dimensional object characterized by the metric g;k or
by the equation of the surface Z(x,y, t) The tunnelin. g of
the wall then corresponds to the instanton connecting the
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initial and the final geometries of the surface. In this ap-
proach the dependence of the width and the energy of the
wall on its velocity and orientation will be left out of the
picture. We will demonstrate, however, that our approxi-
mation is rather good in the limit of a small barrier,
which is of primary interest for the tunneling problem.

The effect of the environment on the domain-wall tun-
neling includes interaction with itinerant electrons, mag-
nons, phonons, and the electromagnetic field. The model
for dissipation due to magnetoelastic interactions was
formulated in Ref. 2 and worked out in detail for one-
phonon processes by Garg and Kim. ' This interaction
is non-Ohmic and its relative contribution to the tunnel-
ing rate turns out to be very small, typically of the order
of 10 . We will show that only Ohmic couplings may
have a noticeable effect on the tunneling rate and suggest
an estimation of this effect in terms of the mobility of the
domain wall. We will see that the most important pro-
cess in metals is the interaction with conduction elec-
trons. However, in insulators the interaction with mag-
nons is the main source of dissipation. These two pro-
cesses must be handled separately.

The dissipation of the domain-wall motion in metals is
due to eddy currents, that is, Ohmic in nature. It should
be suScient, therefore, to describe the magnetization dy-
namics in metals in terms of the Landau-Lifshits-Gilbert
equation:

aM 6E '
M M

6E
5M M' 5M

(6)

where M =Ma =const, E(M) is the appropriate energy
functional, y is the gyromagnetic ratio, and v is the dissi-
pation constant responsible for the finite width of the fer-
romagnetic resonance. We will investigate this question
in more detail.

There are two reasons why Eq. (6) cannot be applied to
dissipation problems involving magnons. First, processes
involving magnons do not conserve

~
M ~. Second, interac-

tion of the magnetization vector with magnons is non-
linear in nature. The way to map this nonlinear interac-
tion onto Caldeira-Leggett coupling has been pointed out
in Ref. 4. In this paper we will give some details of these
calculations, and will extend the analysis of magnon dissi-
pation for planar walls to the case of weakly curved
walls.

Our main purpose will be the calculation of the tunnel-
ing rate, P = A exp( 8), and the cros—sover temperature,
T, = Uo/8, in terms of macroscopic parameters of the
system, and the effects of dissipation on these quantities.
The model is formulated in Sec. II. In Sec. III we calcu-
late the WKB exponent for tunneling through a planar
defect. Two cases are studied: tunneling of the Bat por-
tion of the wall through a small defect and tunneling via
quantum nucleation through a larger defect. The cross-
over temperature is obtained in Sec. IV. In Sec. V we
compute the preexponential factor A. In Sec. VI
different mechanisms of dissipation and their contribu-
tion to the tunneling rate are studied. Results and their
relevance to recent experimental data are discussed in
Sec. VII ~

II. THK MODEL

2/2
cr =oo 1+ (VP~)

0

Z2
+ [1+(VZ) ]

vo[1+(VZ) ]

1/2

where P~(x,y, r) is the component of wall momentum
density perpendicular to the wall surface Z(x, y, t), 5 is
the wall thickness, Uo is the limiting (Walker) velocity of
the wall, and o.

0 is the constant energy density of a planar
stationary wall.

The term proportional to (VP~) in Eq. (8) corresponds
to an inhomogeneous exchange energy in the wall. It has
the order of 5 /R o compared to the term Z /vo, ' Ro be-

ing the curvature radius of the wall. The main approxi-
mation we shall make in this paper is to assume weak
curvature (Ro))5) and slow (~Z~ &&Uo) motion of the
wa11. We will see that these conditions are always
satisfied for the tunneling problem in the limit of small
barrier. The equations of motion (7) then become
equivalent to the covariant action,

~a= —~0Jd'P g(k» (9)

QM

Vjz~
P&F&PIP/g/PPPPllPP

FICi. 1. Decoupling of the domain wall from a planar defect
located in the XYplane.

We will consider the domain wall as a surface (Fig. 1)
of energy 0.0, per unit area. In general the energy density
a(P, R) is a functional of generalized coordinates P(g)
(the momentum density) and R(g) (the radius vector of
the wall); here g=(go, g&, $2) parametrizes the wall sur-
face, with go representing time, and (g„g2), the spatial
coordinates on the wall. Now in general the dynamics of
the wall is governed by the Slonczewski equations, '

which take the form

5o . 50.

5R(g)
'

5P(g)

For an arbitrary wall these can be very complicated, but
for the gently curved wall of Fig. 1 one has a wall energy
density 0 (P, R) of the form
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where g(g) =det[g~(g}], g;, is the metric tensor,

aR(g) aR(g)
g'1=

ag, ag,
(10)

anisotropy energy characterized by two positive con-
stants, Kll and E~:

(16)
To Eq. (9) we should also add the terms coming from a
pinning potential U[R(g)] and a volume magnetic ener-

gy coming from the magnetic field H; this gives a further
contribution S +S to the action, where

S +S = —f d g&g(g)U[R(g)]

—fdtfd RM(R) H. (11)

It is convenient now to convert to the parametrization
go=t, g, =x, $2=y, and describe the wall by the single-
valued function Z (x,y, t) [note that for cylindrical
magnetic-bubble nucleation this would not be con-
venient; a better choice would be Z =Z(p, g, t), with
z,p, P being cylindrical coordinates]. With the approxi-
mations described above we can then rewrite Eq. (9) as

1/2

So= aof—dt dx dy 1+(TZ) — Z . (12)
Up

The physical meaning of Eq. (12) becomes obvious in
the limit of the small velocity of the wall, ~Z ~

&& vo. Ex-
panding the square root under the integral, one obtains

fd f dxdy 9 ~l

fd f dxdy
cos8 2 cos8

(13)

where 8(x,y, t) is the angle that the vector normal to the
surface makes with the Z axis, vj(x, y, t)=Zcos8 is the
local velocity of the wall, mp=o. p/up is the mass of the
unit area of the wall. Here dx dy/cos8 is the element of
the surface, cos8= [1+(c)„Z)+(B„Z) ]

' . Corre-
spondingly the two terms in Eq. (13) represent the kinetic
and the surface energy contributions to the action of the
wall.

It is convenient to consider the imaginary time ~=it
and to use dimensionless variables,

Xp=C07, X) —&/~ p

x, =y /5, z =Z/5,
u = U(x, y, z)/cro, h =2MoH5/cro,

(14)

where 5 is the domain wall thickness, co =uv/5. Then the
total Euclidean action, Sz =iS, becomes

O.p6SE= — f d x[(1+[Vz(x)] )'

+ u (x, ,x~,z ) —hz(x) ], (15)

where x=(xo,x, ,x2), V=(t}O,B„c}2).
The parameters of micromagnetic theory, which

represent macroscopic properties of ferromagnets, are ex-
change, A, (erg/cm), and anisotropy, K(erg/cm ), con-
stants. It may be helpful to have the dependence of our
parameters o.p, 5, co on these constants. We will illustrate
it by the example of a rhombic crystal with the magnetic

This describes a magnet having the X axis as the easy
magnetization direction, and the XY plane as the easy
plane. Consequently, the magnetization inside the
domain wall rotates in the XY plane (see Fig. 1). For
such a wall

=4(A,J (()', 5=(A, /El }'

The limiting velocity is given by (see, e.g. , Ref. 14)
' 1/2

vu = ( A, Kii
)'r 1+

ll

(17)

(18)

co= pH

' 1/2

1+
ll

(19)

where we have introduced the anisotropy field
H, =2'~~~ /Mv. As we will see below, fico/ktt determines
the scale of the crossover temperature T, .

Although we have not specified the pinning potential
U, some important conclusions can be given on the mag-
nitude of the reduced potential u =U/cro in Eq. (15).
The surface energy of the wall depends on the strength of
the local exchange and anisotropy, Eq. (17). Fluctuations
in A, and Ell due to defects, and resulting fluctuations in
o.p, are responsible for the pinning. The wall is attracted
to regions where O.

p is less than it is in an ideal crystal.
Correspondingly, the value of O.

p in an ideal crystal is the
energy available for pinning. This suggests that the re-
duced pinning potential, u =U/o. p, satisfies u (1. A
similar argument can be made about the reduced field h.
From Eq. (17) we get h =H/H, . Energy barriers in fer-
romagnets normally exist at H (H, ~H„which gives
h ~1.

Equation (15) allows one to compute the WKB ex-
ponent for an arbitrary curvature of the wall and an arbi-
trary pinning potential. We will concentrate on the case
of small curvature and "slow" instantons, (Vz} « I,
whose significance will be explained below. To simplify
the problem we will also study planar defects only, for
which u =u (z). The latter may be justified by the fact
that, because of energy considerations walls tend to
match with planar defects or with groups of defects con-

Note, that in the limit of an uniaxial crystal (Ki=O)
the wall has an infinite mass, ma =f 0/uo, and, therefore,
cannot move or tunnel. This is due to the fact that the
Hamiltonian, Els„, p—roduced in this limit by Eq. (16),
commutes with the spin operator s„, so that s on each
side of the wall becomes a conserved quantum number.
In fact, however, the magnetic dipole interaction, which
is not represented in Eq. (16), violates the commutation
of the Hamitlonian with s even for an uniaxial crystal,
leading to the replacement of ECz by 2m.Mp. The frequen-

cy co depends on anisotropy constants, but not on the ex-
change,
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centrated in one plane. One can also imagine a specific
experiment where the wall tunnels through a planar de-
fect. In the limit of small space-time derivatives and
u = u (z), Sz reduces to

O.06
Sz = — Jd x [—,

'
( Vz ) + u (z ) —hz ] . (20)

r

du 1 z —r
dz 2 w

2

where w is the parameter characterizing the shape of the
potential, u(z), produced by the defect. Equation (23)
gives

III. THE %'KB EXPONENT zi =r —w(2h, e)'/, zo=r +w(2h, e)' (24)

A. Tunneling in 1+1dimensions

SE
0'o~~ 1 dz

dXp
CO 2 dXp

+u (z) —hz (21)

The extremal trajectory satisfies

Consider a flat domain wall of a small area A, tunnel-
ing through a planar defect of the same area. This may
be treated as an approximation for the tunneling through
a small defect, or may correspond to the situation when
the wall is coupled to a planar defect within a very thin
wire, with A„being the cross section of the wire. Then
Eq. (20) becomes

u(z) —hz= (2h, e)' z — z1/2— (25)

Consequently, z2=3w(2h, e)'/
With the help of Eq. (22) the extremal action can be

presented as

00
SE= — J dzV 2[u(z) —hz] . (26)

Substituting here the potential of Eq. (25) we obtain

where we have introduced a small parameter
e= 1 —h /h, . It is convenient to choose the Z axis such
that z, =0. Then r =w(2h, e)', zo=2w(2h, e)', and

the total potential takes the form

d Z dQ

dX0 dZ
(22) 48 o W 3/2(h )5/4

0 A

5 N
(27)

The total potential, u(z}—hz, of the general form is
shown in Fig. 2(a). The wall tunnels from z =zi to z =z2.
As is shown in Fig. 2(b), z, and zo are solutions of
du/dz =h. At h =h, the energy barrier disappears. This
corresponds to z2 ~zp ~z &

~0 at h ~h, . In the case of a
small barrier (h —+h, ), the general form of du/dz is [see
Fig. 2(b)]

The tunneling rate can be presented as

P =/I exp( —Bo), (28)

where the WKB exponent is given by Bo= SE/fi. In-
terms of the total number of tunneling spins,
N =Mo A 5/jpz, with the help of Eqs. (14) and (27), we

obtain

U(z)-hz 48 ~ —3/2g 1 /4 5/4~H
0 W c (29)

z, r z. zz~z

(30)

According to Fig. 2(a) and Eq. (25) it has a maximum at
Z Zpy

Let us now verify the validity of our assumption that
(dz/dxo) «1, under which Eq. (20) was obtained from

Eq. (15). The first integral of Eq. (22) is
T '2

1 dz =u(z) —hz .
2 dx0

2
dz

dX
max

8(h, e)' '
3&2 w

(31)

which is small in the limit of small e and h, .
Another interesting observation is the universal form

of the instanton in the limit of the small barrier. Substi-
tuting Eq. (25) into Eq. (30) one obtains

(b}

z(r) =z2/cosh (coos),

where

2(2h, ~)'/4
600

& /2
CO e

w

(32)

(33}

FIG. 2. (a) The shape of the potential, uo(z) —hz. (b) Buo/Bz
vs z. Equation (33) describes the imaginary-time motion from
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z=O at ~= —~ to z =z2 at ~=0, and then back to z=O
at ~=+ 00. It corresponds to the classical motion in the
inverted potential, hz —u (z ).

B. Tunneling in 2+1 dimensions

If the area of the domain wall coupled to a planar de-
fect is large, the tunneling will occur via a nucleation pro-
cess shown in Fig. 1. Once the critical portion of the wall
is released due to tunneling, the nucleus will expand and
eventually depin the entire wall. Let Xbe the direction of
the anisotropy axis and I be the length of the defect in
that direction. The Euclidean action for that problem is

IV. THE CROSSOVER TEMPERATURE

In the absence of dissipation the temperature of the
crossover from thermal to quantum regime is given by
kii T, = Uo/80. It requires, therefore, a calculation of the
height of the energy barrier, U0. As has been shown
above, the limit of the small barrier automatically pro-
vides the condition of small derivatives,

~
Vz

~
&& l. In this

limit the energy of the static configuration of the wall is
given by the equation similar to Eq. (20),

E=o05 fd x[ ,'(Vz) +—u(z) hz], — (41)

where d x =dx&dx2, V=(c}„c)2). For a liat wall studied
in Sec. III A, Vz=O and the height of the barrier is

Cr015
SE= — fd'x [ ,' ( V-z )'+ u (z ) —hr], (34) U0 =e0A u0, (42)

where d x=dxodxz, z= (xo,xz). In this case it is im-

possible to solve the problem analytically, even for a
small barrier. Instead, one can perform a dimensional
analysis of Eq. (34), in order to extract the dependence of
the WKB exponent on the parameters of the ferromag-
netic material. Consider

U0=

where uo is given by Eq. (25) at z =zo,
uo=( —', )R(2h, e) . In terms of the number of tunneling

spins one obtains

lj,sH, u)h, e N . (43)

(2h, e)'~
I I

Z =, X X—1/2 (35)

Together with Eq. (29) this gives

k T= fico ' h'~8 c 36 c (44)

The instanton satisfies

V' z'=z' ——'z'
2

According Eq. (35), the size of the nucleus is
—1/2

Y„— 5 .
(2h, e)'"

(37)

(38)

Tunneling via the formation of the nucleus will occur if
the size of the defect, d, in the Y direction exceeds Y„,
that is, at

d/5 & w' /(2h, e)' (39)

After the nucleus is formed due to the tunneling, it ex-
pands in real time according the classical equation of
motion, Eq. (6).

The integral in Eq. (36), evaluated along the instanton
trajectory, is a number of the order of unity. Conse-
quently, the factor before the integral gives the estimate
of the extremal action. In terms of the number of tunnel-
ing spins, N =M01Y„5/pB, we obtain

Then, with the help of Eq. (25}, at a small barrier, we ob-
tain

ool
SE= — io h, ef d x'[ ,'(V'z') + ,'z—'

—,
'z' ] —. (—36)

Note, that kB T, -fuu0, where co0 is the instanton frequen-
cy of Eq. (33).

Let us now turn to the 2+1 tunneling studied in Sec.
III B. The energy of the nucleus is

'2

E =o 15fdx — + u (z ) —hz
1 dz

2 dx2
(45)

2r

E =ool5io (2h, e} dy' —,+—z' ——z'—3/2 5/4 i 1 dZ 1 I2 ~3

2 dy' 2 6

(46)

where the integral is of the order of unity if taken along
the extremal trajectory. The latter satisfies

dz', 1=z' ——z' (47)

The solution of this equation,

3R(2h, e)'~

cosh (2y/Y„)
(48)

A dimensional analysis similar to that performed in Sec.
IIIB shows that for a small barrier Eq. (45) can be
presented as

B =2' k R h,' e
yH,

0
CO

(40)
gives the shape of the critical nucleus shown in Fig. 1.
Further integration in Eq. (46) gives

where k —1 is the value of the integral. Comparison of
Eq. (40) with Eq. (29) shows that in terms of N the
geometry of the tunneling has little effect on the depen-
dence of B on the parameters of the system. It appears to
be quite universal in the limit of low barrier.

U =—'cr 15ur (2h e}0 5 0 c

or the equivalent expression

UO PBHc WAc
24&a

(49)

(50)
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where X =Mp/F„5/pz is the total number of spins inside
the nucleus. Comparing Eq. (50} with Eq. (43) one finds
that in terms of N the dependence of the barrier on the
parameters is the same for different geometries of tunnel-
ing.

Equations (40) and (50) allow one to obtain the cross-
over temperature for the nucleation process, =15mp . (56)

tionality of the ratio of determinants in Eq. (52) to coo.

Evaluating this ratio by standard methods one obtains

det( —i),+ co, )

det'[ —c),+ coi( 1 —3/cosh (coo~) ]

1/412 X 2
@

—1/2I 1/4
Q)M (51)

This gives for the prefactor
1/2

Comparison with Eq. (44) again demonstrates a universal
dependence of T, on the parameters. The only model-
dependent parameter here is the width of the barrier,
which one can associate with the size of the defect. Oth-
er parameters can be found from independent experi-
ments.

V. THE PREEXPONENTIAL FACTOR

Here det' means exclusion of the zero mode correspond-
ing to the translational time invariance of the instanton,

K — 8 +co,2 2 IC= —c),+co u "(z;), (53)

where co, =cop/2 is the frequency of small oscillations
near the minimum of the potential at z =z, [Fig. 2(a)], coo

is the instanton frequency given by Eq. (33), and
z,. =z2/cosh (coor) is the instanton, Eq. (32).

The computation of A is, in general, a diScult prob-
lem. It can be done rigorously, however, in the case of a
small barrier, which is of primary interest here. With the
help of Eqs. (25) and (32) we obtain

Let us now estimate the prefactor A in the expression
for the tunneling rate, P = A exp( Bo ). It—is determined
by the contribution to the path integral of tunneling tra-
jectories which are small perturbations of the instanton.
The general expression for A in the case of the Hat wall
tunneling through a planar defect is' '

B,
'" dett,A= (52)

det't

15

2m

1/2Bp COp, (57)

where Bo and coo are given by Eqs. (29) and (33), respec-
tively.

Observation of tunneling requires a not very large B.
Consequently, the value of the prefactor A for any
reasonable experiment will be somewhere between ~p and
10cop. Based upon dimensional arguments, one can see
that this must be the case for any geometry of the tunnel-
ing, including the nucleation process studied above.

VI. DISSIPATION

Up to this moment we have completely neglected in-
teraction of the domain wall with microscopic degrees of
freedom like electrons, phonons, magnons, etc. The
effect of these interactions on the tunneling rate must be
computed along the lines of the approach developed by
Caldeira and Leggett. The idea is to write the action
which includes all such interactions and then, integrating
over microscopic variables, to obtain the effective action
in terms of the macroscopic variable only. Contributions
of various dissipation mechanisms are discussed below.

A. Conduction electrons

One may directly apply the results of Ref. 5 to the
Ohmic coupling of M(x, t) with conducting electrons, as-
suming M(x, t) couples linearly to the electronic coordi-
nates. The heating rate in a ferromagnet is given by

1 3
u "(z, )= —1—

4 cosh (~0~)
(54) do

1 3
. 2 RMp

,' q fd'&—M— fdx dyi ',
Each determinant in Eq. (52) is the product of eigenval-
ues of operators in Eq. (53). The problem, therefore,
reduces, to the solution of

where z (x,y, t) describes propagation of the domain wall;

g is a constant. The methods of Caldeira and Leggett
imply that this Ohmic dissipation adds a contribution

(
—c),+coi )P„=A,„P„,

+c01 1
2 2 3

cosh (coo~)

g5Mp [z(xo ) —z(x o ) ]
Sd- = dx dg dip dx'p

4m. (xo —xo)

(59)

Exclusion of the zero mode, p„=0, leads to the propor-
to the tunneling action (21). Then the total Euclidean ac-
tion becomes

S...= — '
fdxdy fax, —'

CO 2 dxp

[z(xo)—z(x 0 ) ]+u (z ) —hz+f3 f dx o
(xo —xo )

(60}
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where

gM0u0
2

4mo0
(61)

S. Magnons

Various branches of spin waves, including bulk mag-
nons and magnons in the wall, may, in principle, contrib-
ute to the dissipation. The domain wall is a soliton of the
nonlinear equation of motion for the magnetization, Eq.
(6). As has been observed by Stamp, 4 the problem of the
macroscopic quantum tunneling of solitons is essentially
different from the problem studied by Caldeira and Leg-
gett. Indeed, any soliton, being a solution of a nonlinear
differential equation, does not have, by definition, a linear
coupling with the excitations of the field describing the
soliton. Consequently, the interaction of the domain wall
with magnons starts with a term of the second order in
magnon variables. Moreover, as shown in Ref. 4, for the

I

determines the relative contribution of this dissipation to
the WKB exponent. In terms of the parameters, P is of
the order of the relative width of the ferromagnetic reso-
nance. This suggests that materials with narrow FMR
are better candidates for the observation of quantum tun-
neling of domain walls.

m=a"'+m"'+
m m (62)

in which the superscripts label two-magnon, three-
magnon, etc. , terms; for a stationary wall one has

case of planar walls, the important coupling between the
wall and the magnons is not even the second-order one,
but the third-order coupling.

The full details of the discussion of the dissipative
effects of magnons are, therefore, rather involved what
we wish to show here is how the calculations for a planar
wall can be adapted in a completely straightforward way
for a curved wall, provided only that the wall curvature is
small (as indeed we have been assuming until now). To
do this we shall show how the main steps of the calcula-
tion for a planar wall have their counterpart for a curved
wall. To simplify the problem, we will keep the uniaxial
anisotropy K~~ and the dipole term 2~M0 in the formulas
of this section, but not the transversal anisotropy K~.
The presence of E~ would not change any of our con-
clusions on the effect of dissipation.

In order to determine the effects of various magnon
couplings, we must first perform the maneuver, familiar
from soliton theory, of quantizing the magnetic fluctua-
tions in the presence of the wall. Thus for a simple Bloch
wall, the magnons no longer satisfy a simple wave equa-
tion, but are the eigenmodes of a more complicated Harn-
iltonian

%' '= —J d r 5 5 ~Vb(r, t)~ + ho 1 —2sech +4MyMO b+(r, t)b(r, t) . (63)

for the second-order term, and
r ]/2

W '=ifd rAy E sech
32$ z —Z

m II 3 5a0

z Z —5V„[b+(r,t ) b(r, t )]b+(r—, t)b(r, t) (64)

for the third-order term (see Refs. 4 and 17; there were a number of misprints in Ref. 4). In these equations b,o is the en-

ergy of the bulk magnon at zero momentum [see. Eq. (66) below], Z(x,y) describes the wall, b (r, t) and bt(r, t) are the

magnon fields; (r, t ) = (x,y, z, t). These magnon fields are produced by the usual Holstein-Primakoff transformation, but

again they refer now to the magnons quantized about the soliton solution. Thus, if we invent a triad of vectors

(e, , e2, e3) in which e3 is directed along the local magnetization axis M(r, t), then we have fluctuations about this magne-

tization (the "fast modes") described by the fluctuation field 5M(r, t), where

5M+(r, t)=5M, +i5M2=(4RyMO)'~z 1 — bt(r, t)b(r, t)i/2 2&'Y t
1/2

b(r, t),

5M (r, t)=5M, i5Mz=(44—yMo)'~ b (r, t) 1 — b (r, t)b(r, t)2Ay

0

1/2

(65)

5M3(r, t ) = 4Ayb (r, t )b(r, t )
—.

Thus the field b(r, t) is not the usual magnon field, be-
cause the triad (e„e2,e3) rotates as we move around. It is
important to notice that Eqs. (62)—(65) imply that we
may not use the Landau-Lifshits-Gilbert (LLG) equation
to analyze wall-magnon dissipation processes. This is be-
cause ~M(r, t)

~
is not conserved by inany of the magnon

I

processes involved. This fact is well known in the theory
of ferromagnetic resonance, although it does not seem to
have prevented a large number of papers on dissipation
from using the LLG equation to treat ferromagnetic insu-
lators. This point becomes all the more important when
one sees that Ohmic dissipation in magnetic insu1ators
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comes entirely from processes in which lMl is not con-
served (see below}.

The spectrum of magnetic fluctuations in the presence
of the wall can be obtained from JV' ', and for the planar
wall one finds a set of "bulk modes, "with spectrum

4A
a)t, = 2 (A, k +Kii)(A, k +Kii+2mMO), (66)

where k is the three-dimensional wave vector, and "wall
modes, "with spectrum

4Ae = A, q (A, q +2mMO},
0

(67)

b(r, t)= g 4&(r, t)b (r, t)+ g qI&(r, t)bl, (r, t),
q k

where

(68)

where q is a two-dimensional wave vector, confined to the
waH plane. The wall modes are the second-quantized ver-
sion of the semiclassical small oscillations of the wall, and
are, thus, confined to the wall region; writing b(r, t) as
the sum of a wall contribution b„(r, t) and a bulk contri-
bution b&(r, t), one has

FIG. 3. Two magnon processes which give a non-Ohmic con-
tribution to wall dissipation. The wall is represented by the
thick double line; bulk magnons are represented by a jagged
line, and wall magnons are represented by a hatched straight
line. The term in (a) is the leading term; the term in (b) is
-0(6/Ro ) and we have ignored it.

e'~t' z Z(x,y, t}—
4s(r, t )=, sech

i k.r
e„(r,t)= '

z Z(x,y—, t)
tanh

( 1+k 2g2)1/2

—ik, k

(70)

Here p is a two-dimensional radius vector in the wall
plane, and we have allowed the wall coordinate Z(x,y, t)
to be time dependent. Notice that bulk magnons are ex-
cluded from the wall except at high energies, such that
k,5) 1.

Up to this point, we have simply altered the formulas
for wall-magnon coupling to take account of the shape of
the wall. This is in the spirit of the approximation de-
scribed in Sec. II, where we dropped terms -(5/Ro) in
the Slonczewski equations for a gently curved wall. To
calculate the dissipative effects of this coupling we need
to calculate the transfer of energy and momentum be-

tween the wall and the magnons when the wall is moving,
and this involves two related approximations: (i) we are
going to ignore momentum transfer perpendicular to the
z axis and (ii) we assume that the magnon bath is in equi-
librium (at temperature T) and that this equilibrium is
undisturbed by the wall motion. The first approximation
ignores corrections —(5/Ro) . The second approxima-
tion is more diScult to justify formally, but seems physi-
cally reasonable if lZ l

((vo. It is well known that as lZ l

approaches v0, this assumption will break down but we
are working in the low-velocity limit.

Turning now to the calculation of energy-momentum
transfer, we proceed as follows for the curved wall. Just
as for the planar wall, it is convenient to set up the calcu-
lation using time-dependent perturbation theory in which
the moving wall perturbs the magnon bath and causes
transitions between bath states

lj ) and li ), governed by
the transition amplitude

i ~, , (ilBP/Btlj) i
T, (t)= fd r exp "—f dt'E, (t') . exp ——f dt'E (t') (71)

where f' is the perturbation operator of the wall on the magnon bath, and E, (t) is the instantaneous adiabatic energy of
the bath mode li ). Now consider a wall with a velocity profile Z(x,y, t); Eq. (71) then becomes

i (E,. —E.)t

T,, (t)= f dx dy Z(x,y, t) (i lB P/Bz
lj ) .

l J
(72)

We now wish to show that, in the same way as for a planar wall, the third-order coupling between the wall surface
and the magnons gives the leading contribution to the dissipation. First we deal with two-magnon processes (Fig. 3).
These give a friction coefficient

2% I&'I,'g,
' I'

Sr IZ~ = f dx dy y (n —n y(~„—~„.+(k —k').Z(x,y)),
N I COg

(73}
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where JH, Pz', is the two-magnon matrix element derived from (k(BP'/c)z ~k'). The energies co&, co& are bulk magnon en-

ergies, and n~ = n(col,
~
is the Bose distribution function.

Calculation of {73)yields a frictional coeKcient which is highly nonlinear in velocity,

5q2IZ, T I
—fdx dyZ {x,y)e (74)

At low velocities this friction is negligible. However at third-order, the important Ohmic processes come in. The criti-
cal term is that described by the graph in Fig. 4, which gives a contribution to the friction coeScient of

2m5I 3[ZI = fdx dy g F[n. I5(col, —c01,.—(k —k' —q) Z(x y)),
fi kk'q k k' q

(75)

where the statistical factor F I n~ I is

(76)F I nj I
= [ng(1+ni, .)(1 n) ——

ni, n (1+ni, )]

and JR&&' describes the conversion of a bulk magnon
into another bulk magnon, plus a wall magnon, with the
transfer of momentum (k —k' —q) to the wall. Calcula-
tion of (75} gives the following result for temperatures
k~T &Ao..

and now observe that provided we may ignore back-
scattering processes in which magnons are reabsorbed by
the wall, the equation of motion of the domain wall will

be governed by the Slonczewski equations with an extra
dissipative term acting on Z (co,x,y } of the form
E3(co, T;x,y)Z(x, y), where

pc02 ~ J (3e& T;x,y)
K3(co, Tx y) = f deg(e), (79)

0 e(6' —cu )

—holk~ T5',(Z, T)=f dx dy . . . e
16~y 5 6o

(77)
where g(e) is a "cutofF' function, which smoothly cuts
off the linear behavior of J3(cu) at large co; the form of
J3(co, T;x,y) 1s]ust

J3(co, T;x,y)

=2~
~F1~&3&'. ~

F t n I5(co& —coq
—

e~ co)—
k, k', q

(78)

We see here that 5g3 is independent of Z, and hence the
dissipation process is Ohmic. It can be shown ' that
fourth-order and higher processes give terms of higher
order in (k&T/h, u) than (77), and so we shall ignore
them. Thus 5g3(T) is the most important dissipation
term coming from magnons; note that it involves a pro-
cess in which ~M(r, t )

~
is not conserved, and so the dissi-

pation term cannot be described by the LLG equation (6).
Now the problem is how to find the effects of this dissi-

pation on tunneling. We cannot directly apply the
Caldeira-Leggett scheme to our problem, because the
crucial coupling is third-order in the environmental vari-
ables; the Caldeira-Leggett framework is based on a set of
environmental couplings which are linear in the environ-
mental coordinates. However for Ohmic dissipation it
turns out we can circumvent this problem. We define a
function

(g kgT —Q /k T

16~y 5 4o

—=cor13(x,y; T) . (80)

Thus we have arrived at a dynamic equation for the wall,
in which the Slonczewski equations have an Ohmic dissi-
pation term added to them; for if we make a time-Fourier
transform of Eq. (80), it just gives a term g Z3( yx;t) in
the Slonczewski equations, with g3 coming from three-
magnon processes.

Now if ~Z(x,y) ~
&&uo and co &&us/5, we may carry all

of usual ideas of Leggett' over to our case, provided we
now regard the bath as being a set of temperature-
dependent modes (each of which describes a triplet of
magnons) which are coupled to the wall via a
temperature-dependent coupling function; all of this is
encapsulated in Eq. (80). Furthermore, if we are interest-
ed in tunneling over a length scale -e'~z5 which is much
less than the other length scales in the problem (as in the
case here), this coupling can be treated as being linear in
Z(x,y). Then, quite remarkably, the entire effect of the
wall-magnon interactions can be absorbed into the nonlo-
ca1 contribution to the imaginary-time action of the form
(60), with the following parameter P:

flcokg T

4~~o
(81)

FIG. 4. The leading third-order process, which gives rise to
Ohmic dissipation of wall motion; the wall interacts with two
bulk magnons and one wall magnon (see text). Other processes
are of higher order in ( T/50).

This contribution is of exactly the Caldeira-Leggett form
for Ohmic coupling; we notice that while it is nonlocal in
imaginary time, it is local in the spatial coordinates of the
wall. This latter result is only true for small wall curva-
ture.

Now we see that for k~ T (&4o, we may always neglect
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dissipation from wall-magnon coupling. However, at
T- T, this is not necessarily true. Generally, A'co and Ap

have the same order of magnitude [see Eqs. (19) and (66)],
unless very anisotropic crystals are considered. The
crossover temperature (see Sec. IV) is —(h, e)' fico. Con-
sequently, at T- T, the relative contribution of the mag-
non dissipation into the WKB exponent is

(h E)' exp[ —1/(h, e)' ] B.ecause of the conditions

h, & 1, e & 1, this contribution cannot be large but may, in

principle be of the order of one. It is small, however, in
the case of a small barrier, h, e«1, provided that the
most significant dissipation mechanism in insulators does
not affect the possibility to observe quantum tunneling of
domain walls.

C. Phonons

The problem of phonon dissipation turns out to be
rather subtle. At first glance one might think that since
the magnetoelastic coupling in most magnets is rather
small, the effect of phonons should be rather negligible.
This guess is certainly confirmed at the level of linear
coupling between phonons and the domain wall, as it was
for magnetic grain tunneling in Ref. 13. The argumenta-
tion is somewhat similar. In both, the coupling chosen is
embodied in the action

Spi,
= fdt f d x I —,'pu —

—,'X;kt u;~ui a;tt u—~)MiM

(82)

where u is the phonon displacement field,

u;k =
—,
'

( 8;u t, +Bk u, ) is the strain tensor, R and a are the
elastic and magnetoelastic tensors, respectively, and p is
the mass density of the material. As Garg and Kim
showed, for magnetic grains this leads to a Caldeira-
Leggett spectral function J(ai) ~co, which is infrared
weak; moreover, it is small anyway, as one might expect
from the fact that the adiabatic effects of this coupling
are also weak. They lead to a relative change of the order
of 10 in the effective moment of inertia associated with
the subbarrier rotation of M and to the same change in
the wall mass. Indeed, if the tunneling frequency cop is
small in comparison with s/5, where s is the speed of
sound, then the elastic deformation of the solid due to
magnetiostriction simply follows the rotating magnetiza-
tion as the wall moves in imaginary time. For cop-10'
s ', s —10 cm/s, and 5-10 cm it becomes a rather
good approximation. The imaginary-time dependence of
the elastic deformation that adiabatically follows the
motion of the wall is u (r) =u [Z —Z(r)], where Z(r) is
the instanton solution of Sec. III. Substituting this into
Eq. (82), we obtain that the magnetoelastic interaction
contributes the term m '-pu p /5 to the effective mass of
the wall in Eq. (13). Here uo is the deformation of the
crystal, due to the magnetostriction, inside the wall. It
can be estimated as up-h5, where 6-aMp/2E is a
small dimensionless constant, E being Young's modulus.
Consequently, the relative increase in the wall mass due
to the interaction with phonons is m'/m -6 pv&5/crp.
The constant 6 is typically 10, which gives
m '/m —10

If one looks at the phonon effects on wall dissipation,
the argument is similar, except that one now finds, in a
similar way to the work of Wada and Schrieffer, ' that
the main contribution to the dissipation is apparently
from two-phonon elastic processes. Again, the details of
this process ' are not strongly affected by wall curva-
ture, and the dissipative effects are very small ( ~ T )

Nevertheless, we are not entirely sure that this is the end
of the story. It has recently been shown by one of us
that in the grain-tunneling problem, inelastic two-phonon
processes will dominate over the one-phonon process
considered by Garg and Kim, since they give an Ohmic
dissipation [J(co)0-co]. Thus the possibility of Ohmic
dissipation arising from inelastic two-phonon interactions
with the domain wall remains to be considered.

D. Photons

To complete our picture we consider also the elec-
tromagnetic radiation produced by the domain-wall tun-
neling in magnetic insulators. Since the tunneling is de-
scribed quasiclassically, the analysis of the radiation
problem can be also based upon a classical formula,

M2 P'2 3
p COp

3
(84)

where V is the volume of the nucleus. This energy is
much less than ficop, suggesting that the coupling to pho-
tons is irrelevant.

K. Dissipation in terms of mobility

The above considerations show that the most impor-
tant dissipation effects (from conducting electrons in met-
als, and from magnons in insulators) are Ohmic. For that
reason it is useful to express the relative contribution of
the dissipation in terms of the mobility of the domain
wall. The latter can be easily obtained from a macro-
scopic experiment.

The mobility of the domain wall with respect to the
magnetic field, pH, is defined as

v =pHH (85)

One can connect it with a more conventional mobility,

pF, with respect to the force, F, on the unit area of the
wall, v =pFF. Since F =2MpH we get pH =2MppF ~ Ac-
cording to Eq. (4), the characteristic frequency associated
with the dissipation is v= 1/JMFmp, where mp is the mass
of the unit area of the wall, mo=cro/Uo. Then Eq. (5)
provides a rough estimate of the effect of dissipation on
tunneling,

~ ~i= M
3c

for the intensity of electromagnetic waves radiated by the
rotating magnetic dipole M. For the process of tunneling
via nucleation studied in Sec. III 8, the rotating magnetic
moment is the moment of the nucleus. Substituting the
corresponding instanton solution into Eq. (83) and in-

tegrating over the imaginary time from —~ to + ~, one
obtains for the total radiated energy
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B =Bp 1+ MpUp
2

PHOpCOp
(86)

The quantitative significance of dissipation is discussed in
the next section.

VII. DISCUSSION

An experiment that would study tunneling of a single-
domain wall through a planar defect may be somewhat
similar to experiments on tunneling in Josephson junc-
tions. In the magnetic case the junction can be made of a
layer of the material which is different from the bulk.
The material of the junction should be selected such that
it pins the wall. Modern evaporation techniques allow
one to obtain thicknesses of the junction (defect) as small
as one atomic monolayer. The critical field H, will, in
general, depend on the thickness w and the material of
the junction. The width of the potential well, produced
by the junction itself, can hardly be significantly less than
the domain wall width. Correspondingly, one should ex-
pect that the parameter w in our formulas is of the order
of one for w (5, and is roughly given by w/5 for w & 5.
For the narrow junction, from Eqs. (40) and (51), we have

ks T, lllco(h E}'

for the crossover temperature, and

A B ka Tc/

and

B- (h, e) i N,yH,
N

(87)

(88)

respectively, for the prefactor and the WKB exponent of
the tunneling rate, P = A exp( B); co= vo—/5,
h, =H, /H„e= 1 H/H, . The—se formulas allow one to
estimate the effect based upon the data on the coercive
field H„ the anisotropy field H„and the parameters of
the domain wall: the limiting velocity Up and the thick-
ness 5. Note that the dependence of T„A, and B on e
coincides with that obtained by Stamp. Equation(87)
shows that the dependence of T, on H, and e is rather
weak, and T, is mostly determined by the frequency co.

In the limit of large transverse anisotropy Kl, Eq. (19}
gives A'co-(4ps/Mo)(EiiKi)'i . Up to a numerical fac-
tor, this coincides with the crossover temperature ob-
tained by the exact solution of the equations of rni-
cromagnetic theory for tunneling of magnetization in
single-domain particles and quantum nucleation of mag-
netic bubbles. For an uniaxial ferromagnet, Kj in Eq.
(19) must be replaced by the magnetic dipole energy
277M p. In the limit of large uniaxial anisotropy,
Eii ))2m.Mp, this gives A'co=4'&Mp. This energy itself
corresponds to the temperature 0.1—1 K for typical
values of Mp, Mp —10 —10 emu/cm . Let us now esti-
mate how many spins can participate in the tunneling
process. For H, —10 Oe and H, —10 Oe, Bof Eq. (88) is
of the order of 10 e N. This suggests that even at
e-0.1, that is without a very fine tuning of the magnetic

field, as many as 10 spins can coherently tunnel through
the energy barrier.

The relative contribution of the dissipation to the tun-
neling rate is of the order of

P, (h, e)
PH

(89)
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where p, is a factor determined by the structure of the
magnetic anisotropy. (For a rhombic crystal

P, = [( I +El /El )' —I ].) For typical numbers,

P, —10, 5-10 cm, luH -10 cm/s Oe, h, —10
e-0. 1, this contribution is of the order of one. We may,
therefore, conclude that in materials with low mobility of
domain walls dissipation may significantly affect tunnel-

ing. In the case of high mobility, our formulas for un-

damped tunneling should provide a good estimate of the
tunneling rate.

To date all experiments on the low-temperature behav-
ior of domain walls have been performed in bulk samples.
In this case the rate of quantum magnetic relaxation is

determined by the statistical average over a large number
of individual tunneling events for many domain walls.
Although this problem is much more complicated than
studied here, we believe that formulas (87) and (88) pro-
vide a rough estimate of the effect. For a statistical con-
tribution of barriers, one can hardly expect any smallness
in Eqs. (87) and (88) associated with the parameter e. In
materials with strong uniaxial anisotropy kz T,

47Tpg Mp h,' would be, therefore, a reasonable esti-
mate of T, .

A few experiments"' have been recently performed
to address specifically the question of a possible quantum
tunneling of magnetization at low temperature. A
temperature-independent relaxation rate has been ob-
served in Tbo 5Ceo 5Fe2 (Mo-200 emu/cm, H, —5 X 10
Oe, H, -5X 10 Oe) below T-1 K (Ref. 11), in qualita-
tive agreement with our theoretical estimate. Note that
some experiments' may also be explained by quantum
nucleation of magnetic bubbles or by the uniform sub-
barrier rotation of the magnetization in small grains. A
detailed comparison between the theory and experiment
on quantum tunneling of magnetization remains a chal-
lenging task. In this connection the experiment with a
single-wall tunneling through a flat junction would be of
great interest. One should also think about the possibili-
ty to test the effect of dissipation on tunneling in such an
experiment. According to Eqs. (86) and (89) it may be-
come noticeable in materials with very low mobility of
domain walls. Of course, the extraction of the contribu-
tion of the dissipation from experimental data would re-
quire changing the mobility (e.g. , by changing the con-
centration of impurities) without a significant change in
other parameters of the tunneling.
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