
PHYSICAL REVIEW B VOLUME 46, NUMBER 9 1 SEPTEMBER 1992-I

Electrons in the t-J model as bound states of spinous and holons
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We identify the quasielectron band in the t-J model at small hole doping using a gauge-theoretic ap-
proach. We find that quasielectrons are formed as bound states of spinons and holons. At zero doping,
the residue of the bound state vanishes at the Fermi momentum of the spinons. At this point, the inelas-
tic spectrum develops a fractional-power singularity that is reminiscent of an x-ray singularity. The
spectral weight of the Green's function of the bound state adds up to the spinon density as required by
the Hubbard algebra. We also derive an effective field theory for many quasielectrons and their interac-
tions.

I. INTRODUCTION

The t-J model' is the simplest of all models of strongly
correlated electrons. It is also believed to describe the
motion of singlet holes in the Emery model of cuprate
superconductors. The normal-state properties of this
model and its implications for tunneling spectra have
been considered previously, and extensive numerical
analysis has been performed. A distinctive feature that
has emerged from these studies is the strong inelastic
contribution to the spectral function that implies strong
interactions between spin and charge degrees of freedom
in this model (see Fig. 1).

In spite of considerable efforts invested into analytical
and numerical investigations of this model, the nature of
the quasiparticles both in this model and in the cuprate
superconductors themselves remains unclear. An impor-
tant question is whether the hole-doped cuprate super-
conductors may be treated within the standard-Fermi-
liquid framework or whether a more radical approach
such as marginal-Fermi-liquid theory is required. '

In a previous paper we demonstrated the existence of
attractive forces among the spin and charge degrees of
freedom of strongly correlated electrons that are de-
scribed by the t-J model. In the present paper, we show
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that these forces bind spinons and holons together at
small doping to form physical quasielectrons as bound
states.

The considerations of this paper serve to clarify the na-
ture of the quasiparticles in the t-J model. They also set
the stage for a detailed analysis of superconducting and
other instabilities in this model.

This work is organized as follows. Section II reviews
our earlier results on the interactions among spinons and
holons. Section III describes the structure of the bound
state in the spinon antiholon channel. Section IV de-
scribes an effective-field theory for many bound states
and their interactions, and Sec. V gives our conclusions.
Technical matters have been relegated to the Appendices.

II. ATTRACTIVE FORCES
BETWEEN HOLONS AND ANTISPINONS

We begin by recalling our previous arguments on the
interaction between spin and charge degrees of freedom
in the t-J model. We use a continuum formulation at
J=2t to simplify our analysis as much as possible. At
J=2t, the t-J Hamiltonian reads as follows:

( A at A a)( A bt A b)J
(i,j )a, b =0, 1,2

where the slave operators 3 annihilate fermionic spi-
nons for a =1,2 and bosonic holes for a =0. The contin-
uum Lagrangian is obtained by a gradient expansion and
reads
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where 6 is the lattice size and where D„ is a covariant
derivative defined as
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FIG. 1. Spectral densities for various values of K with the

pole contribution.

D„y'=(d„+i A„)y', A„= iy'd~' .—

The absence of direct contact interactions between the
slaves in the continuum limit is due to an extra symmetry
of the model at J =2t. It is analogous to the lack of in-

teractions among magnons of small momenta, and it
greatly simplifies our subsequent analysis by suppressing
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charge density or superconducting instabilities. The
gauge field A„ that arises in the formal continuum limit
of the model refiects the local U(1) gauge invariance of
the slave operator description. The constraint

o & 2)7,.'y,'= 1 is due to the single-occupancy con-
straint of the slaves and is treated within a 1/N approxi-
mation. The gauge field picks up dynamics via quantum
fiuctuations at order 1/N; see Ref. 8 for more details.

The following results were found for the effective gauge
Lagrangian by integrating out spinons and holons from
the partition function:

S A H (4)

forbubble

6 =60[1+VGO+(VGO) +
Go

1 —VGo 6, i —V

nons and holons. For the instantaneous and pointlike in-
teraction of Eq. (10), the usual Bethe-Salpeter equation
for the spinon-holon bound state reduces to a much
simpler algebraic equation that is analogous to the
Bardeen-Cooper-Schrieffer (BCS) equation in the theory
of superconductivity. ' '"

Summit up the diagrams
(y y (1}y y (2) ) we obtain

k„k. k„k.
rr„.=II, S„.— ", +II, ",

k k

where

II, =H, +II, = +yk —i y,F PB 2 .PF
m m

(5)

(6)

Go is the convolution of spinon and holon Green's func-
tions

n~(p —k)+nF(p)
Go(co, k)=-

2m co+iO+ —EF p +E& p —k

(12)

2

II&=II, +II& = — (2y +iy )
—z, (7)

2m m Ez(k)

y =co/vFk, E(k)=k /2m, y is the Landau diamagnetic
susceptibility, and pz, pz are, respectively, the holon den-
sity and the spinon density of one polarization.

With this effective Lagrangian, we found the following
interaction term in the electric field energy of two static
slave charges:

Go= [x —+x —1],m kF 2

2 k

where

(13)

where E~(k)=k /2m —p~, E~(k)=k /2m E„, an—d

p~ ( (0) and EF ( )0) are, respectively, the chemical po-
tentials of the holon and spinon.

Gp is evaluated by the proper-time method in Appen-
dix A. At zero hole doping we find

zf d k cos(k x)
(2n ) k e(0, k) x =

—co —i0+ E(k) (E—F p~ )— —
vFk

(14)

Here x is the position vector connecting the static slaves
and e(co, k } is related to the longitudinal polarization by

(9}

U(x) = — (1—5}5(x)= —V5(x) .2&
(10)

As a check of Eq. (9), we note that with e= 1 it produces
the correct Coulomb attraction (1/2m ) lnx between oppo-
site slave charges. Furthermore, when a dynamical pho-
ton is present initially, we may use the polarization III of
Eq. (7) to find Debye screening in U(x). Having con-
vinced ourselves that Eq. (8) is reasonable, we shall now
use it when there is no dynamical photon present initial-
ly.

At vanishing hole doping 5 we see from Eq. (8) that
U(x) becomes a delta function

—v =v +2~x +1 . (15)

The propagator of the physical electron in Eq. (11) is now
given by

m 1

2'Ir~ x ++x —1 —1/a
(16)

We can see from the expression for 6 that, in general,
there is both a pole contribution and a cut. The cut is lo-
cated at —1 & x & 1 and, by the relation between v and x,
implies inelastic processes for v lying between the curves
v+= —(~+1) .

and vF is the spinon Fermi velocity. We absorb p~ in the
definition of co and introduce dimensionless variables
v =co/EF, a =k/kF. In these variables, the relation be-
tween m and x reads

It is important that there is attraction between opposite
slave charges. Attraction between like charges would irn-

ply pairing in the holon-holon channel and lead to an un-
conventional rnechanisrn for superconductivity.

III. A BOUND STATE IN THE
SPINON-ANTIHOLON CHANNEL

A. Spectral sum rules

To understand the properties of 6, it is best to make
the singularities of 6 uniform as a function of x first by
extending x to the complex variable z and then by map-
ping the complex z plane onto the region ~y ~

) 1 in the y
plane via

One anticipates attraction among opposite charges to
lead to the formation of electrons as bound states of spi-

1 1 1 1z= —y+ —,dz= — 1 — dy .
2 y 2 y

(17)
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v = —2(lc +1) . (19)

On the upper half of the unit circle at e'~ in y, 6 has a
spectral density p(co, k) given by

1 me singp= ——ImG =
2n Ic —21c cosII) + 1

(20)

Here cosP is related to v via Eqs. (15) and (17), i.e.,—v=a +2lccosg+1. As the unit circle maps onto the
cut in the z plane, this spectral density has support be-
tween the curves co+(k) found earlier (see Fig. 1). We
may expect the angle P ( n& P & n—) to parametrize the
scattering kinematics of spinons and holons.

In the y plane, it is easy to identify a sum rule for the
total spectral density at each value of K. The total spec-
tral weight at each K is given by the contour integral

A(k)= . f dco6(co, k),1

277l C
(21)

where C wraps the real axis in a counterclockwise direc-
tion. In the complex y plane, C maps onto a curve (C" )

that wraps the unit circle and the half lines (
—1, ~ ) and

(acI, 1). Using dco=(kkz/m)dx, we find

A(k)=pF . f „dy2m.i c" (y —
yo )

(22)

Here we have used the fact that the spinon density of one
polarization is given by pF =kF /4m. . An easy calculation

3.0

This map neatly disentangles the square-root singularities
as it sends the first and second Riemann sheets to ~y~ ) 1

and ~y~ & 1, respectively. Under this conformal transfor-
mation, the upper and lower branch of the cut ( —1, +1)
in the z plane map onto the upper and lower part of the
unit circle in the y plane. In terms of the new variable y,
the propagator 6 takes on a particularly simple form

I 16= y0=1/K .
27TK y yo

We recognize a pole in the propagator at y =yo. By
relating y to x and x to v this generates the following
dispersion of the pole: (ni~x, x,'~j, in) =s,, (nlx;~In) . (23)

It is well known' that such a relation implies a total
spectral weight given by (n~X ~n), i.e., the density of
spinons. The fact that this essential relation has survived
the 1/N expansion and taking the continuum limit en-
courages us to believe that our approximations capture
the essential physics of the t-J model.

B. Threshold singularities of the spectral function

The above discussion on the elastic and inelastic con-
tribution to G are summarized in Figs. 1 and 2, where the
dispersion 1aws and spectral densities are displayed. The
inelastic contribution shows threshold singularities that
can be understood by expanding p(co) as given in Eq. (20)
at the boundaries co+(lc), co (lc) of its support:

p(co, lc) —Q+(co+ —co) . (24)

At K=1 the inelastic spectral density coalesces with a
pole of vanishing spectral weight. One deduces from Eq.
(20) that at this point, p(co) has a one-sided fractional-
power singularity:

8(co+4)
p(co, lc= 1 )-

v'co+ 4
(25)

for co) —4.
We would like to point out now that the above con-

clusions are only weakly affected by the bosonic contribu-
tion to Go in Eq. (12). The full expression for G that in-

cludes the bosonic contribution can be shown to have the
following form:

shows that the contributions to the contour integral from
the poles at y =0 and yo add up to one, irrespective of
whether the pole at yo is inside or outside the unit circle.
The extra factor pF rejects that the formation of a bound
state requires the existence of spinons. In other words,
the spectral weights of pole and cut always add up to pF.
More explicitly, the residue of the pole in the co plane is
given by Zk =pFO(1 —lc)(l —lc ) and vanishes when the
pole joins the cut at K= l.

The above spectral sum rule also follows directly from
the original Hubbard algebra at equal time and zero dop-
ing:

2.5—

20—

t

2
3

~ ~ - ~ ---- ~ ~ --~

G= Ps(y)

Qs(y)
' (26)

for P& and Q& are second- and third-order polynomials in

y, respectively, with coefficients that depend on the dop-
ing 5. At zero doping these polynomials simplify to

0.5— y +1+2K 1

(y'+ 1+ 2')(y —I /~)

FIG. 2. Dispersion of the bound-state pole and support of in-
elastic spectrum.

This implies that at finite doping the two extra conjugate
zeros of Qs are nearly canceled by the zeros of Ps. This
explains the small spectral weight of the extra branch at

y +2~y + 1=0 or v= —(lc +1) that is seen numerically
at small doping. (See Fig. 2.)
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C. Fermi energy of the bound state

We now have to discuss the chemical potential of the
bound states, i.e., up to what energy are the bound states
of the electron occupied? We may hope to clarify this by
getting a better understanding of Go. We shall recom-
pute Go in a conventional way:

Go=(QiTe (t, k)e (O, k)iQ) . (28)

where the superdeterminant of a graded matrix M,

A 8
M C D

is given by'

detA
sdetM =

det(D —CA 'B)

(32)

(33)

Here h stands for the hole channel. On using 4 =y y
and the lack of holons in the undoped state

~
0 ), we

recognize that G (t, k) only propagates forward in time.
Its Fourier transform is given by

d pG "(co,k)= f dt f n~(p)(2~)'

Xexp[it [co+i0+

+EF(p) —Ea(p+k)]]

(29)

which is exactly the starting point of the explicit calcula-
tion in Appendix A. The above simple consideration
shows that Go is unbounded above and below (at finite

doping) simply due to the convolution of particle and
hole dispersion laws that are unbounded in a continuum
approximation. On a lattice, the dispersion laws would
be bounded, and we must introduce an explicit ultraviolet
cutoff in our continuum theory with k,„„~&kF. Ap-
parently, it takes a finite mount of hole doping before we
reach the momentum kF, where the pole forms.

IV. EFFECTIVE-FIELD THEORY
OF THE BOUND STATE

So far, we have idealized the t-J model system at small
doping in terms of nonrelativistic bosons and fermions
with an attractive nonretarded pointlike interaction. We
now wish to ~rite down an effective-field theory for the
bound state in this system that will also clarify the rela-
tion between our method and the well-known x-ray edge
problem. In the first step, we convert the pointlike in-
teraction into a coupling with an extra auxiliary fermion-
ic field as follows:

Hence, the resulting effective Lagrangian of the y, y field

1s

S [g,y] = —ln sdet

Br pg2'

2m

In order to construct the quantum field (e,e ) that
creates and destroys physical electrons, we shall recast
the partition function = of our effective-field theory de-
scribed by Eq. (30) in an alternative form,

—s,~[+,e j (35)

where

s„[e,e]=—v fee+ w[e, e],
and

e =f2)g2)y exp i fye i f eg—(sdetM[g, y])

(36)

(37)

where

is expressed in terms of a functional Fourier-Legendre
transform. '

The bubble diagrams, which give the physical-electron
Green's function, are reproduced here by expanding
ln sdetM to second order in y, g:

ln sdetM = —f d 1 f d2g(1)QF(1 —2)Q~(2 —1)y(2),

(38)

O'F 1+7 ~ Pa 8 pF Qp(xi, 1 i', X12p)
2m

= —5(x, —x2}5(r&—rz), (39}
1+ vx~ +ixa Y' i7 y x (30)

8 pg Qg(X), 7 (,'X2, 12)
2mIt is easy to check that we obtain the pointlike interaction

Vy y y y upon tracing out the auxiliary field. In the
second step, we now integrate over the holon and spinon
degrees of freedom, which is possible because the La-
grangian is, by construction, only quadratic in the spinon
and holon fields. In fact, it is a "graded" quadratic form
of mixed statistics in y,y, and we perform the integrat-
ing by use of the general (and elementary) relation

= —5(x, —x~)5(r, —r2) . (40)

The quantity Qz(1 —2)Q&(2 —1) is recognized as the
Fourier transform of the convolution of the free spinon
and holon Green's functions. Up to second order the
effective action for the physical electrons reads

s„[e,e]=fe(s' —v)e, (41)
~ e

—zMz 1

sdetM
' (31)

from which the physical-electron Green*s function is seen
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to be equivalent to the Bethe-Salpeter equation, Eq. (11).
We may also adopt the first route by tracing out %,%',

thereby arriving at an effective action expressed in terms
of the fields g,y conjugate to the electron fields,

S,tr[X X]
=f d 1 fd2g(1)I'"(1 —2)y(2)

+f d 1 . fd4r"'(1, 2, 3,4)g(1)I(2)y(3)y(4),

(42)

where

states. The effective-field theory now becomes that for
the x-ray problem:

~z-rzy 3 ~ I F 3
2m

+fy(d pa)y fVyyyy (44)

Observe that in this case the holon has no spatial dynam-
ics and can be integrated out exactly. The amplitude
analogous to the physical-electron Green's function be-
comes the "core-hole —conduction-electron" correlation
function,

I ' '= Qp( I —2)Qs(2 —1)——5(1—2),1

I' '=9 (1—2)Q (3—4)Q (4—1)Q (3—2) .

F(r), r2)= —(y (Q, r))y (r))y (r~)y (Q, r2)),
(43) where

(45)

We may envisage a calculation scheme whereby the
fourth-order term in the effective action is treated by a
BCS-type factorization' and investigate the possibility of
a superconducting instability.

We may question the validity of the bubble approxima-
tion by specializing to the following circumstance: Con-
sider a single holon and imagine that it has infinite mass.
Note that this would be disallowed in the present model
because the supersymmetry is artificially broken. Never-
theless, we may adapt the calculation of the spinon-holon
bubble given in Appendix A to the case where the holon
is infinitely massive and see that there are no bound

x-raye
~ ~ ~

x-raye

F(ri)r2)=gs(r2, ri)gF(0, (', o, 2), (46)

where S(r;r2, r, ) is a switch function of r of unit strength
operating in the interval (r„rz) and gF(x, r;x', r')
satisfies the following Schrodinger equation:

We may exploit the fact the holon degree of freedom is

infinitely massive by tracing it out in one step, ' thereby
arriving at the following compact expression:

8,— —p —V5(x)S(7;r, r, ) g (x,rx', v') = —5(x —x')5(r r'), — (47)

and

det(B, —b,„/2m pF —V5(x)S—(~; r2, r, ) )
ga(r2 'ri)

det(8, —5„/2m —pF )

(48)

V2
ga('rz r& ) (pF le (49)

while

gF(Qadi,

Q, r2)-(pFl~& —r~l) " ' (50)

where V= JVV and JV is the density of states at the Fermi
level. For repulsion, we make the replacement; V~—V.

From these we see that there is indeed no bound state
and the effective-field theory reproduces the known re-
sults. A simple derivation of Eq. (50) is given in Appendix
B.

The reader may consult Ref. [15] for a detailed derivation
of the above results. At T=0, in the limit of pF~&&1,
the determinant part of F in Eq. (47) can be shown to
have power-law behavior in ~ up to a shift in the "core
level", p~

V. CONCLUSIONS

Based on the attractive forces among spinons and an-
tiholons that had been found earlier using a I/X and
gauge-theory approach to the t-J model, we have
identified the physical electron band as a found state in
this channel. The spectra we found have the peculiar
feature that cut and pole coalesce at the spinon Fermi
momentum kF, where the weight of the pole vanishes.
The validity of a spectral sum rule was proven for the
bound state, and this suggests that our approach picks up
the essential features of the t-J model. At the Fermi
momentum of the spinons, our spectra have a cusplike
singularity reminiscent of the x-ray singularity. It also
bears some resemblance to an interpretation by Anderson
and co-workers of the photoemission experiments on
hole-doped cuprates. '

In addition to the pole and cut contributions to the
physical-electron Green's function, which mainly come
from the fermionic component of the composite particle,
we observe, from Eq. (12) that by treating the bosons as
free particles a quasi-particle pole emerges, the weight of
which is proportional to 5. With this picture in mind, we

could at a rather qualitative level explain the recent pho-
toemission data of Arnold, Mueller, and Swihart, ' which
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shows a peak and associated with it a broad incoherent
contribution at low temperatures. The peak contribution
clearly comes from the pure bosonic part of the convolu-
tion bubble, while the incoherent part comes from the cut
in the spectral function due to the threshold for real pro-
duction of spinons and holons. However, it may be seen
that by integrating out first the spinons and thus provid-
ing the gauge field partially with dynamics, followed by
integrating out the gauge field, effective interaction be-
tween the bosons can be calculated. Once the effective in-
teraction is known, the low-energy mode of the bosonic
system can be found. Using this information, we can
parametrize the bosonic part of the bubble with the ap-
propriate spectral function, thus providing a more accu-
rate estimate for the quasiparticle pole. The pole contri-
bution is expected to survive the formation of the bound
state. Preliminary calculations suggest that this is so.
Non-Fermi-liquid behavior will be essentially associated
with the production threshold giving the reproducible
bump close to the main peak. '

At high temperatures, the evaporation of the conden-
sate will suppress the quasiparticle pole, since its weight
is proportional to the condensate density. Furthermore,
the dissociation of the bound state leaves behind a purely
incoherent contribution to the spectral function of the
physical electrons (spin-charge separation). This explains
the cusplike behavior of the photoemission spectra. '

Quantitative demonstrations for these statements will be
left for a future publication.

Concerning the robustness of the bound state in the
I/N approximation, we would like to mention that a
higher-order calculation would involve a nonleading
gauge field and rather complex combinations to sort out
the classification scheme in 1/N; however, to the order
considered in this paper, we may trust the approximation
used. The method described above for getting the
effective interaction between the holons is equivalent to
partially summing a class of diagrams in 1/N. We have
also developed a field theory of interacting quasielectrons,
and our calculations set the stage for an analysis of super-
conducting and other instabilities in the two-dimensional
t-Jmodel.
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APPENDIX A: EVALUATION
OF THE SPINON-ANTIHOLON CONVOLUTION

Here we sketch the evaluation of the bound state
Green's function at zero hole doping. We make. use of
Schwinger's proper-time parametrization, '

~ dt it(x +i0 )
l

x +iO+ 0

and find

(Al)

Gh
"F(p)

2m m+iO++EF p —Ez p+k

i—f '~ "~, f"de
(2~)'

I it [~—E(k) —(pk lm) cos8 —EF ] IfX dte
0

(A2)

Using the identities

and

f e
—iacose —J (a}

0 277

f dxxJO(x)=aJ, (a),
0

(A3)

(A4)

2+ 2

e Jj x=,Rem) Im
0 X

(A5)

from Ref. 19 we arrive at Eq. (14) of the text.
The real and imaginary part of Eq. (A2) can be found

as a boundary value of Eq. (A5) on the real a axis. We
find

21T Reo"=x, x + 1
mk

=x —+x —1, x &1 (A6)

and

2' /gImG = —+I—x, x ~12

mk

=0, x)1. (A7)

APPENDIX B: MORE ON THE RELATION
WITH THE X-RAY PROBLEM

gF(0, r, ;O, rz) may be shown to satisfy a singular in-

tegral equation of the Cauchy type and was solved by
standard procedure. However, to investigate the long-
time behavior of gF, a simple approximate calculation
will suffice, and we shall present it here. To do this, we
may set r, to 0 and study g~ at large r2 (renamed r) The.
integral equation reads

(B1)

= —2JVIm f dc@e"
0

= —ZJV, T=o,
7 +D

(B2)

and JV' is the density of state at the Fermi level and

g~(r) =g(r) Vf dr, g (r r,—)gF(r, ), —

where the kernel g (r) is given by

1+,.„, 1 k 1

P „(2') iso [E(k) p~—]—
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D -pF is the band-width cutoff. The iterative solution of
Eq. (81) is given as

gF(r)=g(r) V—f drg(r r—
, )g(r, )

gF(r) —1 —Vf dr, g(r, )g(r) o

+ V f dr, f dr2g (1, 72)g (r~ )
0 0

+ . D&»1 (84)
+V'f dr g(r r,—)f dr g(r, r,—)g(r, )+

0

(83)

Observe that in the limit of D~)) 1, we can factor out the
free part g (r) from every term in the series, thereby ar-
riving at

We see that all terms in Eq. (84) exhibit infrared diver-
gence of the type V"[1n(Dr)]", reiiecting the multitude of
the low-energy excitations of the Fermi system. Close
scrutiny of the series, Eq. (84), shows that the coefficients
of [1n(Dr))" decrease as 1/n!.

In order to see this, we may further approximate, for
D&»1,

7 r j T

d~, d~2 d~„g ~, —z2 g ~„— d~)g ~) d~2g ~2 . g &„ (85)

Upon using the explicit form of g(r) (valid for all r) 0)
we find

g (r) co Vn

t 1n[1+(Dr) ]]"g(r) „on!

the result reported in the text. Note that despite the ap-

proximation used, the exact limiting behavior

gF(r) —+1, g~o
g(r)

=[1+(Dr) ] -(Dr), Dr))1, (86) is satisfied.
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